File: ua_congruence.v

package info (click to toggle)
coq-math-classes 9.0.0-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,120 kB
  • sloc: python: 22; makefile: 21; sh: 2
file content (280 lines) | stat: -rw-r--r-- 8,978 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
Require Import
  Coq.Classes.Morphisms Coq.Classes.RelationClasses Coq.Relations.Relation_Definitions Coq.Lists.List
  MathClasses.interfaces.abstract_algebra MathClasses.interfaces.universal_algebra MathClasses.theory.ua_homomorphisms MathClasses.interfaces.canonical_names MathClasses.theory.ua_subalgebraT MathClasses.misc.util.
Require MathClasses.theory.ua_products.

Require MathClasses.theory.categories.

(* Remove this *)
Local Hint Transparent Equiv : typeclass_instances.

Section contents.
  Context σ `{@Algebra σ v ve vo}.

  Notation op_type := (op_type (sorts σ)).
  Notation vv := (ua_products.carrier σ bool (λ _: bool, v)).

  Instance hint:
    @Algebra σ vv (ua_products.product_e σ bool (fun _ : bool => v) (fun _ : bool => ve)) _
      := @ua_products.product_algebra σ bool (λ _, v) _ _ _.

  (* Given an equivalence on the algebra's carrier that respects its setoid equality... *)

  Instance hint' (a: sorts σ): Equiv (ua_products.carrier σ bool (fun _: bool => v) a).
  Proof. apply products.dep_prod_equiv. intro. apply _. Defined.

  Context (e: ∀ s, relation (v s)).

  Section for_nice_e.

  Context
    (e_e: ∀ s, Equivalence (e s))
    (e_proper: ∀ s, Proper ((=) ==> (=) ==> iff) (e s)).

  (* We can show that that equivalence lifted to arbitrary operation types still respects the setoid equality: *)

  Let Q s x := e s (x true) (x false).
  Let lifted_e := @op_type_equiv (sorts σ) v e.
  Let lifted_normal := @op_type_equiv (sorts σ) v ve.

  Instance lifted_e_proper o: Proper ((=) ==> (=) ==> iff) (lifted_e o).
  Proof with intuition.
   induction o; simpl. intuition.
   repeat intro.
   unfold respectful.
   split; intros.
    assert (x x1 = y x1). apply H0...
    assert (x0 y1 = y0 y1). apply H1...
    apply (IHo (x x1) (y x1) H4 (x0 y1) (y0 y1) H5)...
   assert (x x1 = y x1). apply H0...
   assert (x0 y1 = y0 y1). apply H1...
   apply (IHo (x x1) (y x1) H4 (x0 y1) (y0 y1) H5)...
  Qed. (* todo: clean up *)

  (* With that out of the way, we show that there are two equivalent ways of stating compatibility with the
   algebra's operations: *)

    (* 1: the direct way with Algebra; *)
  Let eAlgebra := @Algebra σ v e _.

    (* 2: the indirect way of saying that the relation as a set of pairs is a subalgebra in the product algebra: *)
  Let eSub := @ua_subalgebraT.ClosedSubset σ vv _ _ Q.

  Lemma eAlgebra_eSub: eAlgebra → eSub.
  Proof with intuition.
   intros.
   constructor.
    unfold Q.
    repeat intro.
    constructor; intro.
     rewrite <- (H1 true), <- (H1 false)...
    rewrite (H1 true), (H1 false)...
   intro o.
   simpl.
   unfold algebra_op, ua_products.product_ops, algebra_op.
   set (f := λ _: bool, vo o).
   assert (∀ b, Proper (=) (f b)).
    intro.
    unfold f.
    apply algebra_propers.
   assert (lifted_e _ (f true) (f false)). unfold f.
    unfold lifted_e.
    destruct H0.
    apply algebra_propers.
   assert (∀ b, Proper (lifted_e (σ o)) (f b))...
   clearbody f.
   induction (σ o)...
   simpl in *...
   apply IHo0...
   apply H1...
  Qed. (* todo: clean up *)

  Lemma eSub_eAlgebra: eSub → eAlgebra.
  Proof with intuition.
   intros [proper closed].
   constructor. unfold abstract_algebra.Setoid. apply _.
   intro o.
   generalize (closed o). clear closed. (* todo: must be a cleaner way *)
   unfold algebra_op.
   simpl.
   unfold ua_products.product_ops.
   intro.
   change (lifted_e _ (algebra_op o) (algebra_op o)).
   set (f := λ _: bool, algebra_op o) in *.
   assert (∀ b, lifted_normal _ (f b) (f b)). intros.
    subst f. simpl.
    apply algebra_propers...
   change (lifted_e (σ o) (f true) (f false)).
   clearbody f.
   induction (σ o)...
   simpl in *.
   repeat intro.
   unfold respectful in H0.
   apply (IHo0 (λ b, f b (if b then x else y)))...
  Qed. (* todo: clean up *)

  Lemma back_and_forth: iffT eSub eAlgebra.
  Proof. split; intro; [apply eSub_eAlgebra | apply eAlgebra_eSub]; assumption. Qed.

  End for_nice_e.

  (* This justifies the following definition of a congruence: *)

  Class Congruence: Prop :=
    { congruence_proper:: ∀ s: sorts σ, Proper ((=) ==> (=) ==> iff) (e s)
    ; congruence_quotient:: Algebra σ v (e:=e) }.

End contents.

