1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
open Pp
open Util
open GenericLib
open SetLib
open CoqLib
open GenLib
open SemLib
open UnifyQC
open ArbitrarySizedST
open Feedback
type btyp = ((coq_expr -> coq_expr) * coq_expr)
type atyp = ((coq_expr -> coq_expr) * coq_expr)
let fail_exp (dt : coq_expr) : btyp =
( (* gen *)
(fun s -> returnGen (gNone dt)),
(* mon *)
gFun ["s"] (fun _ -> set_incl_refl)
)
let ret_exp (dt : coq_expr) (c : coq_expr) : btyp =
( (* gen *)
(fun s -> returnGen (gSome dt c)),
(* mon *)
gFun ["s"] (fun _ -> set_incl_refl)
)
let class_method : atyp =
( (* gen *)
(fun s -> gInject "arbitrary"),
(* mon *)
gFun ["s"] (fun _ -> set_incl_refl)
)
let class_methodST (n : int) (pred : coq_expr) : atyp =
let gen =
gApp ~explicit:true (gInject "arbitraryST")
[ hole (* Implicit argument - type A *)
; pred
; hole (* Implicit instance *)]
in
( (* gen *)
(fun s -> gen),
(* mon *)
gFun ["s"] (fun _ -> set_incl_refl)
)
let rec_method (generator_body : coq_expr)
(hleq : var) (ih : var) (s2 : coq_expr)
(n : int) (l : coq_expr list) : atyp =
let gen_body (size : coq_expr) (args : coq_expr list) =
gApp generator_body (size :: args)
in
let mon = gApp (gVar ih) ((s2 :: l) @ [gVar hleq]) in
(* Unused! *)
let proof = gApp (gVar ih) l in
( (* gen *)
(fun s -> gen_body s l),
(* mon *)
mon
)
let bind (opt : bool) (m : atyp) (x : string) (f : var -> btyp) : btyp =
let (gen, mon) = m in
let genf s x =
let (gen, _) = f x in gen s
in
let monf x =
let (_, mon) = f x in mon
in
( (* gen *)
(fun s -> (if opt then bindGenOpt else bindGen) (gen s) x (genf s)),
(* mon *)
(if opt then semBindOptSizeOpt_subset_compat else semBindSizeOpt_subset_compat)
mon (gFun [x] (fun [x] -> monf x))
)
let ret_mon s matcher1 matcher2 =
set_incl
(set_int (isSomeSet hole) (semGenSize matcher1 (gVar s)))
(set_int (isSomeSet hole) (semGenSize matcher2 (gVar s)))
let eta g = gSnd (gPair (gInt 1, g))
let ret_type_dec
(s : var) (v : var)
(left1 : coq_expr) (right1 : coq_expr)
(left2 : coq_expr) (right2 : coq_expr) =
ret_mon s
(gMatch (gVar v)
[ (injectCtr "left", ["eq"], fun _ -> left1)
; (injectCtr "right", ["neq"], fun _ -> right1) ])
(gMatch (gVar v)
[ (injectCtr "left", ["eq"], fun _ -> left2)
; (injectCtr "right", ["neq"], fun _ -> right2) ])
let check_expr (s1 : coq_expr) (s2 : coq_expr)
(n : int) (scrut : coq_expr) (left : btyp) (right : btyp) =
let (lgen, lmon) = left in
let (rgen, rmon) = right in
( (* gen *)
(fun s ->
gMatchReturn scrut
"v" (* as clause *)
(fun v -> hole)
[ (injectCtr "left", ["eq" ] , fun _ -> lgen s)
; (injectCtr "right", ["neq"], fun _ -> rgen s)
]),
(* mon *)
gFun ["s"]
(fun [s] -> gMatchReturn scrut
"v" (* as clause *)
(fun v -> ret_type_dec s v (lgen s1) (rgen s1) (lgen s2) (rgen s2))
[ (injectCtr "left", ["eq"] , fun _ -> gApp lmon [gVar s])
; (injectCtr "right", ["neq"], fun _ -> gApp rmon [gVar s])
]))
let match_inp (s1 : coq_expr) (s2 : coq_expr)
(inp : var) (pat : matcher_pat) (left : btyp) (right : btyp) =
let (lgen, lmon) = left in
let (rgen, rmon) = right in
let proof_typ s v =
ret_mon s
(construct_match (gVar v) ~catch_all:(Some (rgen s1)) [(pat, lgen s1)])
(construct_match (gVar v) ~catch_all:(Some (rgen s2)) [(pat, lgen s2)])
