1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
Require Import
MathClasses.theory.lattices MathClasses.varieties.monoids MathClasses.implementations.bool
MathClasses.implementations.list_finite_set MathClasses.orders.lattices
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.finite_sets MathClasses.interfaces.orders.
Definition fset_car_setoid A `{FSet A} : Setoid A := setoidmor_a singleton.
Section fset_props.
Context `{FSet A}.
Instance: Setoid A := fset_car_setoid A.
Lemma fset_extend_correct_applied `{BoundedJoinSemiLattice B} (f : A → B) `{!Setoid_Morphism f} x :
f x = fset_extend f {{ x }}.
Proof. now apply fset_extend_correct. Qed.
Lemma fset_extend_unique_applied `{Equiv B} `{Join B} `{Bottom B} (f : A → B) `{!Setoid_Morphism f}
(h : set_type A → B) `{!BoundedJoinSemiLattice_Morphism (h : set_type A → B)} :
(∀ x, f x = h {{ x }}) → ∀ x, h x = fset_extend f x.
Proof.
intros. apply setoids.ext_equiv_applied, (fset_extend_unique _ _).
now apply setoids.ext_equiv_applied_iff.
Qed.
Let F (x y z : A) := if decide (z = x) then false else true.
Instance: ∀ x y, Setoid_Morphism (F x y).
Proof.
split; try apply _. intros ?? E. unfold F.
do 2 case (decide _); try reflexivity; rewrite E; contradiction.
Qed.
Global Instance: Injective (singleton : A → set_type A).
Proof.
split; try apply _. intros x y E1. apply stable; intros E2.
assert (fset_extend (F x y) {{ x }} ≠ fset_extend (F x y) {{ y }}) as E3.
rewrite <-!(fset_extend_correct_applied (F x y)).
unfold F. do 2 case (decide _); intuition try discriminate; auto.
destruct E3. now rewrite E1.
Qed.
Lemma fset_singleton_ne_empty x : {{ x }} ≠ ∅.
Proof.
intros E1.
set (g (z : A) := true).
assert (Setoid_Morphism g) by (split; try apply _; firstorder).
assert (fset_extend g {{ x }} ≠ ⊥) as E2.
rewrite <-(fset_extend_correct_applied g). discriminate.
destruct E2. now rewrite E1, preserves_bottom.
Qed.
Lemma fset_join_singletons x : {{ x ; x }} = {{ x }}.
Proof. now rewrite (idempotency (⊔) _). Qed.
Lemma fset_join_singletons_eq_l x y : {{ x ; y }} = {{ x }} ↔ x = y.
Proof.
split.
intros E1. apply stable; intros E2.
assert (fset_extend (F x y) {{ x ; y }} ≠ fset_extend (F x y) {{ x }}) as E3.
rewrite preserves_join, <-!(fset_extend_correct_applied (F x y)).
unfold F. do 2 (case (decide _)); intuition try discriminate; auto.
destruct E3. now rewrite E1.
intros E. now rewrite E, fset_join_singletons.
Qed.
Lemma fset_join_singletons_eq_r x y : {{ x ; y }} = {{ y }} ↔ x = y.
Proof. rewrite commutativity, fset_join_singletons_eq_l. intuition. Qed.
End fset_props.
#[global]
Instance fset_map_mor `{FSet A} `{FSet B} (f : A → B) `{!Setoid_Morphism f} :
BoundedJoinSemiLattice_Morphism (fset_map (H:=At) (H0:=At0) (SetSingleton0:=Asingle0) f).
Proof. apply _. Qed.
Lemma fset_map_correct `{FSet A} `{FSet B} (f : A → B) `{!Setoid_Morphism f} :
singleton ∘ f = fset_map f ∘ singleton.
Proof (fset_extend_correct _).
Lemma fset_map_correct_applied `{FSet A} `{FSet B} (f : A → B) `{!Setoid_Morphism f} x :
{{ f x }} = fset_map f {{ x }}.
