File: polynomials.v

package info (click to toggle)
coq-math-classes 9.0.0-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,120 kB
  • sloc: python: 22; makefile: 21; sh: 2
file content (424 lines) | stat: -rw-r--r-- 11,603 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
Require Import
  Coq.Lists.List
  MathClasses.interfaces.abstract_algebra
  MathClasses.interfaces.vectorspace
  MathClasses.theory.rings
  Ring.
Import ListNotations.

Section contents.
  Context R `{Ring R}.
  Add Ring R: (stdlib_ring_theory R).

  Definition poly := list R.

  Coercion poly_constant (c : R) : poly := [c].

  Global Instance poly_zero: Zero poly := [].
  Global Instance poly_one: One poly := poly_constant 1.

  Definition all (l: list Prop): Prop := fold_left and l True.
  Lemma all_cons P Ps: all (P::Ps) ↔ P ∧ all Ps.
  Proof.
    unfold all.
    revert P; generalize True as Q.
    induction Ps as [|P' Ps IH]; intros.
    { cbn; tauto. }
    change (fold_left and (P' :: Ps) (Q ∧ P) ↔ P ∧ fold_left and (P'::Ps) Q).
    rewrite !IH.
    transitivity (P' ∧ (P ∧ fold_left and Ps Q)); try tauto.
    now rewrite <- (IH Q P).
  Qed.
  Arguments all: simpl never.

  Definition poly_eq_zero: poly → Prop := all ∘ map ((=) 0).
  Corollary poly_eq_zero_cons x p: poly_eq_zero (x::p) ↔ x = 0 ∧ poly_eq_zero p.
  Proof.
    unfold poly_eq_zero, compose; cbn; rewrite all_cons.
    intuition now symmetry.
  Qed.

  Lemma poly_eq_zero_ind (P: poly → Prop) (case_nil: P [])
        (casecons: ∀ x p, x = 0 → poly_eq_zero p → P p → P (x::p))
        p: poly_eq_zero p → P p.
  Proof.
    induction p as [|x p IH]; auto.
    intros [??]%poly_eq_zero_cons.
    eauto.
  Qed.

  Global Instance poly_eq: Equiv poly :=
    fix F p q :=
    match p, q with
    | [], _ => poly_eq_zero q
    | _, [] => poly_eq_zero p
    | h :: t, h' :: t' => h = h' ∧ F t t'
    end.

  Lemma poly_eq_p_zero p: (p = 0) ↔ poly_eq_zero p.
  Proof. now destruct p. Qed.

  Instance: Reflexive poly_eq.
  Proof with intuition. repeat intro. induction x... split... Qed.

  Lemma poly_eq_cons :
    ∀ (a b : R) (p q : poly), (a = b /\ poly_eq p q) <-> poly_eq (a :: p) (b :: q).
  Proof. easy. Qed.

  Lemma poly_eq_ind (P: poly → poly → Prop)
        (case_0: ∀ p p', poly_eq_zero p → poly_eq_zero p' → P p p')
        (case_cons: ∀ x x' p p', x = x' → p = p' → P p p' → P (x::p) (x'::p'))
        p: ∀ p', p = p' → P p p'.
  Proof.
    induction p as [|x p IH]; intros [|x' p'] eqxy.
    1,2,3: now apply case_0.
    destruct eqxy.
    apply case_cons; auto.
  Qed.

  Lemma poly_eq_zero_trans p q: poly_eq_zero p → poly_eq_zero q → p = q.
  Proof.
    revert q.
    induction p as [|x p IH]; intros ? eqp eqq; auto.
    destruct q as [|y q]; auto.
    rewrite poly_eq_zero_cons in *.
    rewrite <- poly_eq_cons.
    destruct eqp as [-> ?], eqq as [-> ?]; split; eauto.
    now apply IH.
  Qed.

