1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
Require Import
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.theory.strong_setoids.
Lemma le_flip `{Le A} `{!TotalRelation (≤)} x y : ¬y ≤ x → x ≤ y.
Proof. firstorder. Qed.
Section partial_order.
Context `{PartialOrder A}.
Instance: Setoid A := po_setoid.
Lemma eq_le x y : x = y → x ≤ y.
Proof. intros E. now rewrite E. Qed.
Lemma eq_le_flip x y : x = y → y ≤ x.
Proof. intros E. now rewrite E. Qed.
Lemma not_le_ne x y : ¬x ≤ y → x ≠ y.
Proof. intros E1 E2. destruct E1. now rewrite E2. Qed.
Lemma eq_iff_le x y : x = y ↔ x ≤ y ∧ y ≤ x.
Proof. split; intros E. now rewrite E. now apply (antisymmetry (≤) x y). Qed.
End partial_order.
Section strict_order.
Context `{StrictSetoidOrder A}.
Instance: Setoid A := strict_setoid_order_setoid.
Lemma lt_flip x y : x < y → ¬y < x.
Proof.
intros E1 E2.
apply (irreflexivity (<) x).
now transitivity y.
Qed.
Lemma lt_antisym x y : ¬(x < y < x).
Proof.
intros [E1 E2].
now destruct (lt_flip x y).
Qed.
Lemma lt_ne x y : x < y → x ≠ y.
Proof. unfold PropHolds. intros E1 E2. rewrite E2 in E1. now destruct (irreflexivity (<) y). Qed.
Lemma lt_ne_flip x y : x < y → y ≠ x.
Proof. intro. now apply not_symmetry, lt_ne. Qed.
Lemma eq_not_lt x y : x = y → ¬x < y.
Proof. intros E. rewrite E. now apply (irreflexivity (<)). Qed.
End strict_order.
Section pseudo_order.
Context `{PseudoOrder A}.
Instance: StrongSetoid A := pseudo_order_setoid.
Lemma apart_total_lt x y : x ≶ y → x < y ∨ y < x.
Proof. intros. now apply apart_iff_total_lt. Qed.
Lemma pseudo_order_lt_apart x y : x < y → x ≶ y.
Proof. intros. apply apart_iff_total_lt. tauto. Qed.
Lemma pseudo_order_lt_apart_flip x y : x < y → y ≶ x.
Proof. intros. apply apart_iff_total_lt. tauto. Qed.
Lemma not_lt_apart_lt_flip x y : ¬x < y → x ≶ y → y < x.
Proof. rewrite apart_iff_total_lt. intuition. Qed.
Lemma pseudo_order_cotrans_twice x₁ y₁ x₂ y₂ : x₁ < y₁ → x₂ < y₂ ∨ x₁ < x₂ ∨ y₂ < y₁.
Proof.
intros E1.
destruct (cotransitive E1 x₂) as [E2|E2]; try tauto.
destruct (cotransitive E2 y₂); try tauto.
Qed.
Lemma pseudo_order_lt_ext x₁ y₁ x₂ y₂ : x₁ < y₁ → x₂ < y₂ ∨ x₁ ≶ x₂ ∨ y₂ ≶ y₁.
Proof.
intros E.
destruct (pseudo_order_cotrans_twice x₁ y₁ x₂ y₂ E) as [?|[?|?]]; auto using pseudo_order_lt_apart.
Qed.
Instance: Proper ((=) ==> (=) ==> iff) (<).
Proof.
assert (∀ x₁ y₁ x₂ y₂, x₁ < y₁ → x₁ = x₂ → y₁ = y₂ → x₂ < y₂) as P.
intros x₁ y₁ x₂ y₂ E Ex Ey.
destruct (pseudo_order_lt_ext x₁ y₁ x₂ y₂ E) as [?|[?|?]]; try tauto.
contradict Ex. now apply apart_ne.
contradict Ey. now apply not_symmetry, apart_ne.
split; intros; eapply P; eauto; now symmetry.
