1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
Require Import
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.universal_algebra.
Section contents.
Variable σ: Signature.
Notation OpType := (OpType (sorts σ)).
Section homo.
Context (A B: sorts σ → Type)
`{A_equiv : ∀ a, Equiv (A a)} `{B_equiv : ∀ a, Equiv (B a)}
`{A_ops : AlgebraOps σ A} `{B_ops : AlgebraOps σ B}.
Section with_f.
Context (f : ∀ a, A a → B a).
Arguments f {a} _.
Fixpoint Preservation {n : OpType}: op_type A n → op_type B n → Prop :=
match n with
| ne_list.one d => λ oA oB, f oA = oB
| ne_list.cons x y => λ oA oB, ∀ x, Preservation (oA x) (oB (f x))
end.
Class HomoMorphism: Prop :=
{ homo_proper:: ∀ a, Setoid_Morphism (@f a)
; preserves: ∀ (o: σ), Preservation (A_ops o) (B_ops o)
; homo_source_algebra: Algebra σ A
; homo_target_algebra: Algebra σ B }.
Context `{∀ a, Setoid (A a)} `{∀ b, Setoid (B b)} `{∀ a, Setoid_Morphism (@f a)}.
Global Instance Preservation_proper n:
Proper (op_type_equiv _ _ _ ==> op_type_equiv _ B n ==> iff) (@Preservation n).
(* todo: use (=) in the signature and see why things break *)
Proof with auto.
induction n; simpl; intros x y E x' y' E'.
split; intro F. rewrite <- E, <- E'... rewrite E, E'...
split; simpl; intros.
eapply IHn; eauto; symmetry; [now apply E | now apply E'].
eapply IHn; eauto; [now apply E | now apply E'].
Qed.
Global Instance Preservation_proper'' n:
Proper (eq ==> (=) ==> iff) (@Preservation n).
Proof with auto.
induction n; simpl; intros x y E x' y' E'.
split; intro F. rewrite <- E, <- E'... rewrite E, E'...
split; simpl; intros.
subst.
apply (IHn (y x0) (y x0) eq_refl (y' (f x0)) (x' (f x0)) ).
symmetry.
apply E'.
reflexivity.
apply H2.
subst.
apply (IHn (y x0) (y x0) eq_refl (y' (f x0)) (x' (f x0)) ).
symmetry.
apply E'.
reflexivity.
apply H2.
Qed. (* todo: evil, get rid of *)
End with_f.
Lemma Preservation_proper' (f g: ∀ a, A a → B a)
`{∀ a, Setoid (A a)} `{∀ b, Setoid (B b)} `{∀ a, Setoid_Morphism (@f a)}:
(∀ a (x: A a), f a x = g a x) → ∀ (n: OpType) x y, Proper (=) x → Proper (=) y →
@Preservation f n x y →
@Preservation g n x y.
Proof.
induction n.
simpl.
intros ? ? ? ? E.
rewrite <-E.
symmetry.
intuition.
simpl.
intros a b E1 E2 E3 z.
apply IHn.
apply E1. reflexivity.
apply E2. reflexivity.
assert (b (g _ z) = b (f _ z)) as E4.
apply E2.
symmetry.
apply H2.
now apply (Preservation_proper'' f n (a z) (a z) eq_refl _ _ E4).
Qed.
Lemma HomoMorphism_Proper: Proper ((λ f g, ∀ a x, f a x = g a x) ==> iff) HomoMorphism.
(* todo: use pointwise_thingy *)
Proof with try apply _; intuition.
intros x y E1. constructor; intros [? ? ? ?]; simpl in *.
repeat constructor...
intros ? ? E2.
rewrite <-2!E1.
rewrite E2...
apply (Preservation_proper' x y E1 (σ o) (A_ops o) (B_ops o))...
repeat constructor...
intros ? ? E2.
rewrite 2!E1.
rewrite E2...
assert (∀ (a : sorts σ) (x0 : A a), y a x0 = x a x0) as E2. symmetry. apply E1.
apply (Preservation_proper' y x E2 (σ o) (A_ops o) (B_ops o))...
Qed.
End homo.
Global Instance id_homomorphism A
`{∀ a, Equiv (A a)} {ao: AlgebraOps σ A} `{!Algebra σ A}: HomoMorphism _ _ (λ _, id).
Proof with try apply _; intuition.
constructor; intros...
generalize (ao o).
induction (σ o); simpl...
reflexivity.
Qed.
Global Instance compose_homomorphisms A B C f g
`{∀ a, Equiv (A a)} `{∀ a, Equiv (B a)} `{∀ a, Equiv (C a)}
{ao: AlgebraOps σ A} {bo: AlgebraOps σ B} {co: AlgebraOps σ C}
{gh: HomoMorphism A B g} {fh: HomoMorphism B C f}: HomoMorphism A C (λ a, f a ∘ g a).
Proof with try apply _; auto.
pose proof (homo_source_algebra _ _ g).
pose proof (homo_target_algebra _ _ g).
pose proof (homo_target_algebra _ _ f).
constructor; intros...
generalize (ao o) (bo o) (co o) (preserves _ _ g o) (preserves _ _ f o).
induction (σ o); simpl; intros; unfold compose.
rewrite H5...
apply (IHo0 _ (o2 (g _ x)))...
Qed.
Lemma invert_homomorphism A B f
`{∀ a, Equiv (A a)} `{∀ a, Equiv (B a)}
{ao: AlgebraOps σ A} {bo: AlgebraOps σ B}
{fh: HomoMorphism A B f}
`{inv: ∀ a, Inverse (f a)}:
(∀ a, Bijective (f a)) →
HomoMorphism A B f → HomoMorphism B A inv.
Proof with try assumption; try apply _.
intros ? [? ? ? ?].
constructor...
intro.
generalize (ao o) (bo o) (preserves _ _ f o)
(algebra_propers o: Proper (=) (ao o)) (algebra_propers o: Proper (=) (bo o)).
induction (σ o); simpl.
intros.
apply (injective (f t)).
pose proof (surjective (f t) o1 o1 (reflexivity o1)).
transitivity o1...
symmetry...
intros P Q R S T x.
apply IHo0.
eapply Preservation_proper''; eauto; intros; try apply _.
symmetry. now apply T, (surjective (f t) x x).
apply S. reflexivity.
apply T. reflexivity.
Qed.
(*
Instance eval_morphism `{Algebra σ} A {V} (v: Vars σ A V):
HomoMorphism (Term0 σ V) A (λ _ => eval σ v).
Proof.
constructor; repeat intro; try apply _.
unfold AlgebraOps_instance_0.
generalize (algebra_propers o: eval v (Op V o) = H o).
generalize (Op V o) (H o).
induction (operation_type σ o); simpl; repeat intro.
assumption.
apply IHo0. simpl.
apply H1.
destruct H0. reflexivity.
Qed.
*)
End contents.
|