1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
Require
MathClasses.theory.naturals MathClasses.orders.semirings MathClasses.orders.integers MathClasses.orders.dec_fields.
From Coq Require Import Ring Field.
Require Import
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.naturals MathClasses.interfaces.integers
MathClasses.interfaces.additional_operations MathClasses.interfaces.orders
MathClasses.theory.nat_pow MathClasses.theory.int_abs MathClasses.theory.dec_fields.
(* * Properties of Int Pow *)
Section int_pow_properties.
Context `{DecField A} `{∀ x y, Decision (x = y)} `{Integers B} `{!IntPowSpec A B ipw}.
Add Field A : (dec_fields.stdlib_field_theory A).
Add Ring B : (rings.stdlib_ring_theory B).
Global Instance: Proper ((=) ==> (=) ==> (=)) ((^) : A → B → A) | 0.
Proof int_pow_proper.
Global Instance int_pow_mor_1: ∀ x : A, Setoid_Morphism (x^) | 0.
Proof. split; try apply _. Qed.
Global Instance int_pow_mor_2: ∀ n : B, Setoid_Morphism (^n) | 0.
Proof. split; try apply _. solve_proper. Qed.
Lemma int_pow_S_nonneg `{Apart B} `{!TrivialApart B} `{!FullPseudoSemiRingOrder (A:=B) Ble Blt} (x : A) (n : B) :
0 ≤ n → x ^ (1+n) = x * x ^ n.
Proof.
intros En. destruct (decide (x = 0)) as [Ex | Ex].
rewrite Ex. rewrite int_pow_base_0. ring.
intros E. destruct semirings.not_le_1_0.
rewrite <-E. now apply semirings.nonneg_plus_le_compat_r.
now rewrite int_pow_S.
Qed.
Lemma int_pow_negate (x : A) (n : B) : x ^ (-n) = /(x ^ n).
Proof.
destruct (decide (x = 0)) as [Ex | Ex].
rewrite Ex.
destruct (decide (n = 0)) as [En | En].
now rewrite En, rings.negate_0, int_pow_0, dec_recip_1.
rewrite 2!int_pow_base_0; trivial.
now rewrite dec_recip_0.
now apply rings.flip_negate_ne_0.
revert n. apply biinduction.
solve_proper.
now rewrite rings.negate_0, int_pow_0, dec_recip_1.
intros n.
setoid_replace (-n) with (1 - (1 + n)) by ring.
rewrite 2!int_pow_S, dec_recip_distr; trivial.
split; intros E.
rewrite <-E. now field.
rewrite E, associativity, dec_recip_inverse; trivial.
ring.
Qed.
Lemma int_pow_negate_alt (x : A) (n : B) : x ^ n = /(x ^ (-n)).
Proof.
rewrite <-int_pow_negate.
now rewrite rings.negate_involutive.
Qed.
Lemma int_pow_mult (x y : A) (n : B) : (x * y) ^ n = x ^ n * y ^ n.
Proof.
destruct (decide (x * y = 0)) as [Exy | Exy].
rewrite Exy.
destruct (decide (n = 0)) as [En | En].
rewrite En, 3!int_pow_0. ring.
destruct (zero_product x y Exy) as [E|E]; rewrite E, int_pow_base_0; trivial; ring.
revert n. apply biinduction.
solve_proper.
rewrite 3!int_pow_0. ring.
intros n.
rewrite 3!int_pow_S; trivial.
split; intros E.
rewrite E. ring.
apply (rings.left_cancellation_ne_0 (.*.) (x * y)); trivial.
rewrite E. ring.
intros E. apply Exy. rewrite E. ring.
intros E. apply Exy. rewrite E. ring.
Qed.
Lemma int_pow_recip (x : A) (n : B) : (/x) ^ n = /(x ^ n).
Proof.
destruct (decide (x = 0)) as [Ex | Ex].
rewrite Ex, dec_recip_0.
destruct (decide (n = 0)) as [En | En].
now rewrite En, int_pow_0, dec_recip_1.
now rewrite int_pow_base_0, dec_recip_0.
revert n. apply biinduction.
solve_proper.
now rewrite 2!int_pow_0, dec_recip_1.
intros n.
assert (/x ≠ 0) by now apply dec_recip_ne_0.
rewrite 2!int_pow_S, dec_recip_distr; trivial.
split; intros E.
now rewrite E.
now apply (rings.left_cancellation_ne_0 (.*.) (/x)).
Qed.
Lemma int_pow_nat_pow `{Naturals N} `{!NatPowSpec A N pw} {f : N → B} `{!SemiRing_Morphism f} (x : A) (n : N) :
x ^ (f n) = x ^ n.
