1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
Require Import
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.orders.orders MathClasses.theory.setoids MathClasses.theory.strong_setoids.
Local Existing Instance order_morphism_po_a.
Local Existing Instance order_morphism_po_b.
Local Existing Instance strict_order_morphism_so_a.
Local Existing Instance strict_order_morphism_so_b.
Local Existing Instance order_morphism_mor.
Local Existing Instance strict_order_morphism_mor.
(* If a function between strict partial orders is order preserving (back), we can
derive that it is strictly order preserving (back) *)
Section strictly_order_preserving.
Context `{FullPartialOrder A} `{FullPartialOrder B}.
Global Instance strictly_order_preserving_inj `{!OrderPreserving (f : A → B)} `{!StrongInjective f} :
StrictlyOrderPreserving f | 20.
Proof.
repeat (split; try apply _).
intros x y. rewrite !lt_iff_le_apart. intros [E1 E2]. split.
now apply (order_preserving f).
now apply (strong_injective f).
Qed.
Global Instance strictly_order_reflecting_mor `{!OrderReflecting (f : A → B)} `{!StrongSetoid_Morphism f} :
StrictlyOrderReflecting f | 20.
Proof.
repeat (split; try apply _).
intros x y. rewrite !lt_iff_le_apart. intros [E1 E2]. split.
now apply (order_reflecting f).
now apply (strong_extensionality f).
Qed.
End strictly_order_preserving.
(* For structures with a trivial apartness relation we have a stronger result of the above *)
Section strictly_order_preserving_dec.
Context `{FullPartialOrder A} `{!TrivialApart A} `{FullPartialOrder B} `{!TrivialApart B}.
Local Existing Instance strict_po_setoid.
Global Instance dec_strictly_order_preserving_inj `{!OrderPreserving (f : A → B)} `{!Injective f} :
StrictlyOrderPreserving f | 19.
Proof. pose proof (dec_strong_injective f). apply _. Qed.
Global Instance dec_strictly_order_reflecting_mor `{!OrderReflecting (f : A → B)} :
StrictlyOrderReflecting f | 19.
Proof. pose proof (order_morphism_mor f). pose proof (dec_strong_morphism f). apply _. Qed.
End strictly_order_preserving_dec.
Section pseudo_injective.
Context `{PseudoOrder A} `{PseudoOrder B}.
Local Existing Instance pseudo_order_setoid.
Instance pseudo_order_embedding_ext `{!StrictOrderEmbedding (f : A → B)} :
StrongSetoid_Morphism f.
Proof.
split; try apply _.
intros x y. rewrite !apart_iff_total_lt.
intros [|]; [left | right]; now apply (strictly_order_reflecting f).
Qed.
Lemma pseudo_order_embedding_inj `{!StrictOrderEmbedding (f : A → B)} :
StrongInjective f.
Proof.
split; try apply _.
intros x y. rewrite !apart_iff_total_lt.
intros [|]; [left | right]; now apply (strictly_order_preserving f).
Qed.
End pseudo_injective.
(* If a function between pseudo partial orders is strictly order preserving (back), we can
derive that it is order preserving (back) *)
Section full_pseudo_strictly_preserving.
Context `{FullPseudoOrder A} `{FullPseudoOrder B}.
Local Existing Instance pseudo_order_setoid.
Lemma full_pseudo_order_preserving `{!StrictlyOrderReflecting (f : A → B)} : OrderPreserving f.
Proof.
pose proof (strict_order_morphism_mor f).
repeat (split; try apply _).
intros x y. rewrite !le_iff_not_lt_flip.
intros E1 E2. apply E1.
now apply (strictly_order_reflecting f).
Qed.
Lemma full_pseudo_order_reflecting `{!StrictlyOrderPreserving (f : A → B)} : OrderReflecting f.
Proof.
pose proof (strict_order_morphism_mor f).
repeat (split; try apply _).
intros x y. rewrite !le_iff_not_lt_flip.
intros E1 E2. apply E1.
now apply (strictly_order_preserving f).