  Instance: Symmetric poly_eq.
  Proof.
    intros p p' eqp.
    pattern p, p'; apply poly_eq_ind; auto; clear p p' eqp.
    - now intros; apply poly_eq_zero_trans.
    - intros ???? eqx eqp IH.
      rewrite <- poly_eq_cons; auto.
  Qed.

  Instance poly_eq_zero_proper: Proper (poly_eq ==> iff) poly_eq_zero.
  Proof.
    apply proper_sym_impl_iff.
    { apply _. }
    red; refine (poly_eq_ind _ _ _).
    - intros; hnf; auto.
    - unfold impl; intros ???? eqx eqp IH.
      rewrite !poly_eq_zero_cons, eqx; tauto.
  Qed.

  Instance: Transitive poly_eq.
  Proof.
    intros ??? eqxy; revert z.
    pattern x, y; refine (poly_eq_ind _ _ _ x y eqxy); clear x y eqxy.
    { intros x y x0 y0 z eqz.
      apply poly_eq_zero_trans; auto.
      now rewrite <- eqz. }
    intros ???? eqx eqp IH z eqz.
    destruct z as [|x'' p''].
    { eapply poly_eq_zero_proper; eauto.
      now split. }
    destruct eqz as [eqx' eqp']; split; eauto.
  Qed.

  Global Instance: Setoid poly.
  Proof. split; try apply _. Qed.

  Global Instance: Plus poly := fix F p q :=
    match p, q with
    | [], _ => q
    | _, [] => p
    | h :: t, h' :: t' => h + h' :: F t t'
    end.

  Lemma poly_eq_zero_plus_l p q: poly_eq_zero p → p + q = q.
  Proof.
    intro eqp; revert q.
    induction eqp as [|x p eqx eqp IH] using poly_eq_zero_ind.
    { easy. }
    intros [|y q].
    { cbn -[poly_eq_zero].
      rewrite poly_eq_zero_cons; auto. }
    cbn; split; auto.
    ring [eqx].
  Qed.

  Instance plus_commutative: Commutative (+).
  Proof with (try easy); cbn.
    intro.
    induction x as [|x p IH]; intros [|y q]...
    split; auto; ring.
  Qed.

  Corollary poly_eq_zero_plus_r p q: poly_eq_zero q → p + q = p.
  Proof.
    rewrite commutativity.
    apply poly_eq_zero_plus_l.
  Qed.

  Corollary poly_eq_zero_plus p q: poly_eq_zero p → poly_eq_zero q → poly_eq_zero (p+q).
  Proof.
    intro.
    rewrite <- !poly_eq_p_zero; intro.
    now rewrite poly_eq_zero_plus_l.
  Qed.

  Global Instance poly_plus_proper: Proper (poly_eq ==> poly_eq ==> poly_eq) (+).
  Proof.
    unfold Proper, respectful.
    refine (poly_eq_ind _ _ _).
    { intros p p' zp zp' q q' eqq.
      rewrite !poly_eq_zero_plus_l; auto. }
    intros ???? eqx eqp IH.
    refine (poly_eq_ind _ _ _).
    { intros q q' zq zq'.
      rewrite !poly_eq_zero_plus_r; auto.
      cbn; auto. }
    intros y y' q q' eqy eqq _.
    cbn; split; eauto.
    ring [eqx eqy].
  Qed.

  Instance plus_associative: Associative (+).
  Proof with try easy.
    do 2 red; induction x as [|x p IH]...
    intros [|y q]...
    intros [|z r]...
    cbn; split; auto.
    ring.
  Qed.

  Instance plus_left_id: LeftIdentity (+) 0.
  Proof. now intro; rewrite poly_eq_zero_plus_l. Qed.
  Instance plus_right_id: RightIdentity (+) 0.
  Proof. now intro; rewrite poly_eq_zero_plus_r. Qed.

  Instance poly_plus_monoid: Monoid poly.
  Proof. repeat (split; try apply _). Qed.

  Global Instance: Negate poly := map (-).

