1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
Require Import
Coq.Classes.Morphisms Coq.Classes.RelationClasses Coq.Relations.Relation_Definitions Coq.Lists.List
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.universal_algebra MathClasses.theory.ua_homomorphisms MathClasses.interfaces.canonical_names MathClasses.theory.ua_subalgebraT MathClasses.misc.util.
Require MathClasses.theory.ua_products.
Require MathClasses.theory.categories.
(* Remove this *)
Local Hint Transparent Equiv : typeclass_instances.
Section contents.
Context σ `{@Algebra σ v ve vo}.
Notation op_type := (op_type (sorts σ)).
Notation vv := (ua_products.carrier σ bool (λ _: bool, v)).
Instance hint:
@Algebra σ vv (ua_products.product_e σ bool (fun _ : bool => v) (fun _ : bool => ve)) _
:= @ua_products.product_algebra σ bool (λ _, v) _ _ _.
(* Given an equivalence on the algebra's carrier that respects its setoid equality... *)
Instance hint' (a: sorts σ): Equiv (ua_products.carrier σ bool (fun _: bool => v) a).
Proof. apply products.dep_prod_equiv. intro. apply _. Defined.
Context (e: ∀ s, relation (v s)).
Section for_nice_e.
Context
(e_e: ∀ s, Equivalence (e s))
(e_proper: ∀ s, Proper ((=) ==> (=) ==> iff) (e s)).
(* We can show that that equivalence lifted to arbitrary operation types still respects the setoid equality: *)
Let Q s x := e s (x true) (x false).
Let lifted_e := @op_type_equiv (sorts σ) v e.
Let lifted_normal := @op_type_equiv (sorts σ) v ve.
Instance lifted_e_proper o: Proper ((=) ==> (=) ==> iff) (lifted_e o).
Proof with intuition.
induction o; simpl. intuition.
repeat intro.
unfold respectful.
split; intros.
assert (x x1 = y x1). apply H0...
assert (x0 y1 = y0 y1). apply H1...
apply (IHo (x x1) (y x1) H4 (x0 y1) (y0 y1) H5)...
assert (x x1 = y x1). apply H0...
assert (x0 y1 = y0 y1). apply H1...
apply (IHo (x x1) (y x1) H4 (x0 y1) (y0 y1) H5)...
Qed. (* todo: clean up *)
(* With that out of the way, we show that there are two equivalent ways of stating compatibility with the
algebra's operations: *)
(* 1: the direct way with Algebra; *)
Let eAlgebra := @Algebra σ v e _.
(* 2: the indirect way of saying that the relation as a set of pairs is a subalgebra in the product algebra: *)
Let eSub := @ua_subalgebraT.ClosedSubset σ vv _ _ Q.
Lemma eAlgebra_eSub: eAlgebra → eSub.
Proof with intuition.
intros.
constructor.
unfold Q.
repeat intro.
constructor; intro.
rewrite <- (H1 true), <- (H1 false)...
rewrite (H1 true), (H1 false)...
intro o.
simpl.
unfold algebra_op, ua_products.product_ops, algebra_op.
set (f := λ _: bool, vo o).
assert (∀ b, Proper (=) (f b)).
intro.
unfold f.
apply algebra_propers.
assert (lifted_e _ (f true) (f false)). unfold f.
unfold lifted_e.
destruct H0.
apply algebra_propers.
assert (∀ b, Proper (lifted_e (σ o)) (f b))...
clearbody f.
induction (σ o)...
simpl in *...
apply IHo0...
apply H1...
Qed. (* todo: clean up *)
Lemma eSub_eAlgebra: eSub → eAlgebra.
Proof with intuition.
intros [proper closed].
constructor. unfold abstract_algebra.Setoid. apply _.
intro o.
generalize (closed o). clear closed. (* todo: must be a cleaner way *)
unfold algebra_op.
simpl.
unfold ua_products.product_ops.
intro.
change (lifted_e _ (algebra_op o) (algebra_op o)).
set (f := λ _: bool, algebra_op o) in *.
assert (∀ b, lifted_normal _ (f b) (f b)). intros.
subst f. simpl.
apply algebra_propers...
change (lifted_e (σ o) (f true) (f false)).
clearbody f.
induction (σ o)...
simpl in *.
repeat intro.
unfold respectful in H0.
apply (IHo0 (λ b, f b (if b then x else y)))...
Qed. (* todo: clean up *)
Lemma back_and_forth: iffT eSub eAlgebra.
Proof. split; intro; [apply eSub_eAlgebra | apply eAlgebra_eSub]; assumption. Qed.
End for_nice_e.
(* This justifies the following definition of a congruence: *)
Class Congruence: Prop :=
{ congruence_proper:: ∀ s: sorts σ, Proper ((=) ==> (=) ==> iff) (e s)
; congruence_quotient:: Algebra σ v (e:=e) }.
End contents.
(* A variety for an equational theory none of whose laws have
premises is closed under quotients generated by congruences: *)
Lemma quotient_variety
(et: EquationalTheory) `{InVariety et v}
(e': ∀ s, relation (v s)) `{!Congruence et e'}
(no_premises: ∀ s, et_laws et s → entailment_premises _ s ≡ nil):
InVariety et v (e:=e').
