File: ne_list.v

package info (click to toggle)
coq-math-classes 9.0.0-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,120 kB
  • sloc: python: 22; makefile: 21; sh: 2
file content (177 lines) | stat: -rw-r--r-- 4,365 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
(** This module should be [Require]d but not [Import]ed (except for the notations submodule). *)

Require Import
  Coq.Unicode.Utf8 Coq.Lists.List Coq.Setoids.Setoid Coq.Classes.Morphisms Coq.Sorting.Permutation.

#[global]
Instance: ∀ A, Proper (@Permutation A ==> eq) (@length A).
Proof Permutation_length.

Section contents.
  Context {T: Type}.

  Inductive L: Type := one: T → L | cons: T → L → L.

  Fixpoint app (a b: L) {struct a}: L :=
    match a with
    | one x => cons x b
    | cons x y => cons x (app y b)
    end.

  Fixpoint foldr {R} (o: T → R) (f: T → R → R) (a: L): R :=
    match a with
    | one x => o x
    | cons x y => f x (foldr o f y)
    end.

  Fixpoint foldr1 (f: T → T → T) (a: L): T :=
    match a with
    | one x => x
    | cons x y => f x (foldr1 f y)
    end.

  Definition head (l: L): T := match l with one x => x | cons x _ => x end.

  Fixpoint to_list (l: L): list T :=
    match l with
    | one x => x :: nil
    | cons x xs => x :: to_list xs
    end.

  Local Coercion to_list: L >-> list.

  Fixpoint from_list (x: T) (xs: list T): L :=
    match xs with
    | nil => one x
    | List.cons h t => cons x (from_list h t)
    end.

  Definition tail (l: L): list T := match l with one _ => nil | cons _ x => to_list x end.

  Lemma decomp_eq (l: L): l = from_list (head l) (tail l).
  Proof with auto.
    induction l...
    destruct l...
    simpl in *.
    rewrite IHl...
  Qed.  

  Definition last: L → T := foldr1 (fun x y => y).

  Fixpoint replicate_Sn (x: T) (n: nat): L :=
    match n with
    | 0 => one x
    | S n' => cons x (replicate_Sn x n')
    end.

  Fixpoint take (n: nat) (l: L): L :=
    match l, n with
    | cons x xs, S n' => take n' xs
    | _, _ => one (head l)
    end.

  Lemma two_level_rect (P: L → Type)
    (Pone: ∀ x, P (one x))
    (Ptwo: ∀ x y, P (cons x (one y)))
    (Pmore: ∀ x y z, P z → (∀ y', P (cons y' z)) → P (cons x (cons y z))):
      ∀ l, P l.
  Proof with auto.
   cut (∀ l, P l * ∀ x, P (cons x l)).
    intros. apply X.
   destruct l...
   revert t.
   induction l...
   intros.
   split. apply IHl.
   intro.
   apply Pmore; intros; apply IHl.
  Qed.

  Lemma tl_length (l: L): S (length (tl l)) = length l.
  Proof. destruct l; reflexivity. Qed.

  Notation ListPermutation := (@Permutation.Permutation _).

  Definition Permutation (x y: L): Prop := ListPermutation x y.

  Global Instance: Equivalence Permutation.
  Proof with intuition.
   unfold Permutation.
   split; repeat intro...
   transitivity y...
  Qed.

  Global Instance: Proper (Permutation ==> ListPermutation) to_list.
  Proof. firstorder. Qed.

  Lemma Permutation_ne_tl_length (x y: L):
    Permutation x y → length (tl x) = length (tl y).
  Proof.
   intro H.
   apply eq_add_S.
   do 2 rewrite tl_length.
   rewrite H.
   reflexivity.
  Qed.
End contents.

Module Export coercions.
  Coercion to_list: L >-> list.
End coercions.

Arguments L : clear implicits.

Fixpoint tails {A} (l: L A): L (L A) :=
  match l with
  | one x => one (one x)
  | cons x y => cons l (tails y)
  end.

Lemma tails_are_shorter {A} (y x: L A):
  In x (tails y) →
  length x <= length y.
Proof with auto.
 induction y; simpl.
  intros [[] | ?]; intuition.
 intros [[] | C]...
Qed.

Fixpoint map {A B} (f: A → B) (l: L A): L B :=
  match l with
  | one x => one (f x)
  | cons h t => cons (f h) (map f t)
  end.

Lemma list_map {A B} (f: A → B) (l: L A): to_list (map f l) = List.map f (to_list l).
Proof. induction l. reflexivity. simpl. congruence. Qed.

Global Instance: forall {A B} (f: A → B), Proper (Permutation ==> Permutation) (map f).
Proof with auto.
 intros ????? E.
 unfold Permutation.
 do 2 rewrite list_map.
 rewrite E.
 reflexivity.
Qed.

Fixpoint inits {A} (l: L A): L (L A) :=
  match l with
  | one x => one (one x)
  | cons h t => cons (one h) (map (cons h) (inits t))
  end.

Module notations.
  Global Notation ne_list := L.
  Global Infix ":::" := cons (at level 60, right associativity).
    (* Todo: Try to get that "[ x ; .. ; y ]" notation working. *)

  Fixpoint ne_zip {A B: Type} (l: ne_list A) (m: ne_list B) {struct l} : ne_list (A * B) :=
    match l with
    | one a => one (a, head m)
    | a ::: l =>
        match m with
        | one b => one (a, b)
        | b ::: m => (a, b) ::: ne_zip l m
        end
    end.
End notations.