File: genSTCorrect.ml

package info (click to toggle)
coq-quickchick 2.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,432 kB
  • sloc: ml: 4,367; ansic: 789; makefile: 388; sh: 27; python: 4; perl: 2; lisp: 2
file content (596 lines) | stat: -rw-r--r-- 19,283 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
open Pp
open Loc
open Names
open Tacmach.Old
open Entries
open Declarations
open Declare
open Libnames
open Util
open Constrintern
open Topconstr
open Constrexpr
open Constrexpr_ops
open Decl_kinds
open GenericLib
open SetLib
open CoqLib
open GenLib
open SemLib
open UnifyQC
open ArbitrarySizedST
open Feedback

open Extraction_plugin.Extract_env

let appinst mthd inst s inps =
  gApp ~explicit:true (gInject mthd) [hole; hole; gApp inst inps; s]

(* arguments for completeness *)
type btyp = (coq_expr * coq_expr * coq_expr * coq_expr * coq_expr)

type atyp = (coq_expr * coq_expr * coq_expr * coq_expr * coq_expr)

let fail_exp (dt : coq_expr) : btyp =
  ( (* set *)
    set_empty,
    (* gen *)
    returnGen (gNone dt),
    (* mon *)
    returnGenSizeMonotonicOpt (gNone dt),
    (* comp *)
    gFun ["x"; "Hx"] (fun [x; hx] -> false_ind hole (imset_set0_incl hole hole (gVar hx))),
    (* sound *)
    gFun ["x"; "Hx"] (fun [x; hx] -> gOrIntroR (rewrite_set_l (semReturn hole) (gVar hx)))
  )

let ret_exp (dt : coq_expr) (c : coq_expr) : btyp =
  ( (* set *)
    set_singleton c,
    (* gen *)
    returnGen (gSome dt c),
    (* mon *)
    returnGenSizeMonotonicOpt (gSome dt c),
    (* comp *)
    gFun ["x"; "Hx"]
      (fun [x; hx] -> rewrite hole (imset_singl_incl hole hole hole (gVar hx)) (rewrite_set_r (semReturn hole) (gEqRefl hole))),
    (* sound *)
    gFun ["x"; "Hx"]
      (fun [x; hx] -> gOrIntroL (gExIntro_impl hole (gConjIntro (gEqRefl hole) (rewrite_set_l (semReturn hole) (gVar hx)))))
  )

let class_method : atyp =
  let proof = gInject "arbitraryCorrect" in
  ( (* set *)
    set_full,
    (* gen *)
    gInject "arbitrary",
    (* mon *)
    hole,
    (* comp *)
    set_eq_set_incl_r proof,
    (* soundness *)
    set_eq_set_incl_l proof
  )


let class_methodST (n : int) (pred : coq_expr) : atyp =
  let cproof = gApp ~explicit:true (gInject "STCorrect") [hole; pred; hole; hole] in
  let comp = set_eq_isSome_complete cproof in
  let sound = set_eq_isSome_sound cproof in
  let gen =
    gApp ~explicit:true (gInject "arbitraryST")
      [ hole (* Implicit argument - type A *)
      ; pred
      ; hole (* Implicit instance *)]
  in
  (pred, gen, hole, comp, sound)

let rec_method (inputs : arg list) (setinst : coq_expr) (generator_body : coq_expr) (moninst : coq_expr)
      (ih : var) (size : coq_expr) (n : int) (l : coq_expr list) : atyp =
  let iter_body args : coq_expr =
    appinst "DependentClasses.iter" setinst size args
  in
  let gen_body args : coq_expr =
    gApp generator_body (size :: args)
  in
  let gmon = gApp moninst (size :: l) in
  let proof = gApp (gVar ih) l in
  (iter_body l, gen_body l, gmon, proof, proof)

