File: depDriver.ml.cppo

package info (click to toggle)
coq-quickchick 2.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,432 kB
  • sloc: ml: 4,367; ansic: 789; makefile: 388; sh: 27; python: 4; perl: 2; lisp: 2
file content (517 lines) | stat: -rw-r--r-- 20,615 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
open Pp
open Libnames
open Util
open Constrexpr
open GenericLib
open ArbitrarySizedST
open EnumSizedST   
open CheckerSizedST

open Error
open UnifyQC

(** Derivable classes *)
type derivable =
  | DecOpt
  | GenSizedSuchThat
  | EnumSizedSuchThat  

let derivable_to_string = function
  | DecOpt -> "DecOpt"
  | GenSizedSuchThat -> "GenSizedSuchThat"
  | EnumSizedSuchThat -> "EnumSizedSuchThat"                            

(** Name of the instance to be generated *)
let mk_instance_name der tn =
  var_to_string (fresh_name ((derivable_to_string der) ^ tn))

let derive_dependent
                     (class_name : derivable)
                     (constructor : constr_expr)
                     (umap : range UM.t)
                     (tmap : dep_type UM.t)
                     (input_names : var list)
                     (input_ranges : range list)
                     (ty_ctr, ty_params, ctrs, dep_type)
                     (letbinds : var list option)
                     (result : unknown) =
  let ctr_name = 
    match constructor with 
    | { CAst.v = CRef (r,_); _ } -> string_of_qualid r
  in
  let instance_name = mk_instance_name class_name ctr_name in

  (* type constructor *)
  let coqTyCtr = gTyCtr ty_ctr in
  (* parameters of the type constructor *)
  let coqTyParams = List.map gTyParam ty_params in

  (* Fully applied type constructor *)
  let full_dt = gApp ~explicit:true coqTyCtr coqTyParams in

  (* Type parameters as arguments *)
  (* TODO: Needed?
  let params = List.map (fun tp -> gArg ~assumName:(gTyParam tp)
                                        ~assumType:gType0
                                     ()) ty_params in
  *)

  (* List of input unknowns *)
  let actual_input_list =
    List.filter (fun u -> UM.find u umap == FixedInput) input_names in

  (* Inputs as arguments *)
  let actual_input_args = 
    List.map (fun u -> gArg ~assumName:(gVar u) ~assumType:(gType ty_params (UM.find u tmap)) ())
      actual_input_list 
  in

  (* Typeclass arguments - depends on the class *)
  let param_class_names = match class_name with
    | DecOpt -> ["Dec_Eq"; "Enum"]
    | EnumSizedSuchThat -> ["Dec_Eq"; "Enum"]
    | GenSizedSuchThat -> ["Dec_Eq"; "Gen"; "Enum"]
  in
  
  let typeclass_args =
    List.concat (List.map (fun tp ->
                     ((gArg ~assumName:tp ~assumImplicit:true ()) ::
                        (List.map (fun name -> gArg ~assumType:(gApp (gInject name) [tp])
                                                    ~assumGeneralized:true ()) param_class_names))
                   ) coqTyParams) in
  
  (* The type we are generating for -- not the predicate! *)
  let _full_gtyp = gType ty_params (UM.find result tmap) in

  let _gen_needed = [] in
  let _dec_needed = [] in

  (* The dependent generator  *)
  let gen () =
    arbitrarySizedST ty_ctr ty_params ctrs dep_type input_names
      input_ranges umap tmap actual_input_args result coqTyCtr
  in

  (* Generate typeclass constraints. For each type parameter "A" we need `{_ : <Class Name> A} *)
  (* TODO: Params? *)
  let instance_arguments = match class_name with
    | DecOpt -> (* params @ *) typeclass_args @ actual_input_args
    | EnumSizedSuchThat ->
       (* params @ *) typeclass_args @ actual_input_args
    | GenSizedSuchThat ->
       (* params @ *) typeclass_args
      @ actual_input_args
  in

  (* Fully applied predicate (parameters and constructors) *)
  let full_pred inputs =
    match letbinds with
    | None -> 
       gFun [Unknown.to_string result]
         (fun _ -> gApp (full_dt) (List.map gVar inputs))
    | Some letbinds ->
       gFun [Unknown.to_string result]
         (fun [result_var] ->
           gLetTupleIn result_var letbinds (gApp (gInject ctr_name) (List.map gVar inputs)))
  in

  
  (* TODO: Easy solution : add Arbitrary/DecOpt as a requirement for all type parameters. *)
  (*
  let self_dec = [] in 
  (*     (* Maybe somethign about type paramters here *)
     if !need_dec then [gArg ~assumType:(gApp (gInject (Printf.sprintf "DepDec%n" (dep_type_len dep_type))) [gTyCtr ty_ctr]) 
                            ~assumGeneralized:true ()] 
     else [] in
   *)

