File: shiftl.v

package info (click to toggle)
coq-math-classes 9.0.0-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,120 kB
  • sloc: python: 22; makefile: 21; sh: 2
file content (372 lines) | stat: -rw-r--r-- 12,568 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
Require
  MathClasses.orders.integers MathClasses.theory.dec_fields MathClasses.theory.nat_pow.
From Coq Require Import Ring.
Require Import
  MathClasses.interfaces.abstract_algebra MathClasses.interfaces.naturals MathClasses.interfaces.integers
  MathClasses.interfaces.additional_operations MathClasses.interfaces.orders.

Section shiftl.
Context `{SemiRing A} `{!LeftCancellation (.*.) (2:A)} `{SemiRing B} `{!Biinduction B} `{!ShiftLSpec A B sl}.

Add Ring A: (rings.stdlib_semiring_theory A).
Add Ring B: (rings.stdlib_semiring_theory B).

Global Instance: Proper ((=) ==> (=) ==> (=)) ((≪) : A → B → A) | 1.
Proof shiftl_proper.

Global Instance shiftl_mor_1: ∀ x : A, Setoid_Morphism (x≪) | 0.
Proof. split; try apply _. Qed.

Global Instance shiftl_mor_2: ∀ n : B, Setoid_Morphism (≪n) | 0.
Proof. split; try apply _. solve_proper. Qed.

Lemma shiftl_nat_pow_alt `{Naturals B2} `{!NatPowSpec A B2 pw}
  `{!SemiRing_Morphism (f : B2 → B)} x n : x ≪ f n = x * 2 ^ n.
Proof.
  revert n. apply naturals.induction.
    solve_proper.
   rewrite rings.preserves_0, ?shiftl_0, nat_pow_0. ring.
  intros n E.
  rewrite rings.preserves_plus, rings.preserves_1, shiftl_S.
  rewrite E, nat_pow_S. ring.
Qed.

Lemma shiftl_nat_pow `{!NaturalsToSemiRing B} `{!Naturals B} `{!NatPowSpec A B np} x n :
  x ≪ n = x * 2 ^ n.
Proof. change (x ≪ id n = x * 2 ^ n). apply shiftl_nat_pow_alt. Qed.

Lemma shiftl_1 x : x ≪ (1:B) = 2 * x.
Proof. now rewrite <-(rings.plus_0_r 1), shiftl_S, shiftl_0. Qed.

Lemma shiftl_2 x : x ≪ (2:B) = 4 * x.
Proof. rewrite shiftl_S, shiftl_1. ring. Qed.

Global Instance shiftl_base_0: LeftAbsorb (≪) 0.
Proof.
  intros n. pattern n. apply biinduction; clear n.
    solve_proper.
   now apply shiftl_0.
  intros n; split; intros E.
   rewrite shiftl_S, E. ring.
  apply (left_cancellation (.*.) 2).
  rewrite <-shiftl_S, E. ring.
Qed.

Lemma shiftl_exp_plus x n m : x ≪ (n + m) = x ≪ n ≪ m.
Proof.
  pattern m. apply biinduction; clear m.
    solve_proper.
   now rewrite shiftl_0, rings.plus_0_r.
  intros m.
  setoid_replace (n + (1 + m)) with (1 + (n + m)) by ring.
  rewrite ?shiftl_S.
  split; intros E.
   now rewrite E.
  now apply (left_cancellation (.*.) 2).
Qed.

Lemma shiftl_order x n m: x ≪ n ≪ m  = x ≪ m ≪ n.
Proof. rewrite <-?shiftl_exp_plus. now rewrite commutativity. Qed.

Lemma shiftl_reverse (x : A) (n m : B) : n + m = 0 → x ≪ n ≪ m = x.
Proof. intros E. now rewrite <-shiftl_exp_plus, E, shiftl_0. Qed.

Lemma shiftl_mult_l x y n : x * (y ≪ n) = (x * y) ≪ n.
Proof.
  pattern n. apply biinduction; clear n.
    solve_proper.
   now rewrite ?shiftl_0.
  intros m.
  rewrite ?shiftl_S.
  split; intros E.
   rewrite <-E. ring.
  apply (left_cancellation (.*.) 2). rewrite <-E. ring.
Qed.

Lemma shiftl_mult_r x y n : (x ≪ n) * y = (x * y) ≪ n.
Proof. now rewrite commutativity, shiftl_mult_l, commutativity. Qed.

