1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
From mathcomp Require Import ssreflect ssrbool eqtype.
Require Import Arith List String Lia.
Require Import Program Relations Wellfounded Lexicographic_Product.
From QuickChick Require Import QuickChick.
From QuickChick.stlc Require Import monad.
Import ListNotations.
Definition tvar := nat.
Definition var := nat.
Inductive type : Type :=
| N : type
| Arrow : type -> type -> type.
Definition type_eq_dec (t1 t2 : type) : {t1 = t2} + {t1 <> t2}.
Proof. do 2 decide equality. Defined.
Fixpoint type_size (tau : type) : nat :=
match tau with
| N => 0
| Arrow tau1 tau2 =>
1 + (type_size tau1 + type_size tau2)
end.
Definition lt_type (tau1 tau2 : type) : Prop :=
type_size tau1 < type_size tau2.
Lemma wf_lt_type : well_founded lt_type.
Proof.
unfold lt_type. apply wf_inverse_image. apply lt_wf.
Qed.
Inductive term : Type :=
| Const : nat -> term
| Id : var -> term
| App : term -> term -> term
| Abs : term -> term.
(* Terms that do not have applications *)
Inductive app_free : term -> Prop :=
| ConsNoApp : forall n, app_free (Const n)
| IdNoApp : forall x, app_free (Id x)
| AbsNoApp : forall (t : term),
app_free t -> app_free (Abs t).
(* Number of applications in a term *)
Fixpoint app_no (t : term) : nat :=
match t with
| Const _ | Id _ => 0
| Abs t => app_no t
| App t1 t2 => 1 + (app_no t1 + app_no t2)
end.
Definition env := list type.
Inductive bind : env -> nat -> type -> Prop :=
| BindNow : forall tau env, bind (tau :: env) 0 tau
| BindLater : forall tau tau' x env,
bind env x tau -> bind (tau' :: env) (S x) tau.
Inductive typing (e : env) : term -> type -> Prop :=
| TId :
forall x tau,
nth_error e x = Some tau ->
typing e (Id x) tau
| TConst :
forall n,
typing e (Const n) N
| TAbs :
forall t tau1 tau2,
typing (tau1 :: e) t tau2 ->
typing e (Abs t) (Arrow tau1 tau2)
| TApp :
forall t1 t2 tau1 tau2,
typing e t1 (Arrow tau1 tau2) ->
typing e t2 tau1 ->
typing e (App t1 t2) tau2.
Inductive typing' (e : env) : term -> type -> Prop :=
| TId' :
forall x tau,
bind e x tau ->
typing' e (Id x) tau
| TConst' :
forall n,
typing' e (Const n) N
| TAbs' :
forall t tau1 tau2,
typing' (tau1 :: e) t tau2 ->
typing' e (Abs t) (Arrow tau1 tau2)
| TApp' :
forall t1 t2 tau1 tau2,
typing' e t1 (Arrow tau1 tau2) ->
typing' e t2 tau1 ->
typing' e (App t1 t2) tau2.
Derive Arbitrary for type.
#[global]
Instance dec_type (t1 t2 : type) : Dec (t1 = t2).
Proof. dec_eq. Defined.
Derive ArbitrarySizedSuchThat for (fun x => bind env x tau).
Derive ArbitrarySizedSuchThat for (fun t => typing' env t tau).
Inductive option_le : option nat -> option nat -> Prop :=
| opt_le_1 : option_le None None
| opt_le_2 : forall n, option_le None (Some n)
| opt_le_3 : forall n m : nat,
n <= m -> option_le (Some n) (Some m).
(* The following keeps track of the size of largest type that appears in a cut
in the derivation tree. Needed for verification purposes *)
Inductive typing_max_tau (e : env) : term -> type -> nat -> Prop :=
| TIdMax :
forall x tau,
nth_error e x = Some tau ->
typing_max_tau e (Id x) tau 0
| TConstMax :
forall n,
typing_max_tau e (Const n) N 0
| TAbsMax :
forall t tau1 tau2 m,
typing_max_tau (tau1 :: e) t tau2 m ->
typing_max_tau e (Abs t) (Arrow tau1 tau2) m
| TAppMax :
forall t1 t2 tau1 tau2 m1 m2,
typing_max_tau e t1 (Arrow tau1 tau2) m1 ->
typing_max_tau e t2 tau1 m2 ->
typing_max_tau e (App t1 t2) tau2 (max (type_size tau1) (max m1 m2)).