let bind (opt : bool) (m : atyp) (x : string) (f : var -> btyp) : btyp =
  let (set, gen, mon, comp, sound) = m in
  let setf x =
    let (set, _, _, _, _) = f x in set
  in
  let genf x =
    let (_, gen, _, _, _) = f x in gen
  in
  let monf x =
    let (_, _, mon, _, _) = f x in mon
  in
  let compf x =
    let (_, _, _, pr, _) = f x in pr
  in
  let soundf x =
    let (_, _, _, _, pr) = f x in pr
  in
  let hxc = "Hc_" ^ x in
  let hx = "H_" ^ x in
  let hcur' = "Hl_" ^ x in
  ( (* set *)
    set_bigcup x set setf,
    (* gen *)
    (if opt then bindGenOpt else bindGen) gen x genf,
    (* mon *)
    (if opt then bindOptMonotonicOpt else bindMonotonicOpt) mon x monf,
    (* comp *)
    (let bind =
       (if opt then semBindOptSizeMonotonicIncl_l else semBindSizeMonotonicIncl_l)
         gen (gFun [x] (fun [x] -> genf x))
         set (gFun [x] (fun [x] -> setf x))
         mon (gFun [x] (fun [x] -> monf x))
     in
     bind comp (gFun [x] (fun [x] -> compf x))),
    (* sound *)
    (let bind =
       (if opt then semBindOptSizeMonotonicIncl_r else semBindSizeMonotonicIncl_r)
         gen (gFun [x] (fun [x] -> genf x))
         set (gFun [x] (fun [x] -> setf x))
         (* mon (gFun [x] (fun [x] -> monf x)) *)
     in
     bind sound (gFun [x] (fun [x] -> soundf x)))
  )

let ret_comp matcher1 matcher2 =
   set_incl
     (imset (gInject "Some") matcher1)
     (semGen matcher2)
     
let ret_sound matcher1 matcher2 =
  set_incl
    (semGen matcher2)
    (set_union (imset (gInject "Some") matcher1) (set_singleton (gNone hole)))

let ret_type_dec (ret : coq_expr -> coq_expr -> coq_expr)
      (s : var)
      (left1 : coq_expr) (right1 : coq_expr)
      (left2 : coq_expr) (right2 : coq_expr) =
  ret
    (gMatch (gVar s)
       [ (injectCtr "left", ["eq"], fun _ -> left1)
       ; (injectCtr "right", ["neq"], fun _ -> right1) ])

    (gMatch (gVar s)
       [ (injectCtr "left", ["eq"], fun _ -> left2)
       ; (injectCtr "right", ["neq"], fun _ -> right2) ])

let ret_mon matcher =
  gApp (gInject "SizeMonotonicOpt") [matcher]


let ret_type_mon (s : var)  =
  let matcher =
    gMatch (gVar s)
      [ (injectCtr "left", ["eq"], fun _ -> hole)
      ; (injectCtr "right", ["neq"], fun _ -> hole) ]
  in
  ret_mon matcher

let check_expr (n : int) (scrut : coq_expr) (left : btyp) (right : btyp) =
  let (lset, lgen, lmon, lcomp, lsound) = left in
  let (rset, rgen, rmon, rcomp, rsound) = right in
  let namecur = Printf.sprintf "Hc%d" n in
  ( (* set *)
    gMatchReturn scrut
      "v" (* as clause *)
      (fun v -> hole)
      [ (injectCtr "left", ["eq" ] , fun _ -> lset)
      ; (injectCtr "right", ["neq"], fun _ -> rset) 
      ],
    (* gen *)
    gMatchReturn scrut
      "v" (* as clause *)
      (fun v -> ret_type v ret_type_dec)
      [ (injectCtr "left", ["eq" ] , fun _ -> lgen)
      ; (injectCtr "right", ["neq"], fun _ -> rgen) 
      ],
    (* mon *)
    gMatchReturn scrut
      "v" (* as clause *)
      (fun v -> ret_type_mon v)
      [ (injectCtr "left", ["eq" ] , fun _ -> lmon)
      ; (injectCtr "right", ["neq"], fun _ -> rmon) 
      ],
    (* compl *)
    gMatchReturn scrut
      "v" (* as clause *)
      (fun v -> ret_type_dec ret_comp v lset rset lgen rgen)
      [ (injectCtr "left", ["eq"] , fun _ -> lcomp)
      ; (injectCtr "right", ["neq"], fun _ -> rcomp)
      ],
    (* sound *)
    gMatchReturn scrut
      "v" (* as clause *)
      (fun v -> ret_type_dec ret_sound v lset rset lgen rgen)
      [ (injectCtr "left", ["eq"], fun _ -> lsound)
      ; (injectCtr "right", ["neq"], fun _ -> rsound)
      ])