  Lemma poly_negate_zero p: poly_eq_zero p ↔ poly_eq_zero (-p).
  Proof.
    induction p as [|x p IH].
    { easy. }
    cbn.
    rewrite !poly_eq_zero_cons, IH.
    enough (x = 0 ↔ -x = 0) by tauto.
    split; intro eq0; ring [eq0].
  Qed.

  Instance poly_negate_proper: Proper (poly_eq ==> poly_eq) (-).
  Proof.
    refine (poly_eq_ind _ _ _).
    { now intros ?? ->%poly_negate_zero%poly_eq_p_zero ->%poly_negate_zero%poly_eq_p_zero. }
    intros ???? eqx eqp IH.
    cbn; split; eauto.
  Qed.

  Instance poly_negate_l: LeftInverse (+) (-) 0.
  Proof.
    intro; rewrite poly_eq_p_zero.
    induction x as [|x p IH]; cbn.
    { easy. }
    rewrite poly_eq_zero_cons; split; auto.
    ring.
  Qed.

  Instance poly_negate_r: RightInverse (+) (-) 0.
  Proof. now intro; rewrite commutativity, left_inverse. Qed.

  Instance poly_plus_abgroup: AbGroup poly.
  Proof. repeat (split; try apply _). Qed.

  Global Instance: ScalarMult R poly := fix F c q :=
    match q with
    | [] => 0
    | d :: q1 => c*d :: F c q1
    end.

  Lemma poly_scalar_mult_0_r q c: poly_eq_zero q → poly_eq_zero (c · q).
  Proof.
    induction q as [|x q IH].
    { easy. }
    cbn.
    rewrite !poly_eq_zero_cons.
    intros [-> ?]; split; auto.
    ring.
  Qed.

  Instance poly_scalar_mult_proper: Proper ((=) ==> (=) ==> (=)) (·).
  Proof.
    intros c c' eqc p p' eqp.
    revert p p' eqp; refine (poly_eq_ind _ _ _).
    { now intros; apply poly_eq_zero_trans; apply poly_scalar_mult_0_r. }
    intros ???? eqx eqp IH.
    split; auto; cbn.
    ring [eqx eqc].
  Qed.

  Lemma poly_scalar_mult_1_r x: x · 1 = [x].
  Proof. cbn; split; [ring|easy]. Qed.
  Instance poly_scalar_mult_1_l: LeftIdentity (·) 1.
  Proof.
    red; induction y as [|y p IH]; [easy|cbn].
    split; auto; ring.
  Qed.

  Instance poly_scalar_mult_dist_l: LeftHeteroDistribute (·) (+) (+).
  Proof.
    intros a p.
    induction p as [|x p IH]; intros [|y q]; [easy..|cbn].
    split; auto; ring.
  Qed.
  Instance poly_scalar_mult_dist_r: RightHeteroDistribute (·) (+) (+).
  Proof.
    intros a b x.
    induction x as [|x p IH]; [easy|cbn].
    split; auto; ring.
  Qed.
  Instance poly_scalar_mult_assoc: HeteroAssociative (·) (·) (·) (.*.).
  Proof.
    intros a b x.
    induction x as [|p x IH]; [easy|cbn].
    split; auto; ring.
  Qed.

  Lemma poly_scalar_mult_0_l q c: c = 0 → poly_eq_zero (c · q).
  Proof.
    intros ->.
    induction q as [|x q IH]; [easy|cbn].
    rewrite poly_eq_zero_cons; split; auto.
    ring.
  Qed.

  Global Instance: Mult poly := fix F p q :=
    match p with
    | [] => 0
    | c :: p1 => c · q + (0 :: F p1 q)
    end.

  Lemma poly_mult_0_l p q: poly_eq_zero p → poly_eq_zero (p * q).
  Proof.
    induction 1 using poly_eq_zero_ind; [easy|cbn].
    apply poly_eq_zero_plus.
    - now apply poly_scalar_mult_0_l.
    - rewrite poly_eq_zero_cons; auto.
  Qed.