Lemma shiftl_base_plus x y n : (x + y) ≪ n  = x ≪ n + y ≪ n.
Proof.
  pattern n. apply biinduction; clear n.
    solve_proper.
   now rewrite ?shiftl_0.
  intros m. rewrite ?shiftl_S.
  split; intros E.
   rewrite E. ring.
  apply (left_cancellation (.*.) 2). rewrite E. ring.
Qed.

Lemma shiftl_base_nat_pow `{Naturals B2} `{!NatPowSpec A B2 pw} `{!SemiRing_Morphism (f : B2 → B)} x n m :
  (x ≪ n) ^ m = (x ^ m) ≪ (n * f m).
Proof.
  revert m. apply naturals.induction.
    solve_proper.
   rewrite ?nat_pow_0.
   now rewrite rings.preserves_0, rings.mult_0_r, shiftl_0.
  intros m E.
  rewrite rings.preserves_plus, rings.preserves_1.
  rewrite rings.plus_mult_distr_l, rings.mult_1_r, shiftl_exp_plus.
  rewrite !nat_pow_S, E.
  now rewrite shiftl_mult_l, shiftl_mult_r.
Qed.

Lemma shiftl_negate `{Negate A} `{!Ring A} x n : (-x) ≪ n = -(x ≪ n).
Proof.
  rewrite (rings.negate_mult x), (rings.negate_mult (x ≪ n)).
  symmetry. now apply shiftl_mult_l.
Qed.

Global Instance shiftl_inj: ∀ n, Injective (≪ n).
Proof.
  repeat (split; try apply _).
  pattern n. apply biinduction; clear n.
    solve_proper.
   intros x y E. now rewrite ?shiftl_0 in E.
  intros n; split; intros E1 x y E2.
   apply E1. rewrite ?shiftl_S in E2.
   now apply (left_cancellation (.*.) 2).
  apply E1. now rewrite ?shiftl_S, E2.
Qed.

Instance shiftl_ne_0 x n :
  PropHolds (x ≠ 0) → PropHolds (x ≪ n ≠ 0).
Proof.
  intros E1 E2. apply E1.
  apply (injective (≪ n)).
  now rewrite shiftl_base_0.
Qed.

Context `{Apart A} `{!FullPseudoSemiRingOrder (A:=A) Ale Alt} `{!PropHolds ((1:A) ≶ 0)}.

Let shiftl_strict_order_embedding (x y : A) (n : B) : x < y ↔ x ≪ n < y ≪ n.
Proof.
  revert n. apply (biinduction_iff (x < y) (λ n, x ≪ n < y ≪ n)).
    solve_proper.
   now rewrite 2!shiftl_0.
  intros n. rewrite !shiftl_S.
  split; intros E.
   now apply (strictly_order_preserving (2 *.)).
  now apply (strictly_order_reflecting (2 *.)).
Qed.

Global Instance: ∀ n, StrictOrderEmbedding (≪ n).
Proof.
  repeat (split; try apply _); intros.
   now apply shiftl_strict_order_embedding.
  eapply shiftl_strict_order_embedding. eassumption.
Qed.

Global Instance: ∀ n, OrderEmbedding (≪ n).
Proof.
  split.
   now apply maps.full_pseudo_order_preserving.
  now apply maps.full_pseudo_order_reflecting.
Qed.

Global Instance shiftl_strong_inj: ∀ n, StrongInjective (≪ n).
Proof. intros. apply maps.pseudo_order_embedding_inj. Qed.

Lemma shiftl_le_flip_r `{Negate B} `{!Ring B} (x y : A) (n : B) :
  x ≤ y ≪ (-n)  ↔  x ≪ n ≤ y.
Proof.
  split; intros E.
   apply (order_reflecting (≪ -n)).
   now rewrite shiftl_reverse by now apply rings.plus_negate_r.
  apply (order_reflecting (≪ n)).
  now rewrite shiftl_reverse by now apply rings.plus_negate_l.
Qed.

Lemma shiftl_le_flip_l `{Negate B} `{!Ring B} (x y : A) (n : B) :
  x ≪ (-n) ≤ y  ↔  x ≤ y ≪ n.
Proof. now rewrite <-shiftl_le_flip_r, rings.negate_involutive. Qed.

Instance shiftl_nonneg (x : A) (n : B) : PropHolds (0 ≤ x) → PropHolds (0 ≤ x ≪ n).
Proof.
  intro. rewrite <-(shiftl_base_0 n).
  now apply (order_preserving (≪ n)).
Qed.

