1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
|
From QuickChick Require Import QuickChick Tactics.
Require Import String. Open Scope string.
Require Import List.
Import ListNotations.
Import QcDefaultNotation. Open Scope qc_scope.
Require Export ExtLib.Structures.Monads.
Import MonadNotation.
Open Scope monad_scope.
Set Bullet Behavior "Strict Subproofs".
Derive ArbitrarySizedSuchThat for (fun x => eq x y).
Definition GenSizedSuchThateq_manual {A} (y_ : A) :=
let fix aux_arb (init_size size : nat) (y_0 : A) {struct size} : G (option A) :=
match size with
| 0 => backtrack [(1, returnGen (Some y_0))]
| S _ => backtrack [(1, returnGen (Some y_0))]
end
in fun size => aux_arb size size y_.
Theorem GenSizedSuchThateq_proof A (n : A) `{Dec_Eq A} `{Gen A} `{Enum A}:
GenSizedSuchThateq_manual n = @arbitrarySizeST _ (fun x => eq x n) _.
Proof. reflexivity. Qed.
Inductive Foo :=
| Foo1 : Foo
| Foo2 : Foo -> Foo
| Foo3 : nat -> Foo -> Foo.
QuickChickWeights [(Foo1, 1); (Foo2, size); (Foo3, size)].
Derive (Arbitrary, Show) for Foo.
Derive EnumSized for Foo.
(* Use custom formatting of generated code, and prove them equal (by reflexivity) *)
(* begin show_foo *)
Fixpoint showFoo' (x : Foo) :=
match x with
| Foo1 => "Foo1"
| Foo2 f => "Foo2 " ++ smart_paren (showFoo' f)
| Foo3 n f => "Foo3 " ++ smart_paren (show n) ++
" " ++ smart_paren (showFoo' f)
end%string.
(* end show_foo *)
Lemma show_foo_equality : showFoo' = (@show Foo _).
Proof. reflexivity. Qed.
(* begin genFooSized *)
Fixpoint genFooSized (size : nat) :=
match size with
| O => returnGen Foo1
| S size' => freq [ (1, returnGen Foo1)
; (S size', f <- genFooSized size';;
ret (Foo2 f))
; (S size', n <- arbitrary ;;
f <- genFooSized size' ;;
ret (Foo3 n f))
]
end.
(* end genFooSized *)
(* begin shrink_foo *)
Fixpoint shrink_foo x :=
match x with
| Foo1 => []
| Foo2 f => ([f] ++ map (fun f' => Foo2 f') (shrink_foo f) ++ []) ++ []
| Foo3 n f => (map (fun n' => Foo3 n' f) (shrink n) ++ []) ++
([f] ++ map (fun f' => Foo3 n f') (shrink_foo f) ++ []) ++ []
end.
(* end shrink_foo *)
(* JH: Foo2 -> Foo1, Foo3 n f -> Foo2 f *)
(* Avoid exponential shrinking *)
Lemma genFooSizedNotation : genFooSized = @arbitrarySized Foo _.
Proof. reflexivity. Qed.
Lemma shrinkFoo_equality : shrink_foo = @shrink Foo _.
Proof. reflexivity. Qed.
(* Completely unrestricted case *)
(* begin good_foo *)
Inductive goodFoo : nat -> Foo -> Prop :=
| GoodFoo : forall n foo, goodFoo n foo.
(* end good_foo *)
Derive ArbitrarySizedSuchThat for (fun foo => goodFoo n foo).
Derive EnumSizedSuchThat for (fun foo => goodFoo n foo).
(* Need to write it as 'fun x => goodFoo 0 x'. Sadly, 'goodFoo 0' doesn't work *)
Definition g : G (option Foo) := @arbitrarySizeST _ (fun x => goodFoo 0 x) _ 4.
(* Sample g. *)
(* Simple generator for goodFoos *)
(* begin gen_good_foo_simple *)
(* Definition genGoodFoo {_ : Arbitrary Foo} (n : nat) : G Foo := arbitrary.*)
(* end gen_good_foo_simple *)
(* begin gen_good_foo *)
Definition genGoodFoo `{_ : Arbitrary Foo} (n : nat) :=
let fix aux_arb init_size size n :=
match size with
| 0 => backtrack [(1, foo <- arbitrary ;; ret (Some foo))]
| S _ => backtrack [(1, foo <- arbitrary ;; ret (Some foo))]
end
in fun sz => aux_arb sz sz n.
(* end gen_good_foo *)
Lemma genGoodFoo_equality n :
genGoodFoo n = @arbitrarySizeST _ (fun foo => goodFoo n foo) _.
Proof. reflexivity. Qed.
