File: stlc.v

package info (click to toggle)
coq-quickchick 2.1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,432 kB
  • sloc: ml: 4,367; ansic: 789; makefile: 388; sh: 27; python: 4; lisp: 2; perl: 2
file content (202 lines) | stat: -rw-r--r-- 4,621 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
From mathcomp Require Import ssreflect ssrbool eqtype.
Require Import Arith List String Lia.
From QuickChick Require Import QuickChick.
Import ListNotations.

(* Types *)

Inductive type : Type :=
| N : type
| Arrow : type -> type -> type.

Derive (Arbitrary, Show, EnumSized) for type.
Instance dec_type (t1 t2 : type) : Dec (t1 = t2).
Proof. dec_eq. Defined.

(* Terms *)

Definition var := nat.

Inductive term : Type :=
| Const : nat -> term
| Id : var -> term
| App : term -> term -> term
| Abs : type -> term -> term.

(* Environments *)

Definition env := list type.

Inductive bind : env -> nat -> type -> Prop :=
| BindNow   : forall t G, bind (t :: G) 0 t
| BindLater : forall t t' x G,
    bind G x t -> bind (t' :: G) (S x) t.

(* Generate variables of a specific type in an env. *)
Derive ArbitrarySizedSuchThat for (fun x => bind G x t).
(* Get the type of a given variable in an env. *)
Derive EnumSizedSuchThat for (fun t => bind G x t).
(* Check whether a variable has a given type in an env. *)
Derive DecOpt for (bind G e t).

(* Typing *)

Inductive typing (G : env) : term -> type -> Prop :=
| TId :
    forall x t,
      bind G x t ->
      typing G (Id x) t
| TConst :
    forall n,
      typing G (Const n) N
| TAbs :
    forall e t1 t2,
      typing (t1 :: G) e t2 ->
      typing G (Abs t1 e) (Arrow t1 t2)
| TApp :
    forall e1 e2 t1 t2,
      typing G e2 t1 ->
      typing G e1 (Arrow t1 t2) ->
      typing G (App e1 e2) t2.

Fixpoint typeOf G e : option type :=
  match e with
  | Id x => nth_error G x
  | Const n => Some N
  | Abs t e' =>
    match typeOf (t::G) e' with
    | Some t' => Some (Arrow t t')
    | None => None
    end
  | App e1 e2 =>
    match typeOf G e1, typeOf G e2 with
    | Some (Arrow t1 t2), Some t1' =>
      if t1 = t1'? then Some t2 else None
    | _, _ => None
    end
  end.

(* Generate terms of a specific type in an env. *)
Derive ArbitrarySizedSuchThat for (fun e => typing G e t).
Derive EnumSizedSuchThat for (fun t => typing G e t).

(* Check whether a variable has a given type in an env. *)
Derive DecOpt for (typing G e t).

(* Small step CBV semantics *)
Inductive value : term -> Prop :=
| VConst : forall n, value (Const n)
| VAbs   : forall t e, value (Abs t e).

Derive DecOpt for (value e).

Definition is_value (e : term) : bool :=
  match e with
  | Const _ | Abs _ _ => true
  | _ => false
  end.

Fixpoint subst (y : var) (e1 : term) (e2 : term) : term :=
  match e2 with
    | Const n => Const n
    | Id x =>
      if eq_nat_dec x y then e1 else e2
    | App e e' =>
      App (subst y e1 e) (subst y e1 e')
    | Abs t e =>
      Abs t (subst (S y) e1 e)
  end.

Fixpoint step (e : term) : option term :=
  match e with
    | Const _ | Id _ => None | Abs _ x => None
    | App (Abs t e1) e2 =>
      if is_value e2 then Some (subst 0 e2 e1)
      else
        match step e2 with
        | Some e2' => Some (App (Abs t e1) e2')
        | None => None
        end
    | App e1 e2 =>
      match step e1 with
      | Some e1' => Some (App e1' e2)
      | None => None
      end
  end.

Eval compute in (step (App (Abs N (Id 0)) (Const 42))).
Eval compute in (step (App (Abs N (Abs N (Id 0))) (Const 42))).
Eval compute in (subst 0 (Const 42) (Abs N (Id 0))).

(* Printing *)

Open Scope string.

Fixpoint show_type (tau : type) :=
  match tau with
    | N => "N"
    | Arrow tau1 tau2 =>
      "(Arrow " ++ show_type tau1 ++ " -> " ++ show_type tau2 ++ ")"
  end.

Instance showType : Show type := { show := show_type }.

Fixpoint show_term (e : term) :=
  match e with
    | Const n => "(Const " ++ show n ++ ")"
    | Id x => "(Id " ++ show x ++ ")"
    | App e1 e2 => "(App " ++ show_term e1 ++ " " ++ show_term e2 ++ ")"
    | Abs t e => "(Abs " ++ show t ++ " " ++ show_term e ++ ")"
  end.

Close Scope string.

Instance showTerm : Show term := { show := show_term }.

Instance dec_eq_opt_type : Dec_Eq (option type).
Proof. dec_eq. Defined.

Definition preservation (e : term) (t: type) : Checker :=
  match step e with
  | Some e' => checker ((typeOf nil e' = Some t)?)
  | None => checker true
  end.

Definition preservation' (e : term) (t: type) : Checker :=
  match step e with
  | Some e' => typing nil e' t ?? 10
  | None => checker true
  end.

Definition preservation_prop (c : term -> type -> Checker) :=
  forAll (@arbitrary type _) (fun t =>
  forAllMaybe ((genST (fun e => typing nil e t))) (fun e =>
                                                   c e t)).

Extract Constant defNumTests => "20000".
QuickChick (preservation_prop preservation).
QuickChick (preservation_prop preservation').