Proof.
pose proof (fset_car_setoid A).
now apply (setoids.ext_equiv_applied (fset_map_correct f)).
Qed.
Lemma fset_map_unique `{FSet A} `{FSet B} (f : A → B) `{!Setoid_Morphism f}
(h : set_type A → set_type B) `{!BoundedJoinSemiLattice_Morphism h} :
singleton ∘ f = h ∘ singleton → h = fset_map f.
Proof. intros. unfold fset_map. now apply (fset_extend_unique _ _). Qed.
Lemma fset_map_id `{FSet A} :
fset_map id = id.
Proof.
pose proof (fset_car_setoid A).
symmetry. apply (fset_map_unique id id).
now apply setoids.ext_equiv_refl.
Qed.
Lemma fset_map_id_applied `{FSet A} x :
fset_map id x = x.
Proof. now apply fset_map_id. Qed.
Lemma fset_map_compose `{FSet A} `{FSet B} `{FSet C}
(f : B → C) `{!Setoid_Morphism f} (g : A → B) `{!Setoid_Morphism g} :
fset_map (f ∘ g) = fset_map f ∘ fset_map g.
Proof.
pose proof (fset_car_setoid A).
symmetry. apply (fset_map_unique (f ∘ g) _).
rewrite compose_assoc.
rewrite <-(fset_map_correct g).
rewrite <-compose_assoc.
rewrite (fset_map_correct f).
now apply setoids.ext_equiv_refl.
Qed.
Section fset_map_inverse.
Context `{FSet A} `{FSet B} (f : A → B) `{!Inverse f} `{!Bijective f}.
Global Instance fset_map_inverse: Inverse (fset_map f) := fset_map (f⁻¹).
Instance fset_map_surjective: Surjective (fset_map f).
Proof.
pose proof (fset_car_setoid A). pose proof (fset_car_setoid B).
pose proof (injective_mor f). split; try apply _.
unfold inverse, fset_map_inverse.
rewrite <-(fset_map_compose _ _).
symmetry. apply (fset_map_unique _ _).
rewrite (surjective f).
now apply setoids.ext_equiv_refl.
Qed.
End fset_map_inverse.
#[global]
Instance fset_map_bijective `{FSet A} `{FSet B}
(f : A → B) `{!Inverse f} `{!Bijective f} : Bijective (fset_map f).
Proof.
pose proof (fset_car_setoid A). pose proof (fset_car_setoid B).
pose proof (injective_mor f).
pose proof (fset_map_surjective f). pose proof (fset_map_surjective (f⁻¹)).
repeat (split; try apply _). intros x y E.
rewrite <-(jections.surjective_applied (fset_map (f⁻¹)) x).
rewrite <-(jections.surjective_applied (fset_map (f⁻¹)) y).
now apply sm_proper.
Qed.
Lemma preserves_in `{FullFSet A} `{FullFSet B} (f : A → B) `{!Inverse f} `{!Bijective f} x X :
f x ∈ fset_map f X ↔ x ∈ X.
Proof.
pose proof (injective_mor f).
pose proof (join_sl_mor_preserving (fset_map f)).
pose proof (join_sl_mor_reflecting (fset_map f)).
rewrite !fset_in_singleton_le.
split; intros E.
apply (order_reflecting (fset_map f)).
now rewrite <-(fset_map_correct_applied f).
rewrite (fset_map_correct_applied f).
now apply (order_preserving _).
Qed.
Lemma preserves_notin `{FullFSet A} `{FullFSet B} (f : A → B) `{!Inverse f} `{!Bijective f} x X :
f x ∉ fset_map f X ↔ x ∉ X.
Proof. split; intros E ?; now apply E, (preserves_in f). Qed.
Section full_fset_props.
Context `{FullFSet A}.
Instance: Setoid A := fset_car_setoid A.
Notation to_listset := (fset_map id : set_type A → @set_type _ (listset A)).
Notation from_listset := (to_listset⁻¹).