Lemma typing_max_tau_correct :
forall e t tau,
(exists m, typing_max_tau e t tau m) <->
typing e t tau.
Proof.
intros. split.
- move => [maxt H]. induction H; econstructor; eauto.
- move => H.
induction H; (try now eexists; econstructor; eauto).
destruct IHtyping as [m H']. exists m. constructor; auto.
destruct IHtyping1 as [m1 H1];
destruct IHtyping2 as [m2 H2]. eexists. econstructor; eauto.
Qed.
Lemma typing_max_no_app :
forall e t tau,
app_free t ->
typing e t tau ->
typing_max_tau e t tau 0.
Proof.
intros e t tau H. generalize e tau. clear e tau.
induction H; intros e tau H1; inversion H1; subst; constructor; auto.
Qed.
(* Small step CBV semantics *)
Definition is_value (t : term) : bool :=
match t with
| Const _ | Abs _ => true
| _ => false
end.
Fixpoint subst (y : var) (t1 : term) (t2 : term) : term :=
match t2 with
| Const n => Const n
| Id x =>
if eq_nat_dec x y then t1 else t2
| App t t' =>
App (subst y t1 t) (subst y t1 t')
| Abs t =>
subst (S y) t1 t
end.
Fixpoint step (t : term) : option term :=
match t with
| Const _ | Id _ => None | Abs x => None
| App t1 t2 =>
if is_value t1 then
match t1 with
| Abs t =>
if is_value t2 then ret (subst 0 t1 t)
else
t2' <- step t2;;
ret (App t1 t2')
| _ => None
end
else
t1' <- step t1;;
ret (App t1' t2)
end.
(* Generators *)
Module DoNotation.
Notation "'do!' X <- A ; B" :=
(bindGen A (fun X => B))
(at level 200, X ident, A at level 100, B at level 200).
End DoNotation.
Import DoNotation.
(* Sized generator of simple types *)
Fixpoint gen_type_size (n : nat) : G type :=
match n with
| 0 => returnGen N
| S n' =>
do! m <- choose (0, n');
liftGen2 Arrow (gen_type_size (n' - m)) (gen_type_size (n' - (n' - m)))
end.
(* Generator of simple types *)
Definition gen_type : G type := bindGen arbitrary gen_type_size.
(* Returns the list of bindings that have type tau in e *)
Definition vars_with_type (e : env) (tau : type) : list term :=
map (fun p => Id (snd p))
(filter (fun p => proj1_sig (Sumbool.bool_of_sumbool (type_eq_dec tau (fst p))))
(combine e (seq 0 (List.length e)))).
Definition sigT_of_prod {A B : Type} (p : A * B) : {_ : A & B} :=
let (a, b) := p in existT (fun _ : A => B) a b.
Definition lt_pair (c1 c2 : (nat * type)) : Prop :=
lexprod nat (fun _ => type) lt (fun _ => lt_type) (sigT_of_prod c1) (sigT_of_prod c2).
Lemma wf_lt_pair : well_founded lt_pair.
Proof.
unfold lt_pair. apply wf_inverse_image.
apply wf_lexprod. now apply Wf_nat.lt_wf. intros _; now apply wf_lt_type.
Qed.
(* Generator of app-free well-typed terms of type tau *)
Fixpoint gen_term_no_app (tau : type) (e : env) : G term :=
match vars_with_type e tau with
| [] =>
match tau with
| N => liftGen Const arbitrary
| Arrow tau1 tau2 =>
liftGen Abs (gen_term_no_app tau2 (tau1 :: e))
end
| def :: vars =>
oneOf_ (returnGen def)
[ match tau with
| N => liftGen Const arbitrary
| Arrow tau1 tau2 =>
liftGen Abs (gen_term_no_app tau2 (tau1 :: e))
end;
elems_ def (def :: vars)]
end.