Qed.
Global Instance: StrictSetoidOrder (_ : Lt A).
Proof.
repeat (split; try apply _).
intros x E.
destruct (pseudo_order_antisym x x); tauto.
intros x y z E1 E2.
destruct (cotransitive E1 z); trivial.
destruct (pseudo_order_antisym y z); tauto.
Qed.
Global Instance: Transitive (complement (<)).
Proof.
intros x y z.
intros E1 E2 E3.
destruct (cotransitive E3 y); contradiction.
Qed.
Global Instance: AntiSymmetric (complement (<)).
Proof. intros x y. rewrite <-tight_apart, apart_iff_total_lt. intuition. Qed.
Lemma ne_total_lt `{!TrivialApart A} x y : x ≠ y → x < y ∨ y < x.
Proof. rewrite <-trivial_apart. now apply apart_total_lt. Qed.
Global Instance lt_trichotomy `{!TrivialApart A} `{∀ x y, Decision (x = y)} : Trichotomy (<).
Proof.
intros x y.
destruct (decide (x = y)) as [?|?]; try tauto.
destruct (ne_total_lt x y); tauto.
Qed.
End pseudo_order.
Section full_partial_order.
Context `{FullPartialOrder A}.
Instance: StrongSetoid A := strict_po_setoid.
(* Duplicate of strong_setoids.apart_ne. This is useful because a
StrongSetoid is not defined as a substructure of a FullPartialOrder *)
Instance strict_po_apart_ne x y : PropHolds (x ≶ y) → PropHolds (x ≠ y).
Proof. intros. apply _. Qed.
Global Instance apart_proper: Proper ((=) ==> (=) ==> iff) (≶).
Proof. apply _. Qed.
Global Instance: StrictSetoidOrder (<).
Proof.
split; try apply _.
intros x1 y1 E1 x2 y2 E2.
rewrite ?lt_iff_le_apart.
now rewrite E1, E2.
split; try apply _.
intros x. red. rewrite lt_iff_le_apart. intros [_ ?].
now destruct (irreflexivity (≶) x).
Qed.
Lemma lt_le x y : PropHolds (x < y) → PropHolds (x ≤ y).
Proof. intro. now apply lt_iff_le_apart. Qed.
Lemma not_le_not_lt x y : ¬x ≤ y → ¬x < y.
Proof. firstorder using lt_le. Qed.
Lemma lt_apart x y : x < y → x ≶ y.
Proof. intro. now apply lt_iff_le_apart. Qed.
Lemma lt_apart_flip x y : x < y → y ≶ x.
Proof. intro. now apply symmetry, lt_iff_le_apart. Qed.
Lemma le_not_lt_flip x y : y ≤ x → ¬x < y.
Proof.
rewrite lt_iff_le_apart.
intros E1 [E2a E2b].
contradict E2b. setoid_replace x with y.
now apply (irreflexivity _).
now apply (antisymmetry (≤)).
Qed.
Lemma lt_not_le_flip x y : y < x → ¬x ≤ y.
Proof.
intros E1 E2.
now destruct (le_not_lt_flip y x).
Qed.
Lemma lt_le_trans x y z : x < y → y ≤ z → x < z.
Proof.
rewrite !lt_iff_le_apart.
intros [E1a E1b] E2.
split.
now transitivity y.
destruct (cotransitive E1b z) as [E3 | E3]; trivial.
apply lt_apart. symmetry in E3.
transitivity y; rewrite lt_iff_le_apart; tauto.
Qed.
Lemma le_lt_trans x y z : x ≤ y → y < z → x < z.
Proof.
rewrite !lt_iff_le_apart.
intros E2 [E1a E1b].
split.
now transitivity y.
destruct (cotransitive E1b x) as [E3 | E3]; trivial.
apply lt_apart. symmetry in E3.
transitivity y; rewrite lt_iff_le_apart; tauto.