in
( (* gen *)
(fun s ->
construct_match_with_return
(gVar inp) ~catch_all:(Some (rgen s)) "v" (fun v -> hole)
[(pat, lgen s)]),
(* mon *)
gFun ["s"]
(fun [s] -> construct_match_with_return
(gVar inp) ~catch_all:(Some (gApp rmon [gVar s])) "v" (proof_typ s)
[(pat, (gApp lmon [gVar s]))]
))
let stMaybe (opt : bool) (exp : atyp)
(x : string) (checks : ((coq_expr -> coq_expr) * int) list) =
let (gen, mon) = exp in
let rec sumbools_to_bool x lst e fail =
match lst with
| [] -> e
| (chk, _) :: lst' ->
matchDec (chk (gVar x)) (fun heq -> fail) (fun hneq -> sumbools_to_bool x lst' e fail)
in
let bool_pred checks =
gFun [x]
(fun [x] -> sumbools_to_bool x checks gTrueb gFalseb)
in
( (* gen *)
(fun s ->
gApp (gInject (if opt then "suchThatMaybeOpt" else "suchThatMaybe"))
[ gen s (* Use the generator provided for base generator *)
; bool_pred checks
]),
(* mon *)
(if opt then suchThatMaybeOpt_subset_compat else suchThatMaybe_subset_compat)
(bool_pred checks) mon
)
let bigcupf s =
gFun
["x"]
(fun [x] -> set_int (isSomeSet hole) (semGenSize (gSnd (gVar x)) s))
let genSizedSTSMon_body
(class_name : string)
(gen_ctr : ty_ctr)
(ty_params : ty_param list)
(ctrs : dep_ctr list)
(dep_type : dep_type)
(input_names : string list)
(inputs : arg list)
(n : int)
(register_arbitrary : dep_type -> unit) =
(* type constructor *)
let coqTyCtr = gTyCtr gen_ctr in
(* parameters of the type constructor *)
let coqTyParams = List.map gTyParam ty_params in
(* Fully applied type constructor *)
let full_dt = gApp ~explicit:true coqTyCtr coqTyParams in
(* The type we are generating for -- not the predicate! *)
let full_gtyp = (gType ty_params (nthType n dep_type)) in
(* The type of the dependent generator *)
let gen_type = gGen (gOption full_gtyp) in
(* Unused, not exported! *)
(* Fully applied predicate (parameters and constructors) *)
let full_pred inputs =
gFun ["_forGen"] (fun [fg] -> gApp (full_dt) (list_insert_nth (gVar fg) inputs (n-1)))
in
let base_gens (input_names : var list) (rec_name : coq_expr) =
base_gens (gInt 0) full_gtyp gen_ctr dep_type ctrs input_names n register_arbitrary rec_name
in
let ind_gens (input_names : var list) (size : coq_expr) (rec_name : coq_expr) =
ind_gens size full_gtyp gen_ctr dep_type ctrs input_names n register_arbitrary rec_name
in
let aux_arb (rec_name : coq_expr) size vars =
gMatch (gVar size)
[ (injectCtr "O", [], fun _ ->
uniform_backtracking (base_gens vars rec_name))
; (injectCtr "S", ["size'"], fun [size'] ->
uniform_backtracking (ind_gens vars (gVar size') rec_name))
]
in
let generator_body : coq_expr =
(* gInject "arb_aux" *)
gRecFunInWithArgs
~assumType:(gen_type)
"aux_arb" (gArg ~assumName:(gVar (fresh_name "size")) () :: inputs)
(fun (rec_name, size::vars) -> aux_arb (gVar rec_name) size vars)
(fun rec_name -> gVar rec_name)
in
let add_freq gens =
List.map gPair (List.combine (List.map (fun _ -> gInt 1) gens) gens) in
let handle_branch' s1 s2 hleq ih (ins : var list) =
handle_branch n dep_type ins
(fail_exp full_gtyp) (ret_exp full_gtyp) class_method class_methodST
(rec_method generator_body hleq ih s2) bind
stMaybe (check_expr s1 s2) (match_inp s1 s2)
(failwith "zoe fix me!")