(* Copy to extract just the relevant generator part *)
Definition genGoodFoo'' `{_ : Arbitrary Foo} (n : nat) :=
let fix aux_arb init_size size n :=
match size with
| 0 => backtrack [(1,
(* begin gen_good_foo_gen *)
foo <- arbitrary;; ret (Some foo)
(* end gen_good_foo_gen *)
)]
| S _ => backtrack [(1, foo <- arbitrary;; ret (Some foo))]
end
in fun sz => aux_arb sz sz n.
Lemma genGoodFoo_equality' : genGoodFoo = genGoodFoo''.
Proof. reflexivity. Qed.
(* Basic Unification *)
(* begin good_unif *)
Inductive goodFooUnif : nat -> Foo -> Prop :=
| GoodUnif : forall n, goodFooUnif n Foo1.
(* end good_unif *)
Derive ArbitrarySizedSuchThat for (fun foo => goodFooUnif n foo).
Definition genGoodUnif (n : nat) :=
let fix aux_arb init_size size n :=
match size with
| 0 => backtrack [(1,
(* begin good_foo_unif_gen *)
ret (Some Foo1)
(* end good_foo_unif_gen *)
)]
| S _ => backtrack [(1, ret (Some Foo1))]
end
in fun sz => aux_arb sz sz n.
Lemma genGoodUnif_equality n :
genGoodUnif n = @arbitrarySizeST _ (fun foo => goodFooUnif n foo) _.
Proof. reflexivity. Qed.
(* The foo is generated by arbitrary *)
(* begin good_foo_combo *)
Inductive goodFooCombo : nat -> Foo -> Prop :=
| GoodCombo : forall n foo, goodFooCombo n (Foo2 foo).
(* end good_foo_combo *)
Derive ArbitrarySizedSuchThat for (fun foo => goodFooCombo n foo).
Definition genGoodCombo `{_ : Arbitrary Foo} (n : nat) :=
let fix aux_arb init_size size n :=
match size with
| 0 => backtrack [(1,
(* begin good_foo_combo_gen *)
foo <- arbitrary;; ret (Some (Foo2 foo))
(* end good_foo_combo_gen *)
)]
| S _ => backtrack [(1, foo <- arbitrary;; ret (Some (Foo2 foo)))]
end
in fun sz => aux_arb sz sz n.
Lemma genGoodCombo_equality n :
genGoodCombo n = @arbitrarySizeST _ (fun foo => goodFooCombo n foo) _.
Proof. reflexivity. Qed.
(* Requires input nat to match 0 *)
(* begin good_input_match *)
Inductive goodFooMatch : nat -> Foo -> Prop :=
| GoodMatch : goodFooMatch 0 Foo1.
(* end good_input_match *)
Derive ArbitrarySizedSuchThat for (fun foo => goodFooMatch n foo).
Definition genGoodMatch (n : nat) :=
let fix aux_arb init_size size n :=
match size with
| 0 => backtrack [(1, thunkGen (fun _ =>
(* begin good_foo_match_gen *)
match n with
| 0 => ret (Some Foo1)
| S _ => ret None
end)
(* end good_foo_match_gen *)
)]
| S _ => backtrack [(1, thunkGen (fun _ =>
match n with
| 0 => ret (Some Foo1)
| S _ => ret None
end))]
end
in fun sz => aux_arb sz sz n.
Lemma genGoodMatch_equality n :
genGoodMatch n = @arbitrarySizeST _ (fun foo => goodFooMatch n foo) _.
Proof. reflexivity. Qed.
(* Requires recursive call of generator *)
(* begin good_foo_rec *)
Inductive goodFooRec : nat -> Foo -> Prop :=
| GoodRecBase : forall n, goodFooRec n Foo1
| GoodRec : forall n foo, goodFooRec 0 foo -> goodFooRec n (Foo2 foo).
(* end good_foo_rec *)
Derive ArbitrarySizedSuchThat for (fun foo => goodFooRec n foo).
(* begin gen_good_rec *)
Definition genGoodRec (n : nat) :=
let fix aux_arb (init_size size : nat) n : G (option Foo) :=
match size with
| 0 => backtrack [(1, thunkGen (fun _ => ret (Some Foo1)))
;(1, thunkGen (fun _ => ret None))]
| S size' => backtrack [ (1, thunkGen (fun _ => ret (Some Foo1)))
; (S size',thunkGen (fun _ => bindOpt (aux_arb init_size size' 0) (fun foo =>
ret (Some (Foo2 foo))))) ]
end
in fun sz => aux_arb sz sz n.
(* end gen_good_rec *)
Lemma genGoodRec_equality n :
genGoodRec n = @arbitrarySizeST _ (fun foo => goodFooRec n foo) _.
Proof. reflexivity. Qed.
(* Precondition *)
Inductive goodFooPrec : nat -> Foo -> Prop :=
| GoodPrecBase : forall n, goodFooPrec n Foo1
| GoodPrec : forall n foo, goodFooPrec 0 Foo1 -> goodFooPrec n foo.
