1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
Require Import
MathClasses.interfaces.abstract_algebra MathClasses.theory.categories
MathClasses.varieties.semirings MathClasses.categories.varieties.
Module bad.
Class Naturals (A: semirings.Object) `{!InitialArrow A}: Prop :=
{ naturals_initial:: Initial A }.
End bad.
Section initial_maps.
Variable A: Type.
Class NaturalsToSemiRing :=
naturals_to_semiring: ∀ B `{Mult B} `{Plus B} `{One B} `{Zero B}, A → B.
Context `{NaturalsToSemiRing} `{SemiRing A} `{∀ `{SemiRing B}, SemiRing_Morphism (naturals_to_semiring B)}.
Program Definition natural_initial_arrow: InitialArrow (semirings.object A) :=
λ y u, match u return A → y u with tt => naturals_to_semiring (y tt) end.
Next Obligation.
apply (@semirings.mor_from_sr_to_alg (λ _, A) _ _ (semirings.variety A)); apply _.
Qed.
Global Existing Instance natural_initial_arrow.
(* For some reason if we try to make it an instance immediately upon
definition, Program suddenly generates 5 subgoals.. *)
Lemma natural_initial (same_morphism : ∀ `{SemiRing B} {h : A → B} `{!SemiRing_Morphism h}, naturals_to_semiring B = h) :
Initial (semirings.object A).
Proof.
intros y [x h] [] ?. simpl in *.
apply same_morphism.
apply semirings.decode_variety_and_ops.
apply (@semirings.decode_morphism_and_ops _ _ _ _ _ _ _ _ _ h).
reflexivity.
Qed.
End initial_maps.
#[global]
Instance: Params (@naturals_to_semiring) 7 := {}.
Class Naturals A {e plus mult zero one} `{U: NaturalsToSemiRing A} :=
{ naturals_ring:: @SemiRing A e plus mult zero one
; naturals_to_semiring_mor:: ∀ `{SemiRing B}, SemiRing_Morphism (naturals_to_semiring A B)
; naturals_initial:: Initial (semirings.object A) }.
(* Specializable operations: *)
Class NatDistance N `{Equiv N} `{Plus N}
:= nat_distance_sig : ∀ x y : N, { z : N | x + z = y } + { z : N | y + z = x }.
Definition nat_distance `{nd : NatDistance N} (x y : N) :=
match nat_distance_sig x y with
| inl (n↾_) => n
| inr (n↾_) => n
end.
#[global]
Instance: Params (@nat_distance_sig) 4 := {}.
#[global]
Instance: Params (@nat_distance) 4 := {}.
|