Proof.
revert n. apply naturals.induction.
solve_proper.
now rewrite rings.preserves_0, int_pow_0, nat_pow_0.
intros n E.
rewrite rings.preserves_plus, rings.preserves_1.
rewrite int_pow_S_nonneg, nat_pow_S.
now rewrite E.
apply semirings.preserves_nonneg.
now apply naturals.nat_nonneg.
Qed.
Global Instance int_pow_1: RightIdentity (^) (1:B).
Proof.
intro. assert ((1:B) = 1 + 0) as E by ring. rewrite E.
rewrite int_pow_S_nonneg, int_pow_0; [ring | reflexivity].
Qed.
Lemma int_pow_2 x : x ^ (2:B) = x * x.
Proof. now rewrite int_pow_S_nonneg, int_pow_1 by solve_propholds. Qed.
Lemma int_pow_3 x : x ^ (3:B) = x * (x * x).
Proof. now rewrite int_pow_S_nonneg, int_pow_2 by solve_propholds. Qed.
Lemma int_pow_4 x : x ^ (4:B) = x * (x * (x * x)).
Proof. now rewrite int_pow_S_nonneg, int_pow_3 by solve_propholds. Qed.
Global Instance int_pow_base_1: LeftAbsorb (^) (1:A).
Proof.
red. apply biinduction.
solve_proper.
now apply int_pow_0.
intros n. rewrite int_pow_S, left_identity.
easy.
now apply (rings.is_ne_0 1).
Qed.
Lemma int_pow_exp_plus (n m : B) (x : A) :
x ≠ 0 → x ^ (n + m) = x ^ n * x ^ m.
Proof.
intros nonneg.
revert n. apply biinduction.
solve_proper.
rewrite int_pow_0, left_identity. ring.
intros n. rewrite <-associativity, 2!int_pow_S; trivial.
split; intros E.
rewrite E. ring.
apply (rings.left_cancellation_ne_0 (.*.) x); trivial.
rewrite E. ring.
Qed.
Instance int_pow_ne_0 (x : A) (n : B) : PropHolds (x ≠ 0) → PropHolds (x ^ n ≠ 0).
Proof.
intros nonneg. unfold PropHolds.
revert n. apply biinduction.
solve_proper.
rewrite int_pow_0. apply (rings.is_ne_0 1).
intros n. rewrite int_pow_S; trivial.
split; intros E1 E2; destruct E1.
apply (left_cancellation (.*.) x).
now rewrite right_absorb.
rewrite E2. ring.
Qed.
Lemma int_pow_exp_mult (x : A) (n m : B) :
x ^ (n * m) = (x ^ n) ^ m.
Proof.
destruct (decide (x = 0)) as [Ex|Ex].
rewrite Ex.
destruct (decide (n = 0)) as [En|En].
rewrite En, left_absorb, int_pow_0.
now rewrite left_absorb.
destruct (decide (m = 0)) as [Em|Em].
now rewrite Em, right_absorb, 2!int_pow_0.
rewrite 3!int_pow_base_0; try easy.
intros E. now destruct (zero_product n m E).
revert m. apply biinduction.
solve_proper.
rewrite right_absorb. now rewrite 2!int_pow_0.
intros m. split; intros E.
rewrite int_pow_S, <-E.
rewrite distribute_l, right_identity.
now rewrite int_pow_exp_plus.
now apply int_pow_ne_0.
rewrite int_pow_S in E.
rewrite distribute_l, right_identity, int_pow_exp_plus in E.
apply (rings.left_cancellation_ne_0 (.*.) (x ^ n)).
now apply int_pow_ne_0.
now rewrite E.
easy.
now apply int_pow_ne_0.
Qed.
Context `{Apart A} `{!TrivialApart A} `{!FullPseudoSemiRingOrder (A:=A) Ale Alt}.
Context `{Apart B} `{!TrivialApart B} `{!FullPseudoSemiRingOrder (A:=B) Ble Blt}.
Instance int_pow_pos (x : A) (n : B) : PropHolds (0 < x) → PropHolds (0 < x ^ n).
Proof.
intros nonneg. unfold PropHolds.
revert n. apply biinduction.
solve_proper.
intros. rewrite int_pow_0. now apply semirings.lt_0_1.
intros n; split; intros E.
rewrite int_pow_S.
now apply pos_mult_compat.
apply not_symmetry. now apply orders.lt_ne.
apply (strictly_order_reflecting (x *.)).
rewrite <-int_pow_S.
now rewrite right_absorb.
apply not_symmetry. now apply orders.lt_ne.
Qed.
Instance int_pow_nonneg (x : A) (n : B) : PropHolds (0 ≤ x) → PropHolds (0 ≤ x ^ n).