Derive DecOpt for (goodFooPrec n foo).
Definition DecOptgoodFooPrec_manual (n_ : nat) (foo_ : Foo) :=
let fix aux_arb (init_size size0 n_0 : nat) (foo_0 : Foo) {struct size0} : option bool :=
match size0 with
| 0 =>
checker_backtrack
[(fun u:unit =>
match foo_0 with
| Foo1 => Some true
| _ => Some false
end
); fun u:unit => None]
| S size' =>
checker_backtrack
[(fun u:unit =>
match foo_0 with
| Foo1 => Some true
| _ => Some false
end)
;(fun u:unit =>
match aux_arb init_size size' 0 Foo1 with
| Some true => Some true
| Some false => Some false
| None => None
end)
]
end in
fun size0 : nat => aux_arb size0 size0 n_ foo_.
Theorem DecOptgoodFooPrec_proof n foo :
DecOptgoodFooPrec_manual n foo = @decOpt (goodFooPrec n foo) _.
Proof. reflexivity. Qed.
Derive ArbitrarySizedSuchThat for (fun foo => goodFooPrec n foo).
Definition genGoodPrec (n : nat) : nat -> G (option (Foo)):=
let
fix aux_arb init_size size (n : nat) : G (option (Foo)) :=
match size with
| O =>
backtrack [ (1, thunkGen (fun _ => ret (Some Foo1)))
; (1, thunkGen (fun _ => match @decOpt (goodFooPrec O Foo1) _ init_size with
| Some true => foo <- arbitrary;;
ret (Some foo)
| _ => ret None
end))
]
| S size' =>
backtrack [ (1, thunkGen (fun _ => ret (Some Foo1)))
; (1, thunkGen (fun _ => match @decOpt (goodFooPrec O Foo1) _ init_size with
| Some true => foo <- arbitrary;;
ret (Some foo)
| _ => ret None
end
))]
end in fun sz => aux_arb sz sz n.
Lemma genGoodPrec_equality n :
genGoodPrec n = @arbitrarySizeST _ (fun foo => goodFooPrec n foo) _.
Proof. reflexivity. Qed.
(* Generation followed by check - backtracking necessary *)
Inductive goodFooNarrow : nat -> Foo -> Prop :=
| GoodNarrowBase : forall n, goodFooNarrow n Foo1
| GoodNarrow : forall n foo, goodFooNarrow 0 foo ->
goodFooNarrow 1 foo ->
goodFooNarrow n foo.
Derive DecOpt for (goodFooNarrow n foo).
Definition goodFooNarrow_decOpt (n_ : nat) (foo_ : Foo) :=
let fix aux_arb (init_size size0 n_0 : nat) (foo_0 : Foo) : option bool :=
match size0 with
| 0 =>
checker_backtrack
[(fun _ : unit =>
match foo_0 with
| Foo1 => Some true
| _ => Some false
end)
; (fun _ : unit => None)]
| S size' =>
checker_backtrack
[(fun _ : unit =>
match foo_0 with
| Foo1 => Some true
| _ => Some false
end) ;
(fun _ : unit =>
match aux_arb init_size size' 0 foo_0 with
| Some true =>
match aux_arb init_size size' 1 foo_0 with
| Some true => Some true
| Some false => Some false
| None => None
end
| Some false => Some false
| None => None
end)]
end in
fun size0 : nat => aux_arb size0 size0 n_ foo_.
Lemma goodFooNarrow_decOpt_correct n foo :
goodFooNarrow_decOpt n foo = @decOpt (goodFooNarrow n foo) _.
Proof. reflexivity. Qed.
Derive ArbitrarySizedSuchThat for (fun foo => goodFooNarrow n foo).
Definition genGoodNarrow (n : nat) : nat -> G (option (Foo)) :=
let
fix aux_arb init_size size (n : nat) : G (option (Foo)) :=
match size with
| O => backtrack [(1, thunkGen (fun _ => ret (Some Foo1))); (1, thunkGen (fun _ => ret None))]
| S size' =>
backtrack [ (1, thunkGen (fun _ => ret (Some Foo1)))
; (S size', thunkGen (fun _ => bindOpt (aux_arb init_size size' 0) (fun foo =>
match @decOpt (goodFooNarrow 1 foo) _ init_size with
| Some true => ret (Some foo)
| _ => ret None
end
)))]
end in fun sz => aux_arb sz sz n.
Lemma genGoodNarrow_equality n :
genGoodNarrow n = @arbitrarySizeST _ (fun foo => goodFooNarrow n foo) _.
Proof. reflexivity. Qed.