  (* The type of the dependent generator *)
  let gen_type = gGen (gOption full_gtyp) in


  (* Generate arbitrary parameters *)
  let arb_needed = 
    let rec extract_params = function
      | DTyParam tp -> ArbSet.singleton (DTyParam tp)
      | DTyVar _ -> ArbSet.empty
      | DTyCtr (_, dts) -> List.fold_left (fun acc dt -> ArbSet.union acc (extract_params dt)) ArbSet.empty dts
      | _ -> failwith "Unhandled / arb_needed"  in
    let tps = ArbSet.fold (fun dt acc -> ArbSet.union acc (extract_params dt)) !arbitraries ArbSet.empty in
    ArbSet.fold
      (fun dt acc ->
        (gArg ~assumType:(gApp (gInject "Arbitrary") [gType ty_params dt]) ~assumGeneralized:true ()) :: acc
      ) tps []
  in

  (* Generate typeclass constraints. For each type parameter "A" we need `{_ : <Class Name> A} *)
  let instance_arguments = match cn with
    | ArbitrarySizedSuchThat ->
      params
      @ gen_needed
      @ dec_needed
      @ self_dec
      @ arb_needed
      @ inputs
    | GenSizedSuchThatMonotonicOpt -> params 
    | SizedProofEqs -> params @ inputs
    | GenSizedSuchThatCorrect -> params @ inputs
    | GenSizedSuchThatSizeMonotonicOpt -> params @ inputs
  in

   *)  
  (* The instance type *)
  let instance_type iargs = match class_name with
    | GenSizedSuchThat ->
       gApp (gInject (derivable_to_string class_name))
         [gType ty_params (UM.find result tmap);
          full_pred input_names]
    | EnumSizedSuchThat ->
       gApp (gInject (derivable_to_string class_name))
         [gType ty_params (UM.find result tmap);
          full_pred input_names]
    | DecOpt ->
       gApp (gInject (derivable_to_string class_name))
         [ gApp (full_dt) (List.map gVar input_names) ]
  in


  let instance_record iargs =
    match class_name with
    | GenSizedSuchThat -> gen ()
    | EnumSizedSuchThat ->
       enumSizedST ty_ctr ty_params ctrs dep_type input_names
         input_ranges umap tmap actual_input_args result coqTyCtr
    | DecOpt ->
       checkerSizedST ty_ctr ty_params ctrs dep_type input_names
         input_ranges umap tmap actual_input_args result coqTyCtr
  in

  msg_debug (str "Instance Type: " ++ fnl ());
  debug_coq_expr (instance_type [gInject "input0"; gInject "input1"]);

  declare_class_instance instance_arguments instance_name instance_type instance_record
;;

(* Creates the initial t and u maps. *)
let create_t_and_u_maps explicit_args dep_type actual_args : (range UM.t * dep_type UM.t) =

  msg_debug (str ("create_t_u_maps for: " ^ dep_type_to_string dep_type) ++ fnl ());
  
  (* Local references - the maps to be generated *)
  let umap = ref UM.empty in
  let tmap = ref explicit_args in

  let rec populate_maps dep_type args =
    (* Recurse down the unnamed arrow arguments *)
    match dep_type,args with
    | DProd ((_, dt1), dt2), arg::args' 
    | DArrow (dt1, dt2), arg::args' ->
       msg_debug (str ("populating with: " ^ dep_type_to_string dt1) ++ fnl ());
       begin match arg with
       | ({ CAst.v = CRef (r,_); _ }, _) ->
          begin 
            let current_r = Unknown.from_string (string_of_qualid r ^ "_") in
            (* Lookup if the reference is meant to be generated *)
            try begin match UM.find current_r !tmap with
            | None ->
               (* First occurence, update tmap and umap *)
               tmap := UM.add current_r (Some  dt1) !tmap;
               umap := UM.add current_r (Undef dt1) !umap
            | Some dt' ->
               (* Check if the existing binding still typechecks *)
               if not (dt1 == dt') then qcfail "Ill-typed application in derivation"
            end
            with Not_found ->
              (* Logging the type in the tmap is ok, because we don't
                 update the umap in the "Some dt'" case above *)
              tmap := UM.add current_r (Some dt1) !tmap;
              umap := UM.add current_r FixedInput !umap;
          end
       (* TODO: If this is constructor applications, we need more type-checking machinery here *)
       | _ -> qcfail "Non-variable patterns not implemented"
       end;
       populate_maps dt2 args'
    (* Not an arrow -> Finalizer (TODO: add explicit fail?) *)
    | _ -> ()
  in 
  populate_maps dep_type actual_args;