let match_inp (inp : var) (pat : matcher_pat) (left : btyp) (right : btyp) =
  let (lset, lgen, lmon, lcomp, lsound) = left in
  let (rset, rgen, rmon, rcomp, rsound) = right in
  let mon_typ v =
    ret_mon (construct_match (gVar v) ~catch_all:(Some hole) [(pat, hole)])
  in
  let proof_typ ret v =
    ret
      (construct_match (gVar v) ~catch_all:(Some rset) [(pat, lset)])
      (construct_match (gVar v) ~catch_all:(Some rgen) [(pat, lgen)])
  in
  ( (* set *)
    construct_match_with_return
      (gVar inp) ~catch_all:(Some rset) "v" (fun v -> hole)
      [(pat, lset)],
    (* gen *)
    construct_match_with_return
      (gVar inp) ~catch_all:(Some rgen) "v" (fun v -> hole)
      [(pat, lgen)],
    (* mon *)
    construct_match_with_return
      (gVar inp) ~catch_all:(Some rmon) "v" mon_typ
      [(pat, lmon)],
    (* comp *)
    construct_match_with_return
      (gVar inp) ~catch_all:(Some rcomp) "v" (proof_typ ret_comp)
      [(pat, lcomp)],
    (* sound *)
    construct_match_with_return
      (gVar inp) ~catch_all:(Some rsound) "v" (proof_typ ret_sound)
      [(pat, lsound)]
  )

