1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
Require
MathClasses.orders.semirings.
Require Import
Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.interfaces.additional_operations
MathClasses.interfaces.orders MathClasses.orders.minmax.
(* * Properties of Cut off Minus *)
Section cut_minus_properties.
Context `{FullPseudoSemiRingOrder R} `{!TrivialApart R}
`{∀ x y, Decision (x = y)} `{!CutMinusSpec R cm}.
Local Existing Instance pseudo_srorder_semiring.
Add Ring SR: (rings.stdlib_semiring_theory R).
Let local_le_flip := @orders.le_flip R _ _.
Hint Resolve local_le_flip.
Global Instance cut_minus_proper: Proper ((=) ==> (=) ==> (=)) cut_minus | 1.
Proof.
intros x₁ x₂ E y₁ y₂ F.
destruct (total (≤) x₂ y₂).
rewrite cut_minus_0, cut_minus_0; try easy. now rewrite E, F.
apply (right_cancellation (+) y₂).
rewrite cut_minus_le by easy.
rewrite <-E, <-F. apply cut_minus_le. now rewrite E, F.
Qed.
Global Instance cut_minus_mor_1: ∀ x : R, Setoid_Morphism (x ∸) | 0.
Proof. split; try apply _. Qed.
Global Instance cut_minus_mor_2: ∀ x : R, Setoid_Morphism (∸ x) | 0.
Proof. split; try apply _. solve_proper. Qed.
Let local_cut_minus_0 := (cut_minus_0).
Let local_cut_minus_le := (cut_minus_le).
Hint Resolve local_cut_minus_0.
Hint Resolve local_cut_minus_le.
Lemma cut_minus_diag x : x ∸ x = 0.
Proof. now apply cut_minus_0. Qed.
Lemma cut_minus_nonneg_0_r x : 0 ≤ x → x ∸ 0 = x.
Proof. intros E. rewrite <-(rings.plus_0_r (x ∸ 0)). auto. Qed.
Lemma cut_minus_0_l x : 0 ≤ x → 0 ∸ x = 0.
Proof. auto. Qed.
Lemma cut_minus_nonpos_0_r x : x ≤ 0 → x ∸ 0 = 0.
Proof. auto. Qed.
Lemma cut_minus_nonneg x y : 0 ≤ x ∸ y.
Proof.
destruct (total (≤) x y) as [E|E].
apply orders.eq_le. symmetry. now auto.
apply (order_reflecting (+ y)).
now rewrite cut_minus_le; ring_simplify.
Qed.
Lemma cut_minus_le_r x y : y ≤ x → x ∸ y + y = x.
Proof cut_minus_le x y.
Lemma cut_minus_le_l x y : y ≤ x → y + (x ∸ y) = x.
Proof. rewrite commutativity. now apply cut_minus_le. Qed.
Lemma cut_minus_le_trans x y z : y ≤ x → z ≤ y → (x ∸ y) + (y ∸ z) = x ∸ z.
Proof.
intros. apply (right_cancellation (+) z).
rewrite <-associativity, !cut_minus_le; try easy.
now transitivity y.
Qed.
Hint Resolve cut_minus_le_trans.
(* We need y₁ ≤ x₁ ∧ y₂ ≤ x₂, e.g. (5 ∸ 6) + (5 ∸0) = 0 + 5 = 5, whereas (10 ∸ 6) = 4 *)
(* This example illustrates that y₁ + y₂ ≤ x₁ + x₂ does not work either. *)
Lemma cut_minus_plus_distr x₁ x₂ y₁ y₂ :
y₁ ≤ x₁ → y₂ ≤ x₂ → (x₁ ∸ y₁) + (x₂ ∸ y₂) = (x₁ + x₂) ∸ (y₁ + y₂).
Proof.
intros E F. apply (right_cancellation (+) (y₁ + y₂)).
rewrite cut_minus_le.
setoid_replace (x₁ ∸ y₁ + (x₂ ∸ y₂) + (y₁ + y₂)) with (((x₁ ∸ y₁) + y₁) + ((x₂ ∸ y₂) + y₂)) by ring.
now rewrite !cut_minus_le.
now apply semirings.plus_le_compat.
Qed.
(* We need 0 ≤ x, e.g. (-1) * (2 ∸ 1) = -1, whereas (-2) ∸ (-1) = 0 *)
Lemma cut_minus_mult_distr_l x y z : 0 ≤ x → x * (y ∸ z) = x * y ∸ x * z.