  (* Remove the option from the type map and ensure all are exercised *)
  let tmap'=
    UM.mapi (fun u mt ->
        match mt with
        | Some t -> t
        | None -> failwith (Printf.sprintf "Pattern not exercised: %s\n" (var_to_string u))
      ) !tmap in
  (!umap, tmap')

(* Assumption: 
   - generator-based classes include a "fun x => P ...." or "fun x => let (x1,x2,...) := x in P ..."
     where "..." are bound names (to be generated), unbound names (implicitly quantified arguments) 
     or Constructors applied to such stuff.
   - checker-based classes only include the name of the predicate "P". All arguments to P will
     be considered Fixed inputs
 *)
let dep_dispatch ind class_name : unit =
  match ind with 
#if COQ_VERSION >= (8, 20, 0)
  | { CAst.v = CLambdaN ([CLocalAssum ([{ CAst.v = Names.Name id; CAst.loc = _loc2 }], _, _kind, _type)], body); _ } -> (* {CAst.v = CApp ((_flag, constructor), args) }) } -> *)
#else
  | { CAst.v = CLambdaN ([CLocalAssum ([{ CAst.v = Names.Name id; CAst.loc = _loc2 }], _kind, _type)], body); _ } -> (* {CAst.v = CApp ((_flag, constructor), args) }) } -> *)
#endif

    let idu = Unknown.from_string (Names.Id.to_string id ^ "_") in
     
    (* Extract (x1,x2,...) if any, P and arguments *)
    let (letbindsM, constructor, args) =
      match body with 
      | { CAst.v = CApp (constructor, args); _ } -> (None, constructor, args)
      | { CAst.v = CLetTuple (name_list, _,
                              _shouldbeid,
                              { CAst.v = CApp (constructor, args); _ } ); _} ->
         ( Some (List.map (function { CAst.v = name; _ } -> name ) name_list), constructor, args )
    in

    (* Parse the constructor's information into the more convenient generic-lib representation *)
    (*    let (ty_ctr, ty_params, ctrs, dep_type) : (ty_ctr * (ty_param list) * (dep_ctr list) * dep_type) = *)
    let dt : (ty_ctr * (ty_param list) * (dep_ctr list) * dep_type) = 
      match coerce_reference_to_dep_dt constructor with
      | Some dt -> msg_debug (str (dep_dt_to_string dt) ++ fnl()); dt 
      | None -> failwith "Not supported type"
    in

    let (ty_ctr, ty_params, ctrs, dep_type) = dt in

    let (letbinds, init_umap, init_tmap) : (unknown list option * range UM.t * dep_type UM.t) =
      (* Create a temporary typing map for either the let binds/variable to be generated *)
      let letbinds =
        match letbindsM with
        | Some binds -> Some (List.map (fun (Names.Name id) -> Unknown.from_string (Names.Id.to_string id ^ "_")) binds)
        | None -> None
      in 
      
      let explicit_args =
        match letbinds with
        | Some binds -> 
           List.fold_left (fun map u -> UM.add u None map) UM.empty binds
        | None -> UM.singleton idu None
      in

      (* Call the actual creation function *)
      let (umap, tmap) = create_t_and_u_maps explicit_args dep_type args in

      (* Update with the toplevel variable as necessary *)
      match letbinds with
      | Some binds ->
         (* Still need to package together the tuple *)
         let bind_types = List.map (fun u ->
                              try UM.find u tmap
                              with Not_found -> failwith "All patterns should be exercised"
                            ) binds
         in
         let tmap' = UM.add idu (dtTupleType bind_types) tmap in
         let umap' =
           let pair_ctr = injectCtr "Coq.Init.Datatypes.pair" in
           let range = listToPairAux (fun (r1, r2) -> Ctr (pair_ctr, [RangeHole; RangeHole; r1; r2])) (List.map (fun u -> Unknown u) binds) in
           UM.add idu range umap in
         (letbinds, umap', tmap')
         
      | None -> (letbinds, umap, tmap)
    in

    (* Print map *)
    msg_debug (str "Initial map: " ++ fnl ());
    UM.iter (fun x r -> msg_debug (str ("Bound: " ^ (var_to_string x) ^ " to Range: " ^ (range_to_string r)) ++ fnl ())) init_umap;

    let umap = ref init_umap in
    let tmap = ref init_tmap in
    (* Rewrite the function applications in constructors. *)
    let rewrite_ct ct =
      let new_eqs = ref [] in
      (* Check if a datatype contains an application *)
      let rec contains_app dt =
        match dt with
        | DApp _ -> true
        | DCtr (ctr, dts) -> List.exists contains_app dts
        | _ -> false in