  Lemma poly_mult_0_r p q: poly_eq_zero q → poly_eq_zero (p * q).
  Proof.
    induction p as [|x p IH]; [easy|cbn].
    intro eq0.
    apply poly_eq_zero_plus.
    - now apply poly_scalar_mult_0_r.
    - rewrite poly_eq_zero_cons; auto.
  Qed.

  Instance poly_mult_proper: Proper ((=) ==> (=) ==> (=)) (.*.).
  Proof.
    refine (poly_eq_ind _ _ _).
    { intros ?? zp zp' q q' eqq.
      now apply poly_eq_zero_trans; apply poly_mult_0_l. }
    intros ???? eqx eqp IH q q' eqq.
    cbn.
    apply poly_plus_proper.
    { now rewrite eqx, eqq. }
    split; auto.
    now apply IH.
  Qed.

  Instance poly_mult_left_distr: LeftDistribute (.*.) (+).
  Proof.
    intros p q r.
    induction p as [|x p IH]; [easy|cbn].
    rewrite (distribute_l x q r ).
    rewrite <- !associativity; apply poly_plus_proper; [easy|].
    rewrite associativity, (commutativity (0::p*q)), <- associativity.
    apply poly_plus_proper; [easy|].
    cbn; split; [ring|easy].
  Qed.

  Lemma poly_mult_cons_r p q x: p * (x::q) = x · p + (0 :: p * q).
  Proof.
    induction p as [|y p IH]; cbn; auto.
    split; auto.
    rewrite IH, !associativity, (commutativity (y · q)).
    split; try easy.
    ring.
  Qed.

  Instance poly_mult_comm: Commutative (.*.).
  Proof.
    intros p.
    induction p as [|x p IH].
    { cbn; intro.
      now apply poly_mult_0_r. }
    intros [|y q]; cbn.
    { rewrite poly_eq_zero_cons; split; auto.
      now apply poly_mult_0_r. }
    split. 1: ring.
    rewrite !poly_mult_cons_r, !associativity.
    apply poly_plus_proper.
    { apply commutativity. }
    rewrite <- poly_eq_cons; split; auto.
    apply IH.
  Qed.

  Instance poly_mult_right_distr: RightDistribute (.*.) (+).
  Proof.
    intros p q r.
    now rewrite commutativity, distribute_l, !(commutativity r).
  Qed.

  Instance poly_mult_1_l: LeftIdentity (.*.) 1.
  Proof.
    intro; cbn.
    rewrite poly_scalar_mult_1_l, poly_eq_zero_plus_r; auto.
    now split.
  Qed.

  Instance poly_mult_1_r: RightIdentity (.*.) 1.
  Proof.
    intro; rewrite commutativity; apply left_identity.
  Qed.

  Instance poly_mult_assoc: Associative (.*.).
  Proof with (try easy); cbn.
    intros x.
    induction x as [|x p IH]...
    intros q r; cbn.
    rewrite distribute_r.
    apply poly_plus_proper; cbn -[poly_eq].
    { clear IH.
      induction q as [|y q IH]...
      rewrite distribute_l, <- associativity.
      apply poly_plus_proper...
      split; auto.
      ring. }
    assert (0 · r = 0) as ->.
    { now rewrite poly_eq_p_zero; apply poly_scalar_mult_0_l. }
    cbn; split; eauto.
    now rewrite IH.
  Qed.

  Global Instance poly_ring: Ring poly.
  Proof. repeat (split; try apply _). Qed.

  Global Instance poly_module : @Module R poly Ae Aplus Amult Azero Aone Anegate
                                               poly_eq (+) 0 (-) (·).
  Proof. split; apply _. Qed.
End contents.

(*

Section test.

  Context `{Ring R} (x y: poly (poly (poly (poly R)))).

  Goal x + y == x * y.
    set (d := Plus_instance_0 ).
    set (u := Mult_instance_0).
    set (t := poly (poly R)).
    unfold poly_zero.

*)