(* Generator of well-typed terms of type tau. [fst p] is the maximum number of applications *)
Program Fixpoint gen_term_size (p : nat * type) {wf lt_pair p} : env -> G term :=
fun (e : env) => (* apparently with this trick we get a more manageable term *)
match p with
| (0, tau) => gen_term_no_app tau e
| (S n', tau) =>
match vars_with_type e tau with
| [] =>
oneOf_ (gen_term_no_app tau e)
[ (do! tau' <- gen_type;
do! m <- choose (0, n');
do! m' <- choose (n' - m, n');
liftGen2 App (@gen_term_size (n' - m, (Arrow tau' tau)) _ e)
(@gen_term_size (n' - m', tau') _ e));
(match tau with
| N => liftGen Const arbitrary
| Arrow tau1 tau2 =>
liftGen Abs (@gen_term_size (S n', tau2) _ (tau1 :: e))
end)]
| def :: vars =>
oneOf_ (gen_term_no_app tau e)
[ (do! tau' <- gen_type;
do! m <- choose (0, n');
do! m' <- choose (n' - m, n');
liftGen2 App (@gen_term_size (n' - m, (Arrow tau' tau)) _ e)
(@gen_term_size (n' - m', tau') _ e));
(match tau with
| N => liftGen Const arbitrary
| Arrow tau1 tau2 =>
liftGen Abs (@gen_term_size (S n', tau2) _ (tau1 :: e))
end);
elems_ def (def :: vars) ]
end
end.
Solve Obligations with
try (program_simpl; unfold lt_pair; (apply left_lex + (apply right_lex; unfold lt_type; simpl)); lia).
Next Obligation.
unfold MR. apply wf_inverse_image. apply wf_lt_pair.
Defined.
Definition gen_term_size_unfold (p : nat * type) (e : env) : G term :=
match p with
| (0, tau) => gen_term_no_app tau e
| (S n', tau) =>
match vars_with_type e tau with
| [] =>
oneOf_ (gen_term_no_app tau e)
[ (do! tau' <- gen_type;
do! m <- choose (0, n');
do! m' <- choose (n' - m, n');
liftGen2 App (gen_term_size (n' - m, (Arrow tau' tau)) e)
(gen_term_size (n' - m', tau') e));
(match tau with
| N => liftGen Const arbitrary
| Arrow tau1 tau2 =>
liftGen Abs (@gen_term_size (S n', tau2) (tau1 :: e))
end)]
| def :: vars =>
oneOf_ (gen_term_no_app tau e)
[ (do! tau' <- gen_type;
do! m <- choose (0, n');
do! m' <- choose (n' - m, n');
liftGen2 App (gen_term_size (n' - m, (Arrow tau' tau)) e)
(@gen_term_size (n' - m', tau') e));
(match tau with
| N => liftGen Const arbitrary
| Arrow tau1 tau2 =>
liftGen Abs (gen_term_size (S n', tau2) (tau1 :: e))
end);
elems_ def (def :: vars) ]
end
end.
Import WfExtensionality.
Lemma gen_term_size_eq (e : env) (p : nat * type) :
gen_term_size p e =
gen_term_size_unfold p e.
Proof.
unfold_sub gen_term_size (gen_term_size p e); simpl.
destruct p as [[|n] [|]]; try reflexivity;
destruct (vars_with_type e _) eqn:Heq; simpl;
repeat (rewrite !Heq /=; apply f_equal; try reflexivity).
Qed.
Global Opaque gen_term_size.
Definition gen_term (tau : type) :=
sized (fun s => gen_term_size (s, tau) []).
Open Scope string.
Fixpoint show_type (tau : type) :=
match tau with
| N => "Nat"
| Arrow tau1 tau2 =>
"(" ++ show_type tau1 ++ " -> " ++ show_type tau2 ++ ")"
end.
#[global]
Instance showType : Show type := { show := show_type }.
Fixpoint show_term (t : term) :=
match t with
| Const n => show n
| Id x => "Id" ++ show x
| App t1 t2 => "(" ++ show_term t1 ++ " " ++ show_term t2 ++ ")"
| Abs t => "λ.(" ++ show_term t ++ ")"
end.
Close Scope string.
#[global]
Instance showTerm : Show term := { show := show_term }.
|