(* Todo: Can this no-premises condition be weakened? Does it occur in this form in the literature? *)
Proof.
constructor. apply _.
intros l law vars.
pose proof (variety_laws l law vars) as E.
pose proof (no_premises l law).
destruct l as [prems [conc ?]]. simpl in *. subst. simpl in *.
unfold equiv. rewrite E.
pose proof (_: Equivalence (e' conc)).
reflexivity.
Qed.
Section in_domain.
Context {A B} {R: Equiv B} (f: A → B).
Definition in_domain: Equiv A := λ x y, f x = f y. (* todo: use pointwise thingy *)
Global Instance in_domain_equivalence: Equivalence R → Equivalence in_domain.
Proof with intuition.
constructor; repeat intro; unfold equiv, in_domain in *...
Qed.
End in_domain.
Section first_iso.
(* "If A and B are algebras, and f is a homomorphism from A to B, then
the equivalence relation Φ on A defined by a~b if and only if f(a)=f(b) is
a congruence on A, and the algebra A/Φ is isomorphic to the image
of f, which is a subalgebra of B." *)
Context `{Algebra σ A} `{Algebra σ B} `{!HomoMorphism σ A B f}.
Notation Φ := (λ s, in_domain (f s)).
Lemma square o0 x x' y y':
Preservation σ A B f x x' →
Preservation σ A B f y y' →
op_type_equiv (sorts σ) B o0 x' y' →
@op_type_equiv (sorts σ) A (λ s: sorts σ, @in_domain (A s) (B s) (e0 s) (f s)) o0 x y.
Proof.
induction o0.
simpl.
intros.
unfold in_domain.
rewrite H3, H4.
assumption.
simpl in *.
repeat intro.
unfold in_domain in H6.
unfold respectful in H5.
simpl in *.
pose proof (H3 x0).
pose proof (H3 y0). clear H3.
pose proof (H4 x0).
pose proof (H4 y0). clear H4.
apply (IHo0 (x x0) (x' (f _ x0)) (y y0) (y' (f _ y0)) H7 H9).
apply H5.
assumption.
Qed.
Instance co: Congruence σ Φ.
Proof with intuition.
constructor.
repeat intro.
unfold in_domain.
rewrite H3, H4...
constructor; intro.
unfold abstract_algebra.Setoid. apply _.
unfold algebra_op.
generalize (preserves σ A B f o).
generalize (@algebra_propers σ B _ _ _ o).
unfold algebra_op.
generalize (H o), (H1 o).
induction (σ o); simpl in *; repeat intro.
apply _.
apply (square _ _ _ _ _ (H4 x) (H4 y))...
Qed.
Definition image s (b: B s): Type := sigT (λ a, f s a = b).
Lemma image_proper: ∀ s (x0 x' : B s), x0 = x' → iffT (image s x0) (image s x').
Proof. intros ??? E. split; intros [v ?]; exists v; rewrite E in *; assumption. Qed.
Instance: ClosedSubset image.
Proof with intuition.
constructor; repeat intro.
split; intros [q p]; exists q; rewrite p...
generalize (preserves σ A B f o).
generalize (@algebra_propers σ B _ _ _ o).
unfold algebra_op.
generalize (H1 o), (H o).
induction (σ o); simpl; intros.
exists o1...
destruct X.
apply (@op_closed_proper σ B _ _ _ image image_proper _ (o1 z) (o1 (f _ x))).
apply H3...
apply IHo0 with (o2 x)...
apply _.
Qed.
Definition quot_obj: algebras.Object σ := algebras.object σ A (algebra_equiv:=Φ). (* A/Φ *)
Definition subobject: algebras.Object σ := algebras.object σ (ua_subalgebraT.carrier image).
Program Definition back: subobject ⟶ quot_obj := λ _ X, projT1 (projT2 X).
Next Obligation. Proof with try apply _; intuition.
repeat constructor...
intros [x [i E']] [y [j E'']] E.
change (x = y) in E.
change (f a i = f a j).
rewrite E', E''...
unfold ua_subalgebraT.impl.
generalize (subset_closed image o).
unfold algebra_op.
generalize (H o) (H1 o) (preserves σ A B f o)
(_: Proper (=) (H o)) (_: Proper (=) (H1 o)).
induction (σ o); simpl; intros ? ? ? ? ?.
intros [? E]. change (f _ x = f _ o0). rewrite E...
intros ? [x [? E]]. apply IHo0... simpl in *. rewrite <- E...
Defined.
Program Definition forth: quot_obj ⟶ subobject :=
λ a X, existT _ (f a X) (existT _ X (reflexivity _)).
Next Obligation. Proof with try apply _; intuition.
repeat constructor...
unfold ua_subalgebraT.impl.
generalize (subset_closed image o).
unfold algebra_op.
generalize (H o) (H1 o) (preserves σ A B f o)
(_: Proper (=) (H o)) (_: Proper (=) (H1 o)).
induction (σ o); simpl...
apply IHo0...
Qed.
Theorem first_iso: categories.iso_arrows back forth.
Proof.
split. intro. reflexivity.
intros ? [? [? ?]]. assumption.
Qed.
End first_iso.
|