      (* Rewrite the datatypes *)
      let rec traverse_and_rewrite dts top_dt : dep_type list =
        msg_debug (str (String.concat " " (List.map dep_type_to_string dts) ^ " vs " ^ (dep_type_to_string top_dt)) ++ fnl ());
        match dts, top_dt with
        | (DTyParam _)::dts', _ -> traverse_and_rewrite dts' top_dt
        | [], _ -> []
        | dt::dts', DArrow (dt1,dt2) when not (contains_app dt) ->
           dt :: (traverse_and_rewrite dts' dt2)
        | dt::dts', DProd ((_,dt1),dt2) when not (contains_app dt) ->
           dt :: (traverse_and_rewrite dts' dt2)
        | dt::dts', DProd ((_,dt1),dt2) when (contains_app dt) ->
           begin
             (* Create a fresh name *)
             let x = make_up_name () in
             new_eqs := (dt, x, dt1) :: !new_eqs;
(*             tmap := UM.add x dt1 !tmap;
               umap := UM.add x (Undef dt1) !umap; *)
             DTyVar x :: (traverse_and_rewrite dts' dt2)
           end
        | dt::dts', DArrow (dt1,dt2) when (contains_app dt) ->
           begin
             (* Create a fresh name *)
             let x = make_up_name () in
             new_eqs := (dt, x, dt1) :: !new_eqs;
(*             tmap := UM.add x dt1 !tmap;
               umap := UM.add x (Undef dt1) !umap; *)
             DTyVar x :: (traverse_and_rewrite dts' dt2)
           end
        | _, _ -> failwith (String.concat " " (List.map dep_type_to_string dts) ^ " vs " ^ (dep_type_to_string top_dt))
      in 

      let rec construct_eqs eqs dt =
        match eqs with
        | [] -> dt
        | (dteq, x, dtx)::eqs' -> 
           DArrow (DTyCtr (ctr_to_ty_ctr (injectCtr "eq"), [DHole; dteq; DTyVar x]),
                   construct_eqs eqs' dt)
        in 
      
      (* - Find the result of the constructor
         - Traverse its arguments, rewriting if necessary 
       *)
      let rec recurse_to_result ct =
        match ct with
        | DProd ((x, ct1), ct2) ->
           DProd ((x, ct1), recurse_to_result ct2)
        | DArrow (ct1, ct2) ->
           DArrow (ct1, recurse_to_result ct2)
        | DTyCtr (ty_ctr, dts) ->
           (* TODO: While recursing dts need top level dep-type for map. *)
           let dts' = traverse_and_rewrite dts dep_type in
           construct_eqs !new_eqs (DTyCtr (ty_ctr, dts'))
        | _ -> failwith ("Not a result: " ^ dep_type_to_string ct)
      in

      let rec add_bindings ct eqs =
        msg_debug (str "Adding bindings..." ++ fnl ());
        match eqs with 
        | [] -> ct
        | (_,x,dt)::eqs' -> DProd ((x,dt), add_bindings ct eqs')
      in 
      let rewritten_result = recurse_to_result ct in
      let rewritten  = add_bindings rewritten_result !new_eqs in
      msg_debug (str ("Rewritten from: " ^ dep_type_to_string ct ^ " to " ^ dep_type_to_string rewritten) ++ fnl ());
      rewritten
    in            
    let ctrs = List.map (fun (ctr, ct) -> (ctr, rewrite_ct ct)) ctrs in
    
    (* When we add constructors to the ranges, this needs to change *)
    let input_names = List.map (fun ({CAst.v = CRef (r, _); _},_) -> fresh_name (string_of_qualid r ^ "_")) args in
    let input_ranges = List.map (fun v -> Unknown v) input_names in
    
    (* Call the derivation dispatcher *)
    derive_dependent class_name constructor !umap !tmap (* init_umap init_tmap *)
      input_names input_ranges
      (ty_ctr, ty_params, ctrs, dep_type) letbinds idu 
  | { CAst.v = CApp (constructor, args); _ } ->
     msg_debug (str "Parsing constructor information for checker" ++ fnl ());
     
    (* Parse the constructor's information into the more convenient generic-lib representation *)
    let (ty_ctr, ty_params, ctrs, dep_type) : (ty_ctr * (ty_param list) * (dep_ctr list) * dep_type) =
      match coerce_reference_to_dep_dt constructor with
      | Some dt -> msg_debug (str (dep_dt_to_string dt) ++ fnl()); dt 
      | None -> failwith "Not supported type"
    in