let stMaybe (opt : bool) (exp : atyp)
      (x : string) (checks : ((coq_expr -> coq_expr) * int) list) =
  let (set, gen, mon, comp, sound) = exp in
  let rec sumbools_to_bool x lst e fail =
    match lst with
    | [] -> e
    | (chk, _) :: lst' ->
      matchDec (chk (gVar x)) (fun heq -> fail) (fun hneq -> sumbools_to_bool x lst' e fail)
  in
  let bool_pred checks =
    gFun [x]
      (fun [x] -> sumbools_to_bool x checks gTrueb gFalseb)
  in
  let hxs = "H_" ^ x in
  let ret_comp matcher1 matcher2 =
    gImpl matcher1 (gConj hole matcher2)
  in
  let ret_sound matcher1 matcher2 =
    gImpl (gConj hole matcher2) matcher1
  in
  let rec sumbools_to_bool_comp (x : var) hx lst : coq_expr =
    match lst with
    | [] -> gConjIntro (gVar hx) (gEqRefl hole)
    | (chk, n) :: lst' ->
      let set d =
        gMatchReturn (gVar d)
          "s"
          (fun v -> gProp)
          [ (injectCtr "left" , ["eq" ], fun _ -> gFalse)
          ; (injectCtr "right", ["neq"], fun _ -> sumbools_to_bool x lst' (gApp set [gVar x]) gFalse)
          ]
      in
      let pred d =
        gIsTrue
          (matchDec (gVar d) (fun heq -> gFalseb)
             (fun hneq -> sumbools_to_bool x lst' gTrueb gFalseb))
      in
      gApp
        (gMatchReturn (chk (gVar x))
           "v" (* as clause *)
           (fun v -> ret_comp (set v) (pred v))
           [ (injectCtr "left", ["heq"],
              fun [heq] -> gFun [hxs] (fun [hx] -> false_ind hole (gVar hx)))
           ; (injectCtr "right", ["hneq"],
              fun [hneq] -> gFun [hxs] (fun [hx] -> sumbools_to_bool_comp x hx lst'))
           ])
        [gVar hx]
  in
  let rec sumbools_to_bool_sound (x : var) hx lst : coq_expr =
    match lst with
    | [] ->
      gMatch (gVar hx)
        [(injectCtr "conj", ["hl"; "hr"], (fun [hl; hr] -> (gVar hl)))]
    | (chk, n) :: lst' ->
      let set d =
        gMatchReturn (gVar d)
          "s"
          (fun v -> gProp)
          [ (injectCtr "left" , ["eq" ], fun _ -> gFalse)
          ; (injectCtr "right", ["neq"], fun _ -> sumbools_to_bool x lst' (gApp set [gVar x]) gFalse)
          ]
      in
      let pred d =
        gIsTrue
          (matchDec (gVar d) (fun heq -> gFalseb)
             (fun hneq -> sumbools_to_bool x lst' gTrueb gFalseb))
      in
      gApp
        (gMatchReturn (chk (gVar x))
           "v" (* as clause *)
           (fun v -> ret_sound (set v) (pred v))
           [ (injectCtr "left", ["heq"],
              fun [heq] ->
                gFun [hxs] (fun [hx] ->
                             gMatch (gVar hx)
                               [(injectCtr "conj", ["hl"; "hr"], (fun [hl; hr] -> false_ind hole (diff_false_true (gVar hr))))]
                           ))
           ; (injectCtr "right", ["hneq"],
              fun [hneq] -> gFun [hxs] (fun [hx] -> sumbools_to_bool_sound x hx lst'))
           ])
        [gVar hx]
  in
  ( (* set *)
    gFun [x] (fun [x] -> sumbools_to_bool x checks (gApp set [gVar x]) gFalse),
    (* gen *)
    gApp (gInject (if opt then "suchThatMaybeOpt" else "suchThatMaybe"))
     [ gen (* Use the generator provided for base generator *)
     ; bool_pred checks ],
    (* mon *)
    (if opt then suchThatMaybeOptMonotonicOpt else suchThatMaybeMonotonicOpt) mon (bool_pred checks),
    (* comp *)
    set_incl_trans
      (imset_incl (gFun [x; hxs] (fun [x; hx] -> sumbools_to_bool_comp x hx checks)))
      ((if opt then semSuchThatMaybeOpt_complete else semSuchThatMaybe_complete)
         gen (bool_pred checks) hole mon comp),
    (* sound *)
    set_incl_trans
      ((if opt then semSuchThatMaybeOpt_sound else semSuchThatMaybe_sound)
         gen (bool_pred checks) hole sound)
      (setU_set_subset_compat
         (imset_incl (gFun [x; hxs] (fun [x; hx] -> sumbools_to_bool_sound x hx checks)))
         set_incl_refl)
  )


let genSizedSTCorr_body
      (class_name : string)
      (gen_ctr : ty_ctr)
      (ty_params : ty_param list)
      (ctrs : dep_ctr list)
      (dep_type : dep_type)
      (input_names : string list)
      (inputs : arg list)
      (n : int)
      (register_arbitrary : dep_type -> unit)
      (moninst : coq_expr)
      (geninst : coq_expr)
      (setinst : coq_expr) =

  (* type constructor *)
  let coqTyCtr = gTyCtr gen_ctr in

  (* parameters of the type constructor *)
  let coqTyParams = List.map gTyParam ty_params in

  (* Fully applied type constructor *)
  let full_dt = gApp ~explicit:true coqTyCtr coqTyParams in

  (* The type we are generating for -- not the predicate! *)
  let full_gtyp = (gType ty_params (nthType n dep_type)) in