Lemma to_listset_preserves_in x X : x ∈ to_listset X ↔ x ∈ X.
Proof preserves_in id x X.
Lemma fset_induction (P : set_type A → Prop) `{proper : !Proper ((=) ==> iff) P} :
P ∅ → (∀ x X, x ∉ X → P X → P ({{ x }} ⊔ X)) → ∀ X, P X.
Proof.
intros Pempty Padd X.
mc_setoid_replace X with (from_listset (to_listset X))
by (symmetry; apply (jections.bijective_applied _)).
generalize (to_listset X). apply listset_induction.
solve_proper.
now rewrite preserves_bottom.
intros x l E1 E2.
change (P (fset_map id ({{x}} ⊔ l))).
rewrite preserves_join, <-(fset_map_correct_applied _ x).
apply Padd; auto. intros E3. destruct E1. now apply (preserves_in id x).
Qed.
Global Instance fset_in_proper : Proper ((=) ==> (=) ==> iff) ((∈): A → set_type A).
Proof. intros x y E1 X Y E2. now rewrite !fset_in_singleton_le, E1, E2. Qed.
Global Program Instance fset_in_dec_slow: ∀ x X, Decision (x ∈ X) | 50 := λ x X,
match decide_rel (∈) x (to_listset X) with left E => left _ | right E => right _ end.
Next Obligation. now apply to_listset_preserves_in. Qed.
Next Obligation. intros F. destruct E. now apply to_listset_preserves_in. Qed.
Lemma fset_notin_empty x : x ∉ ∅.
Proof. intro. now apply fset_singleton_ne_empty with x, below_bottom, fset_in_singleton_le. Qed.
Lemma fset_in_join X Y x : x ∈ X ⊔ Y ↔ x ∈ X ∨ x ∈ Y.
Proof. rewrite <-!to_listset_preserves_in, preserves_join. apply listset_in_join. Qed.
Lemma fset_notin_join X Y x : x ∉ X ⊔ Y ↔ x ∉ X ∧ x ∉ Y.
Proof. rewrite fset_in_join. tauto. Qed.
Lemma fset_in_singleton x : x ∈ {{ x }}.
Proof. now rewrite fset_in_singleton_le, join_sl_le_spec, fset_join_singletons. Qed.
Lemma fset_in_singleton_eq x y : x ∈ {{ y }} ↔ x = y.
Proof.
split; intros E.
now apply fset_join_singletons_eq_r, join_sl_le_spec, fset_in_singleton_le.
rewrite E. apply fset_in_singleton.
Qed.
Lemma fset_notin_singleton_neq x y : x ∉ {{ y }} ↔ x ≠ y.
Proof. now rewrite fset_in_singleton_eq. Qed.
Lemma fset_in_add y X x : y ∈ {{ x }} ⊔ X ↔ y = x ∨ y ∈ X.
Proof.
rewrite fset_in_join. split; intros [?|?]; try tauto.
left. now apply fset_in_singleton_eq.
left. now apply fset_in_singleton_eq.
Qed.
Lemma fset_notin_add y X x : y ∉ {{ x }} ⊔ X ↔ y ≠ x ∧ y ∉ X.
Proof. rewrite fset_in_add. tauto. Qed.
Lemma fset_in_inversion y X x : y ∈ {{ x }} ⊔ X → y = x ∨ y ∈ X.
Proof.
rewrite fset_in_join. intros [?|?]; try tauto.
left. now apply fset_in_singleton_eq.
Qed.
Lemma fset_le_in X Y : X ≤ Y ↔ ∀ x, x ∈ X → x ∈ Y.
Proof.
pose proof (join_sl_mor_preserving to_listset).
pose proof (join_sl_mor_reflecting to_listset).
setoid_rewrite <-to_listset_preserves_in.
split; intros E.
now apply (order_preserving (to_listset)) in E.
now apply (order_reflecting (to_listset)).
Qed.
Lemma fset_eq_in X Y : X = Y ↔ ∀ x, x ∈ X ↔ x ∈ Y.