(* Non-linear constraint *)
Inductive goodFooNL : nat -> Foo -> Foo -> Prop :=
| GoodNL : forall n foo, goodFooNL n (Foo2 foo) foo.
#[global]
Instance EqDecFoo (f1 f2 : Foo) : Dec (f1 = f2).
Proof. dec_eq. Defined.
Derive ArbitrarySizedSuchThat for (fun foo => goodFooNL n m foo).
Derive DecOpt for (goodFooNL n m foo).
(* Parameters don't work yet :) *)
(*
Inductive Bar A B :=
| Bar1 : A -> Bar A B
| Bar2 : Bar A B -> Bar A B
| Bar3 : A -> B -> Bar A B -> Bar A B -> Bar A B.
Arguments Bar1 {A} {B} _.
Arguments Bar2 {A} {B} _.
Arguments Bar3 {A} {B} _ _ _ _.
Inductive goodBar {A B : Type} (n : nat) : Bar A B -> Prop :=
| goodBar1 : forall a, goodBar n (Bar1 a)
| goodBar2 : forall bar, goodBar 0 bar -> goodBar n (Bar2 bar)
| goodBar3 : forall a b bar,
goodBar n bar ->
goodBar n (Bar3 a b (Bar1 a) bar).
*)
(* Generation followed by check - backtracking necessary *)
(* Untouched variables - ex soundness bug *)
Inductive goodFooFalse : Foo -> Prop :=
| GoodFalse : forall (x : False), goodFooFalse Foo1.
#[global]
Instance arbFalse : Gen False. Admitted.
Set Warnings "+quickchick-uninstantiated-variables".
Fail Derive ArbitrarySizedSuchThat for (fun foo => goodFooFalse foo).
Set Warnings "quickchick-uninstantiated-variables".
Definition addFoo2 (x : Foo) := Foo2 x.
Fixpoint foo_depth f :=
match f with
| Foo1 => 0
| Foo2 f => 1 + foo_depth f
| Foo3 n f => 1 + foo_depth f
end.
Derive ArbitrarySizedSuchThat for (fun n => goodFooPrec n x).
Inductive goodFun : Foo -> Prop :=
| GoodFun : forall (n : nat) (a : Foo), goodFooPrec n (addFoo2 a) ->
goodFun a.
Derive ArbitrarySizedSuchThat for (fun a => goodFun a).
Inductive Foo_and : (bool * bool) -> bool -> Prop :=
| Foo_andtt : Foo_and (true, true) true.
Inductive Foo_rel : nat -> bool -> Prop :=
| R1 : forall n,
Foo_rel n true
| R2' : forall a1 l1 a2 l2 l,
Foo_and (l1, l2) l ->
Foo_rel a1 l1 ->
Foo_rel a2 l2 ->
Foo_rel a1 l.
Derive Generator for (fun l12 => Foo_and l12 l).
Derive Generator for (fun a => Foo_rel a b).
Definition gen_foo_and (l : bool) : nat -> G (option (bool * bool)) :=
let
fix aux_arb (init_size size : nat) (l_0 : bool) {struct size} : G (option (bool * bool)) :=
match size with
| 0 | _ =>
backtrack
[(1,
thunkGen
(fun _ : unit => if l_0 then returnGen (Some (true, true)) else returnGen None))]
end in
fun size : nat => aux_arb size size l.
Lemma gen_foo_and_equality l :
gen_foo_and l = @arbitrarySizeST _ (fun l12 => Foo_and l12 l) _.
Proof. reflexivity. Qed.
Definition gen_foo_rel (b_ : bool) : nat -> G (option nat) :=
let
fix aux_arb (init_size size : nat) (b_0 : bool) {struct size} : G (option nat) :=
match size with
| 0 =>
backtrack
[(1,
thunkGen
(fun _ : unit =>
if b_0
then bindGen arbitrary (fun n : nat => returnGen (Some n))
else returnGen None)); (1, thunkGen (fun _ : unit => returnGen None))]
| S size' =>
backtrack
[(1,
thunkGen
(fun _ : unit =>
if b_0
then bindGen arbitrary (fun n : nat => returnGen (Some n))
else returnGen None));
(S size',
thunkGen
(fun _ : unit =>
bindOpt (genST (fun unkn_11_ : bool * bool => Foo_and unkn_11_ b_0))
(fun unkn_11_ : bool * bool =>
let (l1, l2) := unkn_11_ in
bindOpt (aux_arb init_size size' l1)
(fun a_ : nat =>
bindOpt (aux_arb init_size size' l2) (fun _ : nat => returnGen (Some a_))))))]
end in
fun size : nat => aux_arb size size b_.
Lemma gen_foo_rel_equality b :
gen_foo_rel b = @arbitrarySizeST _ (fun l => Foo_rel l b) _.
Proof. reflexivity. Qed.
Definition success := "success".
Print success.
|