  (* The type of the dependent generator *)
  let gen_type = gGen (gOption full_gtyp) in

  (* Fully applied predicate (parameters and constructors) *)
  let full_pred inputs =
    gFun ["_forGen"] (fun [fg] -> gApp (full_dt) (list_insert_nth (gVar fg) inputs (n-1)))
  in

  let base_gens (input_names : var list) (rec_name : coq_expr) =
    base_gens (gInt 0) full_gtyp gen_ctr dep_type ctrs input_names n register_arbitrary rec_name
  in

  let ind_gens (input_names : var list) (size : var) (rec_name : coq_expr) =
    ind_gens (gVar size) full_gtyp gen_ctr dep_type ctrs input_names n register_arbitrary rec_name
  in

  let aux_arb (rec_name : coq_expr) size vars =
    gMatch (gVar size)
      [ (injectCtr "O", [], fun _ ->
             uniform_backtracking (base_gens vars rec_name))
      ; (injectCtr "S", ["size'"], fun [size'] ->
            uniform_backtracking (ind_gens vars size' rec_name))
      ]
  in

  let generator_body : coq_expr =
    (* gInject "gen" *)
    gRecFunInWithArgs
      ~assumType:(gen_type)
      "aux_arb" (gArg ~assumName:(gVar (fresh_name "size")) () :: inputs)
      (fun (rec_name, size::vars) -> aux_arb (gVar rec_name) size vars)
      (fun rec_name -> gVar rec_name)
  in

  let add_freq gens =
    List.map gPair (List.combine (List.map (fun _ -> gInt 1) gens) gens) in

  let handle_branch' (ih : var) (size : coq_expr) (ins : var list) =
    handle_branch n dep_type ins
      (fail_exp full_gtyp) (ret_exp full_gtyp) class_method class_methodST
      (rec_method inputs setinst generator_body moninst ih size) bind stMaybe check_expr match_inp (failwith "zoe fix me!")
      gen_ctr (fun _ -> ())
  in

  let some_proof hc =
    gMatch (in_imset hole hole hole hc)
      [(injectCtr "ex_intro", ["z"; "Heqz"],
        fun [z; heq] ->
          rewrite_sym (gFun ["x"] (fun [x] -> isSome (gVar x)))
            (gVar heq) (isSomeSome hole))]
  in

  let base_case =
    gFunWithArgs
      inputs
      (fun inputs ->
         let (cases : coq_expr) =
           List.fold_right
             (fun (c : dep_ctr) (exp : coq_expr) ->
                let ((_, _, _, p, _), b) =
                  handle_branch' (make_up_name ()) (gInt 0) inputs c
                in
                if b then
                  imset_bigcup_setI_cons_subset_r
                    (gProd hole hole) hole
                    (succ_neq_zero hole)
                    (setI_set_incl (imset_isSome hole) p)
                    exp
                else
                  exp
             ) ctrs imset_set0_subset
         in
         set_incl_trans
           cases
           (* (setU_subset_l hole cases) *)
           (semBacktrack_complete (gList (add_freq (base_gens inputs generator_body)))))
  in

  let ind_case =
    gFun ["size"; "IHs"]
      (fun [s; ih] ->
         gFunWithArgs
           inputs
           (fun inputs ->
              let cases =
                List.fold_right
                  (fun (c : dep_ctr) (exp : coq_expr) ->
                     let ((_, _, _, p, _), b) =
                       handle_branch' ih (gVar s) inputs c
                     in
                     imset_bigcup_setI_cons_subset_r
                       (gProd hole hole) hole
                       (succ_neq_zero hole)
                       (setI_set_incl (imset_isSome hole) p)
                       exp) ctrs imset_set0_subset
              in
              set_incl_trans
                cases
                (semBacktrack_complete (gList (add_freq (ind_gens inputs s generator_body))))))
  in