gen_ctr (fun _ -> ())
in
let base_case s2 hleq inputs =
let cases =
List.fold_right
(fun (c : dep_ctr) (exp : coq_expr) ->
(* let b = false in *)
(* let p = hole in *)
let ((_, p), b) =
handle_branch' (gInt 0) (gVar s2) hleq (make_up_name ()) inputs c
in
if b then
bigcup_cons_setI_subset_compat_backtrack_weak p exp
else
bigcup_cons_setI_subset_pres_backtrack_weak exp
) ctrs (gFun ["s"] (fun [s] -> bigcup_nil_setI hole hole hole))
in
gFun ["s"]
(fun [s] -> subset_respects_set_eq
(setI_set_eq_r (semBacktrackSize (gList (add_freq (base_gens inputs generator_body))) (gVar s)))
(setI_set_eq_r (semBacktrackSize (gList (add_freq (ind_gens inputs (gVar s2) generator_body))) (gVar s)))
(isSome_subset (setI_subset_compat set_incl_refl (gApp cases [gVar s]))))
in
let ind_case s1 s2 hleq ih (inputs : var list) =
let cases =
List.fold_right
(fun (c : dep_ctr) (exp : coq_expr) ->
let ((_, p), b) =
handle_branch' (gVar s1) (gVar s2) hleq ih inputs c
in
bigcup_cons_setI_subset_compat_backtrack_weak p exp
) ctrs (gFun ["s"] (fun [s] -> bigcup_nil_setI (bigcupf (gVar s)) hole hole))
in
gFun ["s"]
(fun [s] -> subset_respects_set_eq
(setI_set_eq_r (semBacktrackSize (gList (add_freq (ind_gens inputs (gVar s1) generator_body))) (gVar s)))
(setI_set_eq_r (semBacktrackSize (gList (add_freq (ind_gens inputs (gVar s2) generator_body))) (gVar s)))
(isSome_subset (setI_subset_compat set_incl_refl (gApp cases [gVar s]))))
in
let input_vars = List.map fresh_name input_names in
let ret_type s1 s2 =
gProdWithArgs inputs
(fun inps ->
let inps = (List.map gVar inps) in
gImpl (gLeq s1 s2)
(gProdWithArgs [gArg ~assumName:(gVar (fresh_name "s")) ()]
(fun [s] ->
let s = gVar s in(set_incl
(set_int (isSomeSet hole) (semGenSize (gApp generator_body (s1 :: inps)) s))
(set_int (isSomeSet hole) (semGenSize (gApp generator_body (s2 :: inps)) s))))))
in
let out_type =
gFun ["s1"]
(fun [s1] ->
gProdWithArgs [(gArg ~assumName:(gVar (fresh_name "s2")) ())]
(fun [s2] -> ret_type (gVar s1) (gVar s2))
)
in
let in_type s1 =
gFun ["s2"]
(fun [s2] -> ret_type s1 (gVar s2))
in
let mon_proof =
gFun ["s"; "s1"; "s2"; "Hleq"]
(fun [s; s1; s2; hleq] ->
gApp
(nat_ind (* outer induction *)
(* return type *)
out_type
(* base case -- inner induction *)
(nat_ind
(* inner type *)
(in_type (gInt 0))
(* reflexivity *)
(gFunWithArgs inputs
(fun inps ->
gFun ["Hleq"; "s"]
(fun [hleq; s] -> set_incl_refl))
)
(gFun
["s2"; "IHs2"]
(fun [s2; _] ->
gFunWithArgs inputs
(fun inps ->
gFun ["Hleq"]
(fun [hleq] ->
base_case s2 hleq inps)
))
)
)
(* inductive case -- inner induction *)
(gFun ["s1"; "IHs1"]
(fun [s1; ihs1] ->
nat_ind
(* inner type *)
(in_type (gSucc (gVar s1)))
(* contradiction *)
(gFunWithArgs inputs
(fun inps ->
gFun ["Hleq"]
(fun [hleq] -> false_ind hole (lt0_False (gVar hleq))))
)
(* inductive case *)
(gFun
["s2"; "IHs2"]
(fun [s2; _] ->
gFunWithArgs inputs
(fun inps ->
gFun ["Hleq"]
(fun [hleq] ->
ind_case s1 s2 hleq ihs1 inps)))
)
)
)
)
((gVar s1) :: (gVar s2) :: (List.map gVar input_vars) @ [(gVar hleq); (gVar s)])
)
in
msg_debug (str "size mon");
debug_coq_expr mon_proof;
gRecord [ ("sizeMonotonicOpt", mon_proof) ]
|