Qed.
Lemma lt_iff_le_ne `{!TrivialApart A} x y : x < y ↔ x ≤ y ∧ x ≠ y.
Proof. rewrite <-trivial_apart. now apply lt_iff_le_apart. Qed.
Lemma le_equiv_lt `{!TrivialApart A} `{∀ x y, Decision (x = y)} x y : x ≤ y → x = y ∨ x < y.
Proof.
intros. destruct (decide (x = y)); try tauto.
right. rewrite lt_iff_le_ne; tauto.
Qed.
Program Instance dec_from_lt_dec `{!TrivialApart A} `{∀ x y, Decision (x ≤ y)} :
∀ x y, Decision (x = y) := λ x y,
match decide_rel (≤) x y with
| left E1 => match decide_rel (≤) y x with
| left E2 => left _
| right E2 => right _
end
| right E1 => right _
end.
Next Obligation. now apply (antisymmetry (≤)). Qed.
Next Obligation. apply not_symmetry. now apply not_le_ne. Qed.
Next Obligation. now apply not_le_ne. Qed.
Definition lt_dec_slow `{!TrivialApart A} `{∀ x y, Decision (x ≤ y)} :
∀ x y, Decision (x < y).
Proof.
intros x y.
destruct (decide (x ≤ y)).
destruct (decide (x = y)).
right. now apply eq_not_lt.
left. apply lt_iff_le_ne; intuition.
right. now apply not_le_not_lt.
Defined.
End full_partial_order.
(* Due to bug #2528 *)
#[global]
Hint Extern 5 (PropHolds (_ ≠ _)) => eapply @strict_po_apart_ne : typeclass_instances.
#[global]
Hint Extern 10 (PropHolds (_ ≤ _)) => eapply @lt_le : typeclass_instances.
#[global]
Hint Extern 20 (Decision (_ < _)) => eapply @lt_dec_slow : typeclass_instances.
Section full_pseudo_order.
Context `{FullPseudoOrder A}.
Instance: StrongSetoid A := pseudo_order_setoid.
Lemma not_lt_le_flip x y : ¬y < x → x ≤ y.
Proof. intros. now apply le_iff_not_lt_flip. Qed.
Instance: PartialOrder (≤).
Proof.
split; try apply _.
intros ? ? E1 ? ? E2.
now rewrite !le_iff_not_lt_flip, E1, E2.
split.
intros x. apply not_lt_le_flip, (irreflexivity (<)).
intros x y z.
rewrite !le_iff_not_lt_flip.
intros. change (complement (<) z x).
now transitivity y.
intros x y.
rewrite !le_iff_not_lt_flip.
intros E1 E2.
now apply (antisymmetry (complement (<))).
Qed.
Global Instance: FullPartialOrder (_ : Le A) (_ : Lt A).
Proof.
split; try apply _.
intros x y. rewrite !le_iff_not_lt_flip. split.
intros E. split.
now apply lt_flip.
now apply pseudo_order_lt_apart.
intros [? E].
now apply not_lt_apart_lt_flip.
Qed.
Global Instance: ∀ x y, Stable (x ≤ y).
Proof.
intros x y. unfold Stable, DN.
rewrite !le_iff_not_lt_flip. tauto.
Qed.
Lemma le_or_lt `{!TrivialApart A} `{∀ x y, Decision (x = y)} x y : x ≤ y ∨ y < x.
Proof.
destruct (trichotomy (<) x y) as [|[|]]; try tauto.
left. now apply lt_le.
left. now apply eq_le_flip.
Qed.
Global Instance le_total `{!TrivialApart A} `{∀ x y, Decision (x = y)} : TotalOrder (≤).
Proof. split; try apply _. intros x y. destruct (le_or_lt x y). tauto. right. now apply lt_le. Qed.
Lemma not_le_lt_flip `{!TrivialApart A} `{∀ x y, Decision (x = y)} x y : ¬y ≤ x → x < y.
