1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
Require Import
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.naturals MathClasses.theory.categories
MathClasses.categories.varieties.
Require
MathClasses.varieties.rings.
Section initial_maps.
Variable A : Type.
Class IntegersToRing :=
integers_to_ring: ∀ R `{Mult R} `{Plus R} `{One R} `{Zero R} `{Negate R}, A → R.
Context `{IntegersToRing} `{Ring A} `{∀ `{Ring B}, SemiRing_Morphism (integers_to_ring B)}.
Global Instance integer_initial_arrow: InitialArrow (rings.object A).
intro y.
exists (λ u, match u return A → y u with tt => integers_to_ring (y tt) end).
abstract (apply rings.encode_morphism_only; apply _).
Defined. (* for some reason [Program] isn't cooperating here. look into it *)
Lemma integer_initial (same_morphism : ∀ `{Ring B} {h : A → B} `{!SemiRing_Morphism h}, integers_to_ring B = h) :
Initial (rings.object A).
Proof.
intros y [x h] [] ?. simpl in *.
apply same_morphism.
apply rings.decode_variety_and_ops.
apply (@rings.decode_morphism_and_ops _ _ _ _ _ _ _ _ _ h).
reflexivity.
Qed.
End initial_maps.
#[global]
Instance: Params (@integers_to_ring) 8 := {}.
Class Integers A {e plus mult zero one negate} `{U : IntegersToRing A} :=
{ integers_ring:: @Ring A e plus mult zero one negate
; integers_to_ring_mor:: ∀ `{Ring B}, SemiRing_Morphism (integers_to_ring A B)
; integers_initial:: Initial (rings.object A) }.
Section specializable.
Context (Z N : Type) `{Integers Z} `{Naturals N}.
Class IntAbs := int_abs_sig : ∀ x,
{ n : N | naturals_to_semiring N Z n = x } + { n : N | naturals_to_semiring N Z n = -x }.
Definition int_abs `{ia : IntAbs} (x : Z) : N :=
match int_abs_sig x with
| inl (n↾_) => n
| inr (n↾_) => n
end.
Definition int_to_nat `{Zero N} `{ia : IntAbs} (x : Z) : N :=
match int_abs_sig x with
| inl (n↾_) => n
| inr (n↾_) => 0
end.
End specializable.
#[global]
Instance: Params (@int_abs) 10 := {}.
#[global]
Instance: Params (@int_abs_sig) 10 := {}.
#[global]
Instance: Params (@int_to_nat) 11 := {}.
|