Qed.
End full_pseudo_strictly_preserving.
(* Some helper lemmas to easily transform order preserving instances. *)
Section order_preserving_ops.
Context `{Equiv R} `{Le R} `{Lt R}.
Lemma order_preserving_flip `{!Commutative op} `{!Proper ((=) ==> (=) ==> (=)) op} `{!OrderPreserving (op z)} :
OrderPreserving (λ y, op y z).
Proof.
pose proof (order_morphism_mor (op z)).
pose proof (setoidmor_a (op z)).
repeat (split; try apply _).
solve_proper.
intros x y E.
rewrite 2!(commutativity _ z).
now apply order_preserving.
Qed.
Lemma strictly_order_preserving_flip `{!Commutative op} `{!Proper ((=) ==> (=) ==> (=)) op} `{!StrictlyOrderPreserving (op z)} :
StrictlyOrderPreserving (λ y, op y z).
Proof.
pose proof (strict_order_morphism_mor (op z)).
pose proof (setoidmor_a (op z)).
repeat (split; try apply _).
solve_proper.
intros x y E.
rewrite 2!(commutativity _ z).
now apply strictly_order_preserving.
Qed.
Lemma order_reflecting_flip `{!Commutative op} `{!Proper ((=) ==> (=) ==> (=)) op} `{!OrderReflecting (op z) } :
OrderReflecting (λ y, op y z).
Proof.
pose proof (order_morphism_mor (op z)).
pose proof (setoidmor_a (op z)).
repeat (split; try apply _).
solve_proper.
intros x y E.
apply (order_reflecting (op z)).
now rewrite 2!(commutativity z).
Qed.
Lemma strictly_order_reflecting_flip `{!Commutative op} `{!Proper ((=) ==> (=) ==> (=)) op} `{!StrictlyOrderReflecting (op z) } :
StrictlyOrderReflecting (λ y, op y z).
Proof.
pose proof (strict_order_morphism_mor (op z)).
pose proof (setoidmor_a (op z)).
repeat (split; try apply _).
solve_proper.
intros x y E.
apply (strictly_order_reflecting (op z)).
now rewrite 2!(commutativity z).
Qed.
Lemma order_preserving_nonneg (op : R → R → R) `{!Zero R} `{∀ z, PropHolds (0 ≤ z) → OrderPreserving (op z)} z :
0 ≤ z → ∀ x y, x ≤ y → op z x ≤ op z y.
Proof. firstorder. Qed.
Lemma order_preserving_flip_nonneg (op : R → R → R) `{!Zero R} `{∀ z, PropHolds (0 ≤ z) → OrderPreserving (λ y, op y z)} z :
0 ≤ z → ∀ x y, x ≤ y → op x z ≤ op y z.
Proof. firstorder. Qed.
Lemma strictly_order_preserving_pos (op : R → R → R) `{!Zero R} `{∀ z, PropHolds (0 < z) → StrictlyOrderPreserving (op z)} z :
0 < z → ∀ x y, x < y → op z x < op z y.
Proof. firstorder. Qed.
Lemma strictly_order_preserving_flip_pos (op : R → R → R) `{!Zero R} `{∀ z, PropHolds (0 < z) → StrictlyOrderPreserving (λ y, op y z)} z :
0 < z → ∀ x y, x < y → op x z < op y z.
Proof. firstorder. Qed.
Lemma order_reflecting_pos (op : R → R → R) `{!Zero R} `{∀ z, PropHolds (0 < z) → OrderReflecting (op z)} z :
0 < z → ∀ x y, op z x ≤ op z y → x ≤ y.
Proof. firstorder. Qed.
Lemma order_reflecting_flip_pos (op : R → R → R) `{!Zero R} `{∀ z, PropHolds (0 < z) → OrderReflecting (λ y, op y z)} z :
0 < z → ∀ x y, op x z ≤ op y z → x ≤ y.
Proof. firstorder. Qed.