Proof.
intros E. destruct (total (≤) y z).
rewrite !cut_minus_0; trivial.
ring.
now apply (maps.order_preserving_nonneg (.*.) x).
apply (right_cancellation (+) (x * z)).
rewrite <-distribute_l, !cut_minus_le; try easy.
now apply (maps.order_preserving_nonneg (.*.) x).
Qed.
Lemma cut_minus_mult_distr_r x y z : 0 ≤ x → (y ∸ z) * x = y * x ∸ z * x.
Proof.
intros E. rewrite 3!(commutativity _ x).
now apply cut_minus_mult_distr_l.
Qed.
Lemma cut_minus_plus_rev_l x y z : y ∸ z = (x + y) ∸ (x + z).
Proof.
destruct (total (≤) y z).
rewrite !cut_minus_0; intuition.
apply (right_cancellation (+) (x + z)).
transitivity ((y ∸ z + z) + x); try ring.
rewrite !cut_minus_le; try easy; try ring.
now apply (order_preserving (x +)).
Qed.
Lemma cut_minus_plus_rev_r x y z : y ∸ z = (y + x) ∸ (z + x).
Proof. rewrite !(commutativity _ x). now apply cut_minus_plus_rev_l. Qed.
(* We need 0 ≤ z, e.g. 2 ∸ (5 - 5) = 2, whereas (2 ∸ 5) ∸ (-5) = 0 ∸ (-5) = 5 *)
Lemma cut_minus_plus_r x y z : 0 ≤ z → x ∸ (y + z) = (x ∸ y) ∸ z.
Proof.
intros E. case (total (≤) x y); intros Exy.
rewrite (cut_minus_0 x y) by easy.
rewrite cut_minus_0_l, cut_minus_0; try easy.
now apply semirings.plus_le_compat_r.
rewrite (cut_minus_plus_rev_r y (x ∸ y) z).
now rewrite cut_minus_le, commutativity.
Qed.
Lemma cut_minus_plus_l x y z : 0 ≤ y → x ∸ (y + z) = (x ∸ z) ∸ y.
Proof. rewrite commutativity. now apply cut_minus_plus_r. Qed.
Lemma cut_minus_plus_toggle1 x y z : x ≤ y → z ≤ y → (y ∸ x) + (x ∸ z) = (y ∸ z) + (z ∸ x).
Proof.
intros. destruct (total (≤) x z).
rewrite (cut_minus_0 x z), cut_minus_le_trans by easy. ring.
rewrite (cut_minus_0 z x), cut_minus_le_trans by easy. ring.
Qed.
Lemma cut_minus_plus_toggle2 x y z : y ≤ x → y ≤ z → (x ∸ z) + (z ∸ y) = (z ∸ x) + (x ∸ y).
Proof.
intros. destruct (total (≤) x z).
rewrite (cut_minus_0 x z), cut_minus_le_trans by easy. ring.
rewrite (cut_minus_0 z x) by easy. ring_simplify. now auto.
Qed.
Lemma cut_minus_plus_toggle3 x₁ x₂ y₁ y₂ : x₁ ≤ y₁ → y₂ ≤ x₂
→ (y₁ ∸ x₁) + ((x₁ + x₂) ∸ (y₁ + y₂)) = (x₂ ∸ y₂) + ((y₁ + y₂) ∸ (x₁ + x₂)).
Proof.
intros. destruct (total (≤) (x₁ + x₂) (y₁ + y₂)).
rewrite (cut_minus_0 (x₁ + x₂) (y₁ + y₂)) by easy.
rewrite cut_minus_plus_distr by easy.
setoid_replace (x₂ + (y₁ + y₂)) with (y₁ + (x₂ + y₂)) by ring.
setoid_replace (y₂ + (x₁ + x₂)) with (x₁ + (x₂ + y₂)) by ring.
rewrite <-cut_minus_plus_rev_r. ring.
rewrite (cut_minus_0 (y₁ + y₂) (x₁ + x₂)) by easy.
rewrite cut_minus_plus_distr by easy.
setoid_replace (y₁ + (x₁ + x₂)) with (x₂ + (x₁ + y₁)) by ring.
setoid_replace (x₁ + (y₁ + y₂)) with (y₂ + (x₁ + y₁)) by ring.
rewrite <-cut_minus_plus_rev_r. ring.
Qed.
Lemma cut_minus_0_plus_toggle x : x + (0 ∸ x) = x ∸ 0.
Proof.
destruct (total (≤) 0 x).
rewrite (cut_minus_0 0 x), (cut_minus_nonneg_0_r x) by easy. ring.
rewrite (cut_minus_0 x 0), commutativity; auto.
Qed.