Proof.
setoid_rewrite <-to_listset_preserves_in.
split.
intros E. change (to_listset X = to_listset Y).
now apply sm_proper.
intros. now apply (injective (to_listset)).
Qed.
Instance: Proper ((=) ==> (=) ==> (=)) (⊓).
Proof. intros ?? E1 ?? E2. apply fset_eq_in. intros. now rewrite !fset_in_meet, E1, E2. Qed.
Instance: Associative (⊓).
Proof. repeat intro. apply fset_eq_in. intros. rewrite !fset_in_meet. tauto. Qed.
Instance: Commutative (⊓).
Proof. repeat intro. apply fset_eq_in. intros. rewrite !fset_in_meet. tauto. Qed.
Instance: BinaryIdempotent (⊓).
Proof. repeat intro. apply fset_eq_in. intros. rewrite !fset_in_meet. tauto. Qed.
Instance: MeetSemiLattice (set_type A).
Proof. repeat (split; try apply _). Qed.
Global Instance: DistributiveLattice (set_type A).
Proof.
repeat (split; try apply _); repeat intro; apply fset_eq_in; intro;
repeat (rewrite fset_in_meet || rewrite fset_in_join); tauto.
Qed.
Global Instance: MeetSemiLatticeOrder (≤).
Proof.
apply alt_Build_MeetSemiLatticeOrder. intros.
rewrite fset_le_in, fset_eq_in. setoid_rewrite fset_in_meet. firstorder trivial.
Qed.
Lemma fset_meet_singletons x : {{ x }} ⊓ {{ x }} = {{ x }}.
Proof. now rewrite (idempotency (⊔) _). Qed.
Lemma fset_meet_singletons_eq_l x y : {{ x }} ⊓ {{ y }} = {{ x }} ↔ x = y.
Proof.
split; intros E.
apply fset_in_singleton_eq.
rewrite fset_eq_in in E. setoid_rewrite fset_in_meet in E.
now destruct (proj2 (E x) (fset_in_singleton _)).
now rewrite E, fset_meet_singletons.
Qed.
Lemma fset_meet_singletons_eq_r x y : {{ x }} ⊓ {{ y }} = {{ y }} ↔ x = y.
Proof. rewrite commutativity, fset_meet_singletons_eq_l. intuition. Qed.
Lemma fset_meet_distinct_singletons (x y: A) : x ≠ y → {{ x }} ⊓ {{ y }} = ∅.
Proof.
intros E1. apply fset_eq_in. intros z.
rewrite fset_in_meet. split.
intros [E2 E3]. destruct E1.
apply fset_in_singleton_eq in E2. apply fset_in_singleton_eq in E3.
now rewrite <-E2, <-E3.
intro. now destruct (fset_notin_empty z).
Qed.
Global Instance: Proper ((=) ==> (=) ==> (=)) (∖).
Proof. intros ?? E1 ?? E2. apply fset_eq_in. intros. now rewrite !fset_in_difference, E1, E2. Qed.
Global Instance fset_difference_empty_r: RightIdentity (∖) ∅.
Proof.
intro. apply fset_eq_in. intro. rewrite fset_in_difference.
split; intuition. edestruct fset_notin_empty; eassumption.
Qed.
Global Instance fset_difference_empty_l: LeftAbsorb (∖) ∅.
Proof.
intro. apply fset_eq_in. intro. rewrite fset_in_difference.
split; intuition. edestruct fset_notin_empty; eassumption.
Qed.
Global Instance diff_meet_distr_r: RightDistribute (∖) (⊓).
Proof.
intros X Y Z. apply fset_eq_in. intro.
repeat (rewrite fset_in_meet || rewrite fset_in_difference). intuition.
Qed.
Global Instance diff_join_distr_r: RightDistribute (∖) (⊔).
Proof.
intros X Y Z. apply fset_eq_in. intro.
repeat (rewrite fset_in_join || rewrite fset_in_difference). intuition.