(* A variety for an equational theory none of whose laws have
 premises is closed under quotients generated by congruences: *)

Lemma quotient_variety
  (et: EquationalTheory) `{InVariety et v}
  (e': ∀ s, relation (v s)) `{!Congruence et e'}
  (no_premises: ∀ s, et_laws et s → entailment_premises _ s ≡ nil):
    InVariety et v (e:=e').
      (* Todo: Can this no-premises condition be weakened? Does it occur in this form in the literature? *)
Proof.
 constructor. apply _.
 intros l law vars.
 pose proof (variety_laws l law vars) as E.
 pose proof (no_premises l law).
 destruct l as [prems [conc ?]]. simpl in *. subst. simpl in *.
 unfold equiv. rewrite E.
 pose proof (_: Equivalence (e' conc)).
 reflexivity.
Qed.

Section in_domain.

  Context {A B} {R: Equiv B} (f: A → B).

  Definition in_domain: Equiv A := λ x y, f x = f y. (* todo: use pointwise thingy *)

  Global Instance in_domain_equivalence: Equivalence R → Equivalence in_domain.
  Proof with intuition.
   constructor; repeat intro; unfold equiv, in_domain in *...
  Qed.

End in_domain.

Section first_iso.

(* "If A and B are algebras, and f is a homomorphism from A to B, then
 the equivalence relation Φ on A defined by a~b if and only if f(a)=f(b) is
 a congruence on A, and the algebra A/Φ is isomorphic to the image
 of f, which is a subalgebra of B." *)

  Context `{Algebra σ A} `{Algebra σ B} `{!HomoMorphism σ A B f}.

  Notation Φ := (λ s, in_domain (f s)).

  Lemma square o0 x x' y y':
    Preservation σ A B f x x' →
    Preservation σ A B f y y' →
    op_type_equiv (sorts σ) B o0 x' y' →
    @op_type_equiv (sorts σ) A (λ s: sorts σ, @in_domain (A s) (B s) (e0 s) (f s)) o0 x y.
  Proof.
   induction o0.
    simpl.
    intros.
    unfold in_domain.
    rewrite H3, H4.
    assumption.
   simpl in *.
   repeat intro.
   unfold in_domain in H6.
   unfold respectful in H5.
   simpl in *.
   pose proof (H3 x0).
   pose proof (H3 y0). clear H3.
   pose proof (H4 x0).
   pose proof (H4 y0). clear H4.
   apply (IHo0 (x x0) (x' (f _ x0)) (y y0) (y' (f _ y0)) H7 H9).
   apply H5.
   assumption.
  Qed.

  Instance co: Congruence σ Φ.
  Proof with intuition.
   constructor.
    repeat intro.
    unfold in_domain.
    rewrite H3, H4...
   constructor; intro.
    unfold abstract_algebra.Setoid. apply _.
   unfold algebra_op.
   generalize (preserves σ A B f o).
   generalize (@algebra_propers σ B _ _ _ o).
   unfold algebra_op.
   generalize (H o), (H1 o).
   induction (σ o); simpl in *; repeat intro.
    apply _.
   apply (square _ _ _ _ _ (H4 x) (H4 y))...
  Qed.

  Definition image s (b: B s): Type := sigT (λ a, f s a = b).

  Lemma image_proper: ∀ s (x0 x' : B s), x0 = x' → iffT (image s x0) (image s x').
  Proof. intros ??? E. split; intros [v ?]; exists v; rewrite E in *; assumption. Qed.

  Instance: ClosedSubset image.
  Proof with intuition.
   constructor; repeat intro.
    split; intros [q p]; exists q; rewrite p...
   generalize (preserves σ A B f o).
   generalize (@algebra_propers σ B _ _ _ o).
   unfold algebra_op.
   generalize (H1 o), (H o).
   induction (σ o); simpl; intros.
    exists o1...
   destruct X.
   apply (@op_closed_proper σ B _ _ _ image image_proper _ (o1 z) (o1 (f _ x))).
    apply H3...
   apply IHo0 with (o2 x)...
   apply _.
  Qed.

  Definition quot_obj: algebras.Object σ := algebras.object σ A (algebra_equiv:=Φ). (* A/Φ *)
  Definition subobject: algebras.Object σ := algebras.object σ (ua_subalgebraT.carrier image).

  Program Definition back: subobject ⟶ quot_obj := λ _ X, projT1 (projT2 X).

  Next Obligation. Proof with try apply _; intuition.
   repeat constructor...
    intros [x [i E']] [y [j E'']] E.
    change (x = y) in E.
    change (f a i = f a j).
    rewrite E', E''...
   unfold ua_subalgebraT.impl.
   generalize (subset_closed image o).
   unfold algebra_op.
   generalize (H o) (H1 o) (preserves σ A B f o)
     (_: Proper (=) (H o)) (_: Proper (=) (H1 o)).
   induction (σ o); simpl; intros ? ? ? ? ?.
    intros [? E]. change (f _ x = f _ o0). rewrite E...
   intros ? [x [? E]]. apply IHo0... simpl in *. rewrite <- E...
  Defined.

  Program Definition forth: quot_obj ⟶ subobject :=
    λ a X, existT _ (f a X) (existT _ X (reflexivity _)).

  Next Obligation. Proof with try apply _; intuition.
   repeat constructor...
   unfold ua_subalgebraT.impl.
   generalize (subset_closed image o).
   unfold algebra_op.
   generalize (H o) (H1 o) (preserves σ A B f o)
     (_: Proper (=) (H o)) (_: Proper (=) (H1 o)).
   induction (σ o); simpl...
   apply IHo0...
  Qed.

  Theorem first_iso: categories.iso_arrows back forth.
  Proof.
   split. intro. reflexivity.
   intros ? [? [? ?]]. assumption.
  Qed.

End first_iso.