Lemma cut_minus_0_le x y : x ≤ y → (y ∸ x) + (x ∸ 0) + (0 ∸ y) = (y ∸ 0) + (0 ∸ x).
Proof.
intros. rewrite <-!cut_minus_0_plus_toggle.
apply (right_cancellation (+) x).
setoid_replace (y ∸ x + (x + (0 ∸ x)) + (0 ∸ y) + x) with ((y ∸ x + x) + (x + (0 ∸ x)) + (0 ∸ y)) by ring.
rewrite (cut_minus_le y x) by easy. ring.
Qed.
(* * Properties of min and minus *)
Section min.
Context `{∀ x y : R, Decision (x ≤ y)}.
Lemma cut_minus_min1 x y z : x ∸ (y ⊓ z) = x ∸ y + ((x ⊓ y) ∸ z).
Proof with eauto; try ring.
unfold meet, min, sort.
case (decide_rel (≤) x y); case (decide_rel (≤) y z); intros F G; simpl.
rewrite (cut_minus_0 x z)...
rewrite (cut_minus_0 x y)...
rewrite (cut_minus_0 y z)...
symmetry...
Qed.
Lemma cut_minus_min2 x y z : y ∸ z + ((y ⊓ z) ∸ x) = y ∸ x + ((x ⊓ y) ∸ z).
Proof.
rewrite <-cut_minus_min1.
rewrite (commutativity x y), <-cut_minus_min1.
now rewrite commutativity.
Qed.
Lemma cut_minus_min3 x y z : (x + (y ⊓ z)) ∸ ((x + y) ⊓ (x + z)) = ((x + y) ⊓ (x + z)) ∸ (x + (y ⊓ z)).
Proof with auto; try reflexivity.
destruct (total (≤) y z) as [G1|G1].
rewrite (lattices.meet_l y z), (lattices.meet_l (x + y) (x + z))...
rewrite (lattices.meet_r y z), (lattices.meet_r (x + y) (x + z))...
Qed.
End min.
(* The relation to ring minus *)
Context `{Negate R} `{!Ring R}.
Add Ring R: (rings.stdlib_ring_theory R).
Lemma cut_minus_ring_minus (x y : R) : y ≤ x → x ∸ y = x - y.
Proof. intros. apply (right_cancellation (+) y). ring_simplify. now auto. Qed.
Lemma cut_minus_negate (x : R) : x ≤ 0 → 0 ∸ x = -x.
Proof. intros. now rewrite <-(rings.plus_0_l (-x)), cut_minus_ring_minus. Qed.
End cut_minus_properties.
(* * Default implementation for Rings *)
Section cut_minus_default.
Context `{Ring R} `{!SemiRingOrder o} `{∀ x y : R, Decision (x ≤ y)}.
Global Instance default_cut_minus: CutMinus R | 10 := λ x y, if decide_rel (≤) x y then 0 else x - y.
Add Ring R2: (rings.stdlib_ring_theory R).
Global Instance: CutMinusSpec R default_cut_minus.
Proof.
split; unfold cut_minus, default_cut_minus; intros x y ?.
case (decide_rel (≤) x y); intros.
ring_simplify. now apply (antisymmetry (≤)).
ring.
now case (decide_rel (≤) x y).
Qed.
End cut_minus_default.
Set Warnings "-unsupported-attributes". (* FIXME: remove when minimal Coq version is enough *)
#[global]
Typeclasses Opaque default_cut_minus.
Set Warnings "+unsupported-attributes".
Section order_preserving.
Context `{FullPseudoSemiRingOrder A} `{!TrivialApart A} `{!CutMinusSpec A cmA} `{∀ x y : A, Decision (x = y)}
`{FullPseudoSemiRingOrder B} `{!TrivialApart B} `{!CutMinusSpec B cmB} `{∀ x y : B, Decision (x = y)}
{f : A → B} `{!OrderPreserving f} `{!SemiRing_Morphism f}.
Local Existing Instance pseudo_srorder_semiring.
Lemma preserves_cut_minus x y : f (x ∸ y) = f x ∸ f y.
Proof.
destruct (total (≤) x y) as [E|E].
rewrite (cut_minus_0 x y E), (cut_minus_0 (f x) (f y)).
apply rings.preserves_0.
now apply (order_preserving _).
apply (left_cancellation (+) (f y)). rewrite 2!(commutativity (f y)).
rewrite <-rings.preserves_plus.
rewrite (cut_minus_le x y E), (cut_minus_le (f x) (f y)).
reflexivity.
now apply (order_preserving _).
Qed.
End order_preserving.
|