Proof.
intros E1. red in E1.
destruct (orders.le_equiv_lt _ _ E1) as [E2|E2].
rewrite <-E2.
destruct (decide (n = 0)) as [En|En].
rewrite En.
rewrite int_pow_0.
apply semirings.le_0_1.
unfold PropHolds. now rewrite int_pow_base_0.
now apply orders.lt_le, int_pow_pos.
Qed.
Lemma int_pow_ge_1 (x : A) (n : B) : 1 ≤ x → 0 ≤ n → 1 ≤ x ^ n.
Proof.
intros E1 E2. revert n E2. apply integers.induction_nonneg; trivial.
solve_proper.
now rewrite int_pow_0.
intros.
rewrite int_pow_S.
rewrite <-rings.mult_1_r.
apply semirings.mult_le_compat; try apply semirings.le_0_1; auto.
apply orders.lt_ne_flip.
apply orders.lt_le_trans with 1; trivial.
now apply semirings.lt_0_1.
Qed.
Lemma int_pow_gt_1 (x : A) (n : B) : 1 < x → 0 < n → 1 < x ^ n.
Proof.
intros Ex En.
apply nat_int.lt_iff_S_le in En.
destruct (semirings.decompose_le En) as [z [Ez1 Ez2]]. ring_simplify in Ez2.
rewrite Ez2. clear En Ez2 n.
revert z Ez1. apply integers.induction_nonneg; try assumption.
solve_proper.
now rewrite left_identity, right_identity.
intros n En E2.
rewrite <-associativity, int_pow_S.
apply semirings.gt_1_mult_lt_compat_l; auto.
transitivity (1:A); [apply semirings.lt_0_1 | assumption].
apply orders.lt_ne_flip.
apply orders.le_lt_trans with 1; trivial.
now apply semirings.le_0_1.
Qed.
(* Making these instances Global is not useful, we don't have PropHolds (1 ≤ x)
instances and it will only slow down instance resolution (it increases the
compilation time of dyadics from 1:35 to 2:28). *)
Instance int_pow_exp_le:
∀ x : A, PropHolds (1 ≤ x) → OrderPreserving (x^).
Proof.
repeat (split; try apply _).
assert (0 < x) by (apply orders.lt_le_trans with 1; [solve_propholds | easy]).
intros n m E.
destruct (semirings.decompose_le E) as [z [Ea Eb]].
rewrite Eb.
rewrite int_pow_exp_plus by now apply orders.lt_ne_flip.
rewrite <-rings.mult_1_r at 1.
apply (order_preserving (x ^ n *.)).
now apply int_pow_ge_1.
Qed.
Instance int_pow_exp_lt:
∀ x : A, PropHolds (1 < x) → StrictlyOrderPreserving (x^).
Proof.
repeat (split; try apply _).
assert (0 < x) by (apply orders.le_lt_trans with 1; [solve_propholds | easy]).
intros n m E.
apply nat_int.lt_iff_plus_1_le in E.
destruct (semirings.decompose_le E) as [z [Ea Eb]].
rewrite Eb.
rewrite <-associativity, int_pow_exp_plus by now apply orders.lt_ne_flip.
rewrite <-(rings.mult_1_r (x ^ n)) at 1.
apply (strictly_order_preserving (x^n *.)).
apply int_pow_gt_1; trivial.
now apply nat_int.le_iff_lt_S.
Qed.
Instance int_pow_exp_le_back:
∀ x : A, PropHolds (1 < x) → OrderReflecting (x^).
Proof.
split; try apply _. intros n m E1.
destruct (total (≤) n m) as [E2|E2]; trivial.
destruct (orders.le_equiv_lt _ _ E2) as [E3|E3].
now rewrite E3.
contradict E1.
apply orders.lt_not_le_flip.
now apply (strictly_order_preserving (x^)).
Qed.
Instance int_pow_exp_lt_back:
∀ x : A, PropHolds (1 < x) → StrictlyOrderReflecting (x^).
Proof. intros ? E1. apply _. Qed.
Instance int_pow_inj:
∀ x : A, PropHolds (1 < x) → Injective (x^).
Proof.
repeat (split; try apply _). intros n m E.
apply (antisymmetry (≤)); apply (order_reflecting (x^)); trivial; rewrite E; reflexivity.
Qed.
End int_pow_properties.
(* Due to bug #2528 *)
#[global]
Hint Extern 18 (PropHolds (_ ^ _ ≠ 0)) => eapply @int_pow_ne_0 : typeclass_instances.
#[global]
Hint Extern 18 (PropHolds (0 ≤ _ ^ _)) => eapply @int_pow_nonneg : typeclass_instances.
#[global]
Hint Extern 18 (PropHolds (0 < _ ^ _)) => eapply @int_pow_pos : typeclass_instances.