Qed.
Lemma diff_meet_join_diff X Y Z : X ∖ (Y ⊓ Z) = X ∖ Y ⊔ X ∖ Z.
Proof.
apply fset_eq_in. intro.
repeat (rewrite fset_in_join || rewrite fset_in_meet || rewrite fset_in_difference).
split; try tauto. intros [??]. case (decide (x ∈ Y)); tauto.
Qed.
Lemma diff_join_diff_meet X Y Z : X ∖ (Y ⊔ Z) = X ∖ Y ⊓ X ∖ Z.
Proof.
apply fset_eq_in. intro.
repeat (rewrite fset_in_join || rewrite fset_in_meet || rewrite fset_in_difference). tauto.
Qed.
End full_fset_props.
Ltac split_sets :=
repeat (match goal with
| E : _ ∈ ∅ |- _ => apply fset_notin_empty in E; destruct E
| E : _ ∈ {{ _ }} |- _ => apply fset_in_singleton_eq in E
| E : _ ∉ {{ _ }} |- _ => apply fset_notin_singleton_neq in E
| E : _ ∈ _ ⊔ _ |- _ => apply fset_in_join in E; destruct E
| E : _ ∉ _ ⊔ _ |- _ => apply fset_notin_join in E; destruct E
| E : _ ∈ _ ⊓ _ |- _ => apply fset_in_meet in E; destruct E
| |- context [_ ∈ _ ⊔ _] => rewrite !fset_in_join
end).
Section iso_is_fset.
Context `{Setoid A} `{At : SetType A}
`{BoundedJoinSemiLattice (set_type A)} `{fsetB : FSet B}
`{SetSingleton A} `{!Setoid_Morphism (singleton : A → At)}
(A_to_B : A → B) `{!Inverse A_to_B} `{!Bijective A_to_B}
(At_to_Bt : set_type A → set_type B) `{!Inverse At_to_Bt}
`{!Bijective At_to_Bt} `{!BoundedJoinSemiLattice_Morphism At_to_Bt}
`{∀ a₁ a₂ : A, Decision (a₁ = a₂)}
(singleton_correct : At_to_Bt ∘ singleton = singleton ∘ A_to_B).
Instance: Setoid B := fset_car_setoid B.
Lemma singleton_correct_alt :
At_to_Bt⁻¹ ∘ singleton = singleton ∘ A_to_B⁻¹.
Proof.
pose proof (injective_mor A_to_B). pose proof (injective_mor At_to_Bt).
apply (jections.injective_compose_cancel At_to_Bt).
rewrite <-!compose_assoc.
rewrite (surjective At_to_Bt), singleton_correct.
rewrite compose_assoc, (surjective A_to_B).
rewrite compose_id_left, compose_id_right.
now apply setoids.ext_equiv_refl.
Qed.
Instance iso_is_fset_extend: FSetExtend A := λ C _ _ f,
fset_extend (f ∘ A_to_B⁻¹) ∘ At_to_Bt.
Instance iso_is_fset: FSet A.
Proof.
pose proof (injective_mor A_to_B).
split; unfold fset_extend, iso_is_fset_extend; try apply _.
intros C ? ? ? ? f ?.
rewrite compose_assoc, singleton_correct, <-compose_assoc.
rewrite <-(fset_extend_correct (f ∘ A_to_B ⁻¹)).
rewrite compose_assoc, (jections.bijective _), compose_id_right.
now apply setoids.ext_equiv_refl.
intros C ? ? ? f ? h ? E1.
pose proof (bounded_join_slmor_b (f:=h)).
rewrite <-(fset_extend_unique (f ∘ A_to_B⁻¹) (h ∘ At_to_Bt⁻¹)).
rewrite compose_assoc, (jections.bijective _), compose_id_right.
now apply setoids.ext_equiv_refl.
rewrite E1, !compose_assoc, singleton_correct_alt.
now apply setoids.ext_equiv_refl.
Qed.
End iso_is_fset.
|