    (* When we add constructors to the ranges, this needs to change *)
    let input_names = List.map (fun ({CAst.v = CRef (r, _); _},_) -> fresh_name (string_of_qualid r ^ "_")) args in
    let input_ranges = List.map (fun v -> Unknown v) input_names in

    (* Call the actual creation function *)
    let explicit_args = UM.empty (* No arguments to be generated *) in
    let (umap, tmap) = create_t_and_u_maps explicit_args dep_type args in

    let result = fresh_name "_result_bool" in
    let umap = ref (UM.add result (Ctr (injectCtr "Coq.Init.Datatypes.true", [])) umap) in
    let tmap = ref (UM.add result (DTyCtr (ctr_to_ty_ctr (injectCtr "Coq.Init.Datatypes.bool"), [])) tmap) in

(*     let umap = ref init_umap in
    let tmap = ref init_tmap in *)
    (* Rewrite the function applications in constructors. *)
    let rewrite_ct ct =
      let new_eqs = ref [] in
      (* Check if a datatype contains an application *)
      let rec contains_app dt =
        match dt with
        | DApp _ -> true
        | DCtr (ctr, dts) -> List.exists contains_app dts
        | _ -> false in

      (* Rewrite the datatypes *)
      let rec traverse_and_rewrite dts top_dt : dep_type list =
        match dts, top_dt with
        | (DTyParam _)::dts', _ -> traverse_and_rewrite dts' top_dt
        | [], _ -> []
        | dt::dts', DArrow (dt1,dt2) when not (contains_app dt) ->
           dt :: (traverse_and_rewrite dts' dt2)
        | dt::dts', DProd ((_,dt1),dt2) when not (contains_app dt) ->
           dt :: (traverse_and_rewrite dts' dt2)
        | dt::dts', DProd ((_,dt1),dt2) when (contains_app dt) ->
           begin
             (* Create a fresh name *)
             let x = make_up_name () in
             new_eqs := (dt, x, dt1) :: !new_eqs;
(*              tmap := UM.add x dt1 !tmap;
               umap := UM.add x (Undef dt1) !umap; *)
             DTyVar x :: (traverse_and_rewrite dts' dt2)
           end
        | dt::dts', DArrow (dt1,dt2) when (contains_app dt) ->
           begin
             (* Create a fresh name *)
             let x = make_up_name () in
             new_eqs := (dt, x, dt1) :: !new_eqs;
(*              tmap := UM.add x dt1 !tmap;
             umap := UM.add x (Undef dt1) !umap; *)
             DTyVar x :: (traverse_and_rewrite dts' dt2)
           end
      in 

      let rec construct_eqs eqs dt =
        match eqs with
        | [] -> dt
        | (dteq, x, _)::eqs' -> 
           DArrow (DTyCtr (ctr_to_ty_ctr (injectCtr "eq"), [DHole; dteq; DTyVar x]),
                   construct_eqs eqs' dt) 
        in 
      
      (* - Find the result of the constructor
         - Traverse its arguments, rewriting if necessary 
       *)
      let rec recurse_to_result ct =
        match ct with
        | DProd ((x, ct1), ct2) ->
           DProd ((x, ct1), recurse_to_result ct2)
        | DArrow (ct1, ct2) ->
           DArrow (ct1, recurse_to_result ct2)
        | DTyCtr (ty_ctr, dts) ->
           (* TODO: While recursing dts need top level dep-type for map. *)
           let dts' = traverse_and_rewrite dts dep_type in
           construct_eqs !new_eqs (DTyCtr (ty_ctr, dts'))
        | _ -> failwith ("Not a result: " ^ dep_type_to_string ct)
      in

      let rec add_bindings ct eqs =
        msg_debug (str "Adding bindings..." ++ fnl ());
        match eqs with 
        | [] -> ct
        | (_,x,dt)::eqs' -> DProd ((x,dt), add_bindings ct eqs')
      in 
      let rewritten_result = recurse_to_result ct in
      let rewritten  = add_bindings rewritten_result !new_eqs in      
      msg_debug (str ("Rewritten from: " ^ dep_type_to_string ct ^ " to " ^ dep_type_to_string rewritten) ++ fnl ());
      rewritten
    in            
    let ctrs = List.map (fun (ctr, ct) -> (ctr, rewrite_ct ct)) ctrs in
    
    derive_dependent class_name constructor !umap !tmap input_names input_ranges
      (ty_ctr, ty_params, ctrs, dep_type) None result
  | _ -> qcfail "wrongformat/driver.mlg"