Section preservation.
Context
`{Integers B}
`{DecField A1} `{∀ x y : A1, Decision (x = y)} `{!IntPowSpec A1 B ip1}
`{DecField A2} `{∀ x y : A2, Decision (x = y)} `{!IntPowSpec A2 B ip2}
{f : A1 → A2} `{!SemiRing_Morphism f}.
Add Ring B2 : (rings.stdlib_ring_theory B).
Lemma preserves_int_pow x (n : B) : f (x ^ n) = (f x) ^ n.
Proof.
destruct (decide (x = 0)) as [Ex | Ex].
rewrite Ex, rings.preserves_0.
destruct (decide (n = 0)) as [En|En].
rewrite En, 2!int_pow_0.
now apply rings.preserves_1.
rewrite 2!int_pow_base_0; trivial.
now apply rings.preserves_0.
revert n. apply biinduction.
solve_proper.
rewrite int_pow_0, int_pow_0.
now apply rings.preserves_1.
intros n.
assert (f x ≠ 0) by now apply rings.injective_ne_0.
rewrite 2!int_pow_S, rings.preserves_mult; trivial.
split; intros E.
now rewrite E.
now apply (left_cancellation (.*.) (f x)).
Qed.
End preservation.
Section exp_preservation.
Context `{Field A} `{∀ x y : A, Decision (x = y)}
`{Integers B1} `{Integers B2} `{!IntPowSpec A B1 pw1} `{!IntPowSpec A B2 pw2}
{f : B1 → B2} `{!SemiRing_Morphism f}.
Lemma preserves_int_pow_exp x (n : B1) : x ^ (f n) = x ^ n.
Proof.
destruct (decide (x = 0)) as [Ex | Ex].
rewrite Ex.
destruct (decide (n = 0)) as [En|En].
now rewrite En, rings.preserves_0, 2!int_pow_0.
rewrite 2!int_pow_base_0; try easy.
now apply rings.injective_ne_0.
revert n. apply biinduction.
solve_proper.
rewrite rings.preserves_0.
now rewrite 2!int_pow_0.
intros n.
rewrite rings.preserves_plus, rings.preserves_1.
rewrite 2!int_pow_S by trivial.
split; intros E.
now rewrite E.
now apply (rings.left_cancellation_ne_0 (.*.) x).
Qed.
End exp_preservation.
(* Very slow default implementation by translation into Peano *)
Section int_pow_default.
Context `{DecField A} `{∀ x y, Decision (x = y)}
`{Integers B} `{Apart B} `{!TrivialApart B} `{!FullPseudoSemiRingOrder (A:=B) Ble Blt}.
Add Ring B3 : (rings.stdlib_ring_theory B).
Global Instance int_pow_default: Pow A B | 10 := λ x n,
match (decide_rel (≤) 0 n) with
| left _ => x ^ int_abs B nat n
| right _ => /x ^ int_abs B nat n
end.
Global Instance: IntPowSpec A B int_pow_default.
Proof.
split; unfold pow, int_pow_default.
intros ? ? E1 ? ? E2.
now (case (decide_rel); case (decide_rel); rewrite E1, E2).
intros x. case (decide_rel); intros E.
now rewrite int_abs_0.
now destruct E.
intros n ?. case (decide_rel); intros E.
now apply nat_pow_base_0, int_abs_ne_0.
rewrite nat_pow_base_0.
apply dec_recip_0.
now apply int_abs_ne_0.
intros x n E. case (decide_rel); case (decide_rel); intros E1 E2.
now rewrite int_abs_nonneg_plus, int_abs_1 by (auto;solve_propholds).
setoid_replace n with (-1 : B).
rewrite rings.plus_negate_r, int_abs_0, nat_pow_0.
rewrite int_abs_negate, int_abs_1, right_identity.
symmetry. now apply dec_recip_inverse.
apply (antisymmetry (≤)).
apply orders.not_le_lt_flip in E1.
apply nat_int.lt_iff_plus_1_le in E1.
apply (order_reflecting (+1)).
now ring_simplify.
apply (order_reflecting (1+)). now rewrite rings.plus_negate_r.
destruct E2. apply semirings.nonneg_plus_compat; [solve_propholds | assumption].
rewrite <-int_abs_negate, <-(int_abs_negate n).
setoid_replace (-n) with (1 - (1 + n)) by ring.
rewrite (int_abs_nonneg_plus 1 (-(1 + n))), int_abs_1.
rewrite nat_pow_S.
rewrite dec_recip_distr, associativity.
now rewrite dec_recip_inverse, left_identity.
now apply (rings.is_nonneg 1).
now apply rings.flip_nonpos_negate, orders.le_flip.
Qed.
End int_pow_default.
|