Instance shiftl_pos (x : A) (n : B) : PropHolds (0 < x) → PropHolds (0 < x ≪ n).
Proof.
  intro. rewrite <-(shiftl_base_0 n).
  now apply (strictly_order_preserving (≪ n)).
Qed.
End shiftl.

(* Due to bug #2528 *)
#[global]
Hint Extern 18 (PropHolds (_ ≪ _ ≠ 0)) => eapply @shiftl_ne_0 : typeclass_instances.
#[global]
Hint Extern 18 (PropHolds (0 ≤ _ ≪ _)) => eapply @shiftl_nonneg : typeclass_instances.
#[global]
Hint Extern 18 (PropHolds (0 < _ ≪ _)) => eapply @shiftl_pos : typeclass_instances.

Section preservation.
  Context `{SemiRing B} `{!Biinduction B}
    `{SemiRing A1} `{!ShiftLSpec A1 B sl1} `{SemiRing A2} `{!LeftCancellation (.*.) (2:A2)} `{!ShiftLSpec A2 B sl2}
    `{!SemiRing_Morphism (f : A1 → A2)}.

  Lemma preserves_shiftl x (n : B) : f (x ≪ n) = (f x) ≪ n.
  Proof.
    revert n. apply biinduction.
      solve_proper.
     now rewrite 2!shiftl_0.
    intros n; split; intros IH.
     rewrite 2!shiftl_S.
     now rewrite rings.preserves_mult, rings.preserves_2, IH.
    apply (left_cancellation (.*.) 2).
    rewrite <-(rings.preserves_2 (f:=f)) at 1.
    rewrite <-rings.preserves_mult, <-shiftl_S, IH.
    now rewrite shiftl_S.
  Qed.
End preservation.

Section exp_preservation.
  Context `{SemiRing B1} `{!Biinduction B1} `{SemiRing B2} `{!Biinduction B2}
   `{SemiRing A} `{!LeftCancellation (.*.) (2:A)} `{!ShiftLSpec A B1 sl1} `{!ShiftLSpec A B2 sl2}
   `{!SemiRing_Morphism (f : B1 → B2)}.

  Lemma preserves_shiftl_exp x (n : B1) : x ≪ f n = x ≪ n.
  Proof.
    revert n. apply biinduction.
      solve_proper.
     now rewrite rings.preserves_0, ?shiftl_0.
    intros n.
    rewrite rings.preserves_plus, rings.preserves_1, ?shiftl_S.
    split; intros E.
     now rewrite E.
    now apply (left_cancellation (.*.) 2).
  Qed.
End exp_preservation.

Section shiftl_dec_field.
  Context `{SemiRing R} `{Integers Z} `{!ShiftLSpec R Z sl}
     `{DecField F} `{∀ x y : F, Decision (x = y)} `{!PropHolds ((2:F) ≠ 0)} `{!IntPowSpec F Z ipw}
     `{!SemiRing_Morphism (f : R → F)}.

  Add Ring F: (rings.stdlib_ring_theory F).
  Add Ring Z: (rings.stdlib_ring_theory Z).

  Existing Instance int_pow_proper.

  Lemma shiftl_to_int_pow x n : f (x ≪ n) = f x * 2 ^ n.
  Proof.
    revert n. apply biinduction.
      solve_proper.
     now rewrite shiftl_0, int_pow_0, rings.mult_1_r.
    intros n.
    rewrite shiftl_S, int_pow_S by solve_propholds.
    rewrite rings.preserves_mult, rings.preserves_2.
    rewrite associativity, (commutativity (f x) 2), <-associativity.
    split; intros E.
     now rewrite E.
    now apply (left_cancellation (.*.) 2).
  Qed.

  Lemma shiftl_base_1_to_int_pow n : f (1 ≪ n) = 2 ^ n.
  Proof. now rewrite shiftl_to_int_pow, rings.preserves_1, rings.mult_1_l. Qed.

  Lemma shiftl_negate_1_to_half x : f (x ≪ -1) = f x / 2.
  Proof.
    rewrite shiftl_to_int_pow.
    apply (left_cancellation (.*.) 2).
    transitivity (f x * (2 * 2 ^ (-1))); [ring |].
    transitivity (f x * (2 / 2)); [| ring].
    rewrite dec_recip_inverse, <-int_pow_S by assumption.
    now rewrite rings.plus_negate_r, int_pow_0.
 Qed.