Proof. intros. destruct (le_or_lt y x); intuition. Qed.
Existing Instance dec_from_lt_dec.
Program Definition lt_dec `{!TrivialApart A} `{∀ x y, Decision (x ≤ y)} :
∀ x y, Decision (x < y) := λ x y,
match decide_rel (≤) y x with
| left E => right _
| right E => left _
end.
Next Obligation. now apply le_not_lt_flip. Qed.
Next Obligation. now apply not_le_lt_flip. Qed.
End full_pseudo_order.
#[global]
Hint Extern 8 (Decision (_ < _)) => eapply @lt_dec : typeclass_instances.
(*
The following instances would be tempting, but turn out to be a bad idea.
Hint Extern 10 (PropHolds (_ ≠ _)) => eapply @le_ne : typeclass_instances.
Hint Extern 10 (PropHolds (_ ≠ _)) => eapply @le_ne_flip : typeclass_instances.
It will then loop like:
semirings.lt_0_1 → lt_ne_flip → ...
*)
Section dec_strict_setoid_order.
Context `{StrictSetoidOrder A} `{Apart A} `{!TrivialApart A} `{∀ x y, Decision (x = y)}.
Instance: Setoid A := strict_setoid_order_setoid.
Instance: StrongSetoid A := dec_strong_setoid.
Context `{!Trichotomy (<)}.
Instance dec_strict_pseudo_order: PseudoOrder (<).
Proof.
split; try apply _.
intros x y [??]. destruct (lt_antisym x y); tauto.
intros x y Exy z.
destruct (trichotomy (<) x z) as [? | [Exz | Exz]]; try tauto.
right. now rewrite <-Exz.
right. now transitivity x.
intros x y. rewrite trivial_apart. split.
destruct (trichotomy (<) x y); intuition.
intros [?|?]. now apply lt_ne. now apply lt_ne_flip.
Qed.
End dec_strict_setoid_order.
Section dec_partial_order.
Context `{PartialOrder A} `{∀ x y, Decision (x = y)}.
Instance: Setoid A := po_setoid.
Definition dec_lt: Lt A := λ x y, x ≤ y ∧ x ≠ y.
Context `{Alt : Lt A} (lt_correct : ∀ x y, x < y ↔ x ≤ y ∧ x ≠ y).
Instance dec_order: StrictSetoidOrder (<).
Proof.
split; try apply _.
intros ? ? E1 ? ? E2.
now rewrite !lt_correct, E1, E2.
split; try apply _.
intros x. red. rewrite lt_correct. now intros [_ []].
intros x y z. rewrite !lt_correct. intros [E1a E1b] [E2a E2b].
split.
now transitivity y.
intros E3. destruct E2b.
apply (antisymmetry (≤)); trivial.
now rewrite <-E3.
Qed.
Context `{Apart A} `{!TrivialApart A}.
Instance: StrongSetoid A := dec_strong_setoid.
Instance dec_full_partial_order: FullPartialOrder (≤) (<).
Proof.
constructor; try typeclasses eauto.
setoid_rewrite trivial_apart; apply lt_correct.
Qed.
Context `{!TotalRelation (≤)}.
Instance: Trichotomy (<).
Proof.
intros x y. rewrite !lt_correct.
destruct (decide (x = y)); try tauto.
destruct (total (≤) x y); intuition.
Qed.
Instance dec_pseudo_order: PseudoOrder (<).
Proof dec_strict_pseudo_order.
Instance dec_full_pseudo_order: FullPseudoOrder (≤) (<).
Proof.
split; try apply _.
intros x y. rewrite lt_correct. split.
intros ? [? []]. now apply (antisymmetry (≤)).
intros E1.
destruct (total (≤) x y); trivial.
destruct (decide (x = y)) as [E2|E2].
now rewrite E2.
intuition.
Qed.
End dec_partial_order.
|