End order_preserving_ops.
Lemma projected_partial_order `{Equiv A} `{Ale : Le A} `{Equiv B} `{Ble : Le B}
(f : A → B) `{!Injective f} `{!PartialOrder Ble} : (∀ x y, x ≤ y ↔ f x ≤ f y) → PartialOrder Ale.
Proof.
pose proof (injective_mor f).
pose proof (setoidmor_a f).
pose proof (setoidmor_b f).
intros P. split; try apply _.
intros ? ? E1 ? ? E2. now rewrite 2!P, E1, E2.
split.
intros x. now apply P.
intros x y z E1 E2. apply P.
transitivity (f y); now apply P.
intros x y E1 E2. apply (injective f).
apply (antisymmetry (≤)); now apply P.
Qed.
Lemma projected_total_order `{Equiv A} `{Ale : Le A} `{Equiv B} `{Ble : Le B}
(f : A → B) `{!TotalRelation Ble} : (∀ x y, x ≤ y ↔ f x ≤ f y) → TotalRelation Ale.
Proof.
intros P x y.
destruct (total (≤) (f x) (f y)); [left | right]; now apply P.
Qed.
Lemma projected_strict_order `{Equiv A} `{Alt : Lt A} `{Equiv B} `{Blt : Lt B}
(f : A → B) `{!StrictOrder Blt} : (∀ x y, x < y ↔ f x < f y) → StrictOrder Alt.
Proof.
intros P. split.
intros x E. destruct (irreflexivity (<) (f x)). now apply P.
intros x y z E1 E2. apply P. transitivity (f y); now apply P.
Qed.
Lemma projected_strict_setoid_order `{Equiv A} `{Alt : Lt A} `{Equiv B} `{Blt : Lt B}
(f : A → B) `{!Setoid_Morphism f} `{!StrictSetoidOrder Blt} : (∀ x y, x < y ↔ f x < f y) → StrictSetoidOrder Alt.
Proof.
pose proof (setoidmor_a f).
intros P. split; try apply _.
intros ? ? E1 ? ? E2. now rewrite 2!P, E1, E2.
now apply (projected_strict_order f).
Qed.
Lemma projected_pseudo_order `{Equiv A} `{Apart A} `{Alt : Lt A} `{Equiv B} `{Apart B} `{Blt : Lt B}
(f : A → B) `{!StrongInjective f} `{!PseudoOrder Blt} : (∀ x y, x < y ↔ f x < f y) → PseudoOrder Alt.
Proof.
pose proof (strong_injective_mor f).
pose proof (strong_setoidmor_a f).
pose proof (strong_setoidmor_b f).
intros P. split; try apply _.
intros x y E. destruct (pseudo_order_antisym (f x) (f y)). split; now apply P.
intros x y E z. apply P in E.
destruct (cotransitive E (f z)); [left | right]; now apply P.
intros x y; split; intros E.
apply (strong_injective f) in E.
apply apart_iff_total_lt in E. destruct E; [left | right]; now apply P.
apply (strong_extensionality f).
apply apart_iff_total_lt. destruct E; [left | right]; now apply P.
Qed.
Lemma projected_full_pseudo_order `{Equiv A} `{Apart A} `{Ale : Le A} `{Alt : Lt A}
`{Equiv B} `{Apart B} `{Ble : Le B} `{Blt : Lt B}
(f : A → B) `{!StrongInjective f} `{!FullPseudoOrder Ble Blt} : (∀ x y, x ≤ y ↔ f x ≤ f y) → (∀ x y, x < y ↔ f x < f y) → FullPseudoOrder Ale Alt.
Proof.
intros P1 P2. split.
now apply (projected_pseudo_order f).
intros x y; split; intros E.
intros F. destruct (le_not_lt_flip (f y) (f x)); firstorder.
apply P1. apply not_lt_le_flip.
intros F. destruct E. now apply P2.
Qed.
#[global]
Instance id_order_morphism `{PartialOrder A} : Order_Morphism (@id A).