  let ret_type =
    gFun ["size"]
      (fun [s] ->
         gProdWithArgs
           inputs
           (fun inputs ->
              let inps = List.map gVar inputs in
              set_incl
                (* (imset (gInject "Some") (gApp (gInject "aux_iter") ((gVar s) :: inps))) *)
                (imset (gInject "Some") (appinst "DependentClasses.iter" setinst (gVar s) inps))
                (* (semGen (appinst "arbitrarySizeST" geninst (gVar s) inps)) *)
                (semGen (gApp generator_body ((gVar s) :: inps)))
           ))
  in

  let input_vars = List.map fresh_name input_names in

  let com_proof =
    gFun ["size"]
      (fun [s] ->
         gApp (gInject "nat_ind")
           ([ret_type; base_case; ind_case; gVar s] @ (List.map gVar input_vars)))
  in


  let base_case_sound =
    gFunWithArgs
      inputs
      (fun inputs ->
         let cases =
           List.fold_right
             (fun (c : dep_ctr) (exp :  (coq_expr  -> coq_expr) -> coq_expr) ->
                fun proof ->
                  let ((_, _, _, _, p), b) =
                    handle_branch' (make_up_name ()) (gInt 0) inputs c
                  in
                  if b then
                    bigcup_cons_subset
                    (gProd hole hole) hole
                    (set_incl_setI_r (proof p))
                    (exp (fun e -> lift_subset_pres_r (proof e)))
                else
                  exp proof)
             ctrs (fun e -> bigcup_nil_subset) lift_subset_pres_l
         in
         set_incl_trans
           (semBacktrack_sound (gList (add_freq (base_gens inputs generator_body))))
           (set_incl_setU_l
              (bigcup_set_I_l cases)
              (set_incl_setI_l (setU_subset_r hole set_incl_refl))
             ))
  in

  let ind_case_sound =
    gFun ["size"; "IHs"]
      (fun [s; ih] ->
         gFunWithArgs
           inputs
           (fun inputs ->
            let cases =
              List.fold_right
                (fun (c : dep_ctr) (exp : (coq_expr  -> coq_expr) -> coq_expr) ->
                   fun proof ->
                     let ((_, _, _, _, p), b) =
                       handle_branch' ih (gVar s) inputs c
                     in
                     bigcup_cons_subset
                       (gProd hole hole) hole
                       (set_incl_setI_r (proof p))
                       (exp (fun e -> lift_subset_pres_r (proof e))))
                ctrs (fun e -> bigcup_nil_subset) lift_subset_pres_l
            in
            set_incl_trans
              (semBacktrack_sound (gList (add_freq (ind_gens inputs s generator_body))))
              (set_incl_setU_l
                 (bigcup_set_I_l cases)
                 (set_incl_setI_l (setU_subset_r hole set_incl_refl))
              )))
  in

  let ret_type_sound =
    gFun ["size"]
      (fun [s] ->
         gProdWithArgs
           inputs
           (fun inputs ->
              let inps = List.map gVar inputs in
              set_incl
                (semGen (gApp generator_body ((gVar s) :: inps)))
                (* (set_union (imset (gInject "Some") (gApp (gInject "aux_iter") ((gVar s) :: inps))) ((set_singleton (gNone hole)))) *)
                (set_union (imset (gInject "Some") (appinst "DependentClasses.iter" setinst (gVar s) inps)) ((set_singleton (gNone hole))))
           ))
  in

  let sound_proof =
    gFun ["size"]
      (fun [s] ->
         gApp (gInject "nat_ind")
           ([ret_type_sound; base_case_sound; ind_case_sound; gVar s] @ (List.map gVar input_vars)))
  in

  let correct =
    gFun ["s"] (fun [s] -> isSome_set_eq (gApp sound_proof [gVar s]) (gApp com_proof [gVar s]))
  in

  msg_debug (str "compl");
  debug_coq_expr com_proof;
  msg_debug (str "sound");
  debug_coq_expr sound_proof;

  gRecord [ ("sizedSTCorrect", correct) ]