  Lemma shiftl_negate_1_to_fourth x : f (x ≪ -2) = f x / 4.
  Proof.
    rewrite shiftl_to_int_pow.
    apply (left_cancellation (.*.) (2 * 2)).
    transitivity (f x * (2 * (2 * 2 ^ (-2)))); [ring |].
    transitivity (f x * (4 / 4)); [| ring].
    assert ((4:F) ≠ 0).
     setoid_replace 4 with (2*2) by ring.
     solve_propholds.
    rewrite dec_recip_inverse, <-!int_pow_S by assumption.
    setoid_replace (1 + (1 - 2) : Z) with (0 : Z) by ring.
    now rewrite int_pow_0.
 Qed.
End shiftl_dec_field.

Section more_shiftl_dec_field.
  Context `{DecField A} `{Integers B} `{∀ x y : A, Decision (x = y)}
    `{!PropHolds ((2:A) ≠ 0)} `{!ShiftLSpec A B sl} `{!IntPowSpec A B ipw}.

  Lemma shiftl_int_pow x n : x ≪ n = x * 2 ^ n.
  Proof. change (id (x ≪ n) = id x * 2 ^ n). apply shiftl_to_int_pow. Qed.

  Lemma shiftl_base_1_int_pow n : 1 ≪ n = 2 ^ n.
  Proof. now rewrite shiftl_int_pow, rings.mult_1_l. Qed.

  Lemma shiftl_negate_1_half x : x ≪ (-1) = x / 2.
  Proof. change (id (x ≪ (-1)) = id x / 2). now apply shiftl_negate_1_to_half. Qed.

  Lemma shiftl_negate_1_fourth x : x ≪ (-2) = x / 4.
  Proof. change (id (x ≪ (-2)) = id x / 4). now apply shiftl_negate_1_to_fourth. Qed.
End more_shiftl_dec_field.

Section shiftl_field.
  Context `{Ring R} `{Integers Z} `{!ShiftLSpec R Z sl}
    `{Field F} `{!PropHolds ((2:F) ≶ 0)} `{Naturals N} `{!NatPowSpec F N npw}
    `{!SemiRing_Morphism (g : N → Z)} `{!SemiRing_Morphism (f : R → F)}.

  Add Ring F2: (rings.stdlib_ring_theory F).
  Add Ring Z2: (rings.stdlib_ring_theory Z).

  Lemma shiftl_negate_nat_pow x n : f (x ≪ (-g n)) * 2 ^ n = f x.
  Proof.
    pose proof nat_pow_proper.
    pattern n. apply naturals.induction; clear n.
      solve_proper.
     rewrite rings.preserves_0, rings.negate_0, shiftl_0.
     rewrite nat_pow_0. ring.
    intros n E.
    rewrite rings.preserves_plus, rings.preserves_1.
    etransitivity; [| eassumption].
    setoid_replace (-g n) with (1 - (1 + g n)) by ring.
    rewrite shiftl_S, rings.preserves_mult, rings.preserves_2.
    rewrite nat_pow_S. ring.
  Qed.

  Lemma shiftl_negate_to_recip_nat_pow x n P2n : f (x ≪ (-g n)) = f x // (2 ^ n)↾P2n.
  Proof.
    apply (right_cancellation (.*.) (2 ^ n)).
    rewrite shiftl_negate_nat_pow.
    transitivity (f x * (2 ^ n // (2 ^ n)↾P2n)); [| ring].
    rewrite fields.reciperse_alt. ring.
  Qed.
End shiftl_field.

Section default_shiftl_naturals.
  Context `{SemiRing A} `{Naturals B} `{!NatPowSpec A B pw}.

  Global Instance default_shiftl: ShiftL A B | 10 := λ x n, x * 2 ^ n.

  Global Instance: ShiftLSpec A B default_shiftl.
  Proof. now apply shiftl_spec_from_nat_pow. Qed.
End default_shiftl_naturals.

Set Warnings "-unsupported-attributes". (* FIXME: remove when minimal Coq version is enough *)

#[global]
Typeclasses Opaque default_shiftl.

Set Warnings "+unsupported-attributes".

Section default_shiftl_integers.
  Context `{DecField A} `{!PropHolds ((2:A) ≠ 0)} `{Integers B} `{!IntPowSpec A B ipw}.

  Global Instance default_shiftl_int: ShiftL A B | 9 := λ x n, x * 2 ^ n.

  Global Instance: ShiftLSpec A B default_shiftl_int.
  Proof. now apply shiftl_spec_from_int_pow. Qed.
End default_shiftl_integers.

Set Warnings "-unsupported-attributes". (* FIXME: remove when minimal Coq version is enough *)

#[global]
Typeclasses Opaque default_shiftl_int.