Proof. pose proof po_setoid. repeat (split; try apply _). Qed.
#[global]
Instance id_order_preserving `{PartialOrder A} : OrderPreserving (@id A).
Proof. split; try apply _. easy. Qed.
#[global]
Instance id_order_reflecting `{PartialOrder A} : OrderReflecting (@id A).
Proof. split; try apply _. easy. Qed.
Section composition.
Context `{Equiv A} `{Equiv B} `{Equiv C}
`{Le A} `{Le B} `{Le C} (f : A → B) (g : B → C).
Instance compose_order_morphism:
Order_Morphism f → Order_Morphism g → Order_Morphism (g ∘ f).
Proof. split; [ apply _ | apply (order_morphism_po_a f) | apply (order_morphism_po_b g) ]. Qed.
Instance compose_order_preserving:
OrderPreserving f → OrderPreserving g → OrderPreserving (g ∘ f).
Proof.
repeat (split; try apply _).
intros. unfold compose.
now do 2 apply (order_preserving _).
Qed.
Instance compose_order_reflecting:
OrderReflecting f → OrderReflecting g → OrderReflecting (g ∘ f).
Proof.
split; try apply _.
intros x y E. unfold compose in E.
now do 2 apply (order_reflecting _) in E.
Qed.
Instance compose_order_embedding:
OrderEmbedding f → OrderEmbedding g → OrderEmbedding (g ∘ f) := {}.
End composition.
#[global]
Hint Extern 4 (Order_Morphism (_ ∘ _)) => class_apply @compose_order_morphism : typeclass_instances.
#[global]
Hint Extern 4 (OrderPreserving (_ ∘ _)) => class_apply @compose_order_preserving : typeclass_instances.
#[global]
Hint Extern 4 (OrderReflecting (_ ∘ _)) => class_apply @compose_order_reflecting : typeclass_instances.
#[global]
Hint Extern 4 (OrderEmbedding (_ ∘ _)) => class_apply @compose_order_embedding : typeclass_instances.
Section propers.
Context `{Equiv A} `{Equiv B} `{Le A} `{Le B}.
Global Instance order_morphism_proper: Proper ((=) ==> iff) (@Order_Morphism A B _ _ _ _).
Proof.
assert (∀ (f g : A → B), g = f → Order_Morphism f → Order_Morphism g) as P.
intros f g E [[? ? ?] ?].
split; auto. apply morphism_proper with f. easy. split; easy.
firstorder.
Qed.
Global Instance order_preserving_proper: Proper ((=) ==> iff) (@OrderPreserving A B _ _ _ _).
Proof.
assert (∀ (f g : A → B), g = f → OrderPreserving f → OrderPreserving g) as P.
intros f g E [[[? ?] ? ?] ?].
split.
eapply order_morphism_proper; eauto. now repeat (split; try apply _).
intros x y ?. rewrite (E x x), (E y y); now auto.
firstorder.
Qed.
Global Instance order_reflecting_proper: Proper ((=) ==> iff) (@OrderReflecting A B _ _ _ _).
Proof.
assert (∀ (f g : A → B), g = f → OrderReflecting f → OrderReflecting g) as P.
intros f g E [[[? ?] ? ?] ?].
split.
eapply order_morphism_proper; eauto. now repeat (split; try apply _).
intros x y F. rewrite (E x x), (E y y) in F; now auto.
firstorder.
Qed.
Global Instance order_embedding_proper: Proper ((=) ==> iff) (@OrderEmbedding A B _ _ _ _).
Proof.
assert (∀ (f g : A → B), g = f → OrderEmbedding f → OrderEmbedding g) as P.
intros f g E.
split.
eapply order_preserving_proper; eauto. now apply _.
eapply order_reflecting_proper; eauto. now apply _.
intros f g ?; split; intro E.
apply P with f. destruct E as [[[[? ?]]]]. now symmetry. easy.
now apply P with g.
Qed.
End propers.
|