1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
From QuickChick Require Import QuickChick.
Require Import List. Import ListNotations.
Require Import String. Open Scope string.
Inductive Tree :=
| Leaf : Tree
| Node : nat -> Tree -> Tree -> Tree.
Inductive Foo (A : Type) :=
| Foo1 : Foo A
| Foo2 : A -> Foo A -> Foo A -> Foo A.
Arguments Foo1 {A}.
Arguments Foo2 {A}.
Inductive NoParam : Foo nat -> Prop :=
| NoParam1 : NoParam Foo1
| NoParam2 : forall a f, NoParam f -> NoParam (Foo2 a f f).
Inductive Good {A : Type} : Foo A -> Prop :=
| Good1 : Good Foo1
| Good2 : forall a f, Good (Foo2 a f f).
(* QuickChickDebug Debug On. *)
MergeTest (fun x => NoParam x).
MergeTest (fun x => Good x).
Inductive bst : nat -> nat -> Tree -> Prop :=
| bst_leaf : forall lo hi, bst lo hi Leaf
| bst_node : forall lo hi x l r,
le (S lo) x -> le (S x) hi ->
bst lo x l -> bst x hi r ->
bst lo hi (Node x l r).
Inductive bal : nat -> Tree -> Prop :=
| bal_leaf0 : bal 0 Leaf
| bal_leaf1 : bal 1 Leaf
| bal_node : forall n t1 t2 m,
bal n t1 -> bal n t2 -> bal (S n) (Node m t1 t2).
Derive (Arbitrary, Show) for Tree.
Merge (fun t => bst lo hi t) With (fun t => bal n t)
As bst_bal.
Print bst_bal.
Fixpoint size (t : Tree) : nat :=
match t with
| Leaf => 0
| Node x l r => 1 + max (size l) (size r)
end.
(*
Inductive bstbal : nat -> nat -> nat -> Tree -> Prop :=
| leafleaf0 : forall lo hi, bstbal lo hi 0 Leaf
| leafleaf1 : forall lo hi, bstbal lo hi 1 Leaf
| nodenode : forall lo hi n x l r,
le (S lo) x -> le (S x) hi ->
bstbal lo hi n l -> bstbal x hi n r -> bstbal lo hi (S n) (Node x l r).
Derive ArbitrarySizedSuchThat for (fun t => bal n t).
Derive DecOpt for (bal n t).
Derive EnumSizedSuchThat for (fun n => bal n t).
Definition Empty {A} (e : E A) (n : nat) : bool :=
match (Enumerators.run e n) with
| LazyList.lnil => false
| LazyList.lcons _ _ => true
end.
Derive DecOpt for (le x y).
Derive ArbitrarySizedSuchThat for (fun x => le y x).
QuickChickWeights [ (bst_leaf, 1) ; (bst_node, size) ].
Derive ArbitrarySizedSuchThat for (fun t => bst lo hi t).
Derive ArbitrarySizedSuchThat for (fun t => bstbal a b c t).
Sample (@arbitrarySizeST _ (fun t => bst 0 10 t) _ 5).
Print GenSizedSuchThatbst.
Sample (@arbitrarySizeST _ (fun t => bst 0 42 t) _ 10).
Derive DecOpt for (bst lo hi t).
Check @decOpt.
Check GenSizedSuchThatbst.
Compute (@decOpt (bal 0 Leaf) _ 5).
Definition balBst_any_test :=
forAllMaybe (@arbitrarySizeST _ (fun t => bst 0 42 t) _ 10)
(fun t =>
if Empty (@enumSizeST _ (fun n => bal n t) _ 10) 10
then (collect (size t) (checker true)) else (checker tt)).
(*QuickChick balBst_any_test.*)
Definition balBst_merged :=
forAllMaybe (@arbitrarySizeST _ (fun t => bstbal 0 42 3 t) _ 10)
(fun t => checker true).
(* QuickChick balBst_merged. *)
(*An issue is that these two aren't really comparing the same thing.
Ideally, we should generate trees for which all three parameters can be
anything.*)
Inductive foo : nat -> Prop :=
| Foo1 : foo O
| Foo2 : forall n, foo n -> foo (S n)
| Foo3 : forall n1 n2, foo 0 -> foo (S n1) -> foo (S n2).
(*
Merge (fun t => bst lo hi t) With (fun t => bal n t)
As bstbalmerged.
*)
*)
(*Same variable name test:*)
Inductive P : nat -> Prop :=
| bla_P : forall n, P n.
Inductive Q : nat -> Prop :=
| bla_Q : forall n, Q (S n).
Merge (fun n => P n) With (fun n => Q n) As doesntgetusedanyway.
(*This should have a constructor!*)
Print doesntgetusedanyway.
(*Simple definition test*)
Definition naaat := nat.
Inductive P3 : naaat -> Prop:=.
Inductive Q3 : naaat -> Prop:=.
Merge (fun n => P3 n) With (fun n => Q3 n) As PQ3.
Print PQ3.
Inductive Term : Type :=
| var : nat -> Term
| app : Term -> Term -> Term
| lam : Term -> Term
| const : nat -> Term
| add : Term -> Term -> Term.
Inductive Ty : Type :=
| arr : Ty -> Ty -> Ty
| number : Ty.
(*
Definition Context := list Ty.
*)
Inductive Var : list Ty -> Ty -> nat -> Prop :=
| zero : forall t g, Var (cons t g) t 0
| suc : forall a b g n, Var g a n -> Var (cons b g) a (S n).
Inductive typed : list Ty -> Ty -> Term -> Prop :=
| t_var : forall g n t, Var g t n -> typed g t (var n)
| t_app : forall a b g e1 e2, typed g (arr a b) e1 -> typed g a e2
-> typed g b (app e1 e2)
| t_lam : forall a b g e, typed (cons a g) b e -> typed g (arr a b) (lam e)
| t_const : forall n g, typed g number (const n)
| t_add : forall e1 e2 g, typed g number e1 -> typed g number e2 -> typed g number (add e1 e2).
Theorem falses : nat -> list bool.
Proof.
intros n.
induction n.
- apply nil.
- apply cons. apply false. apply IHn.
Defined.
Inductive nand : bool -> bool -> bool -> Prop :=
| nand_ff : nand false false true
| nand_ft : nand false true true
| nand_tf : nand true false true
| nand_tt : nand true true false.
Inductive combine : list bool -> list bool -> list bool -> Prop :=
| combine_nil : combine nil nil nil
| combine_cons : forall as1 as2 as3 a1 a2 a3, nand a1 a2 a3
-> combine as1 as2 as3 -> combine (cons a1 as1) (cons a2 as2) (cons a3 as3).
Inductive var_linear : list bool -> nat -> Prop :=
| zero_lin : forall n, var_linear (true :: falses n) 0
| suc_lin : forall u n, var_linear u n -> var_linear (cons false u) (S n).
(*
Inductive linear : list bool -> Term -> Prop :=
| l_var : forall u n, var_linear u n -> linear u (var n)
| l_app : forall u1 u2 u3 e1 e2, linear u1 e1 -> linear u2 e2
-> combine u1 u2 u3 -> linear u3 (app e1 e2)
| l_con : forall len n, linear (falses len) (const n)
| l_lam : forall u e, linear (true :: u) e -> linear u (lam e)
| l_add : forall u1 u2 u3 e1 e2, linear u1 e1 -> linear u2 e2
-> combine u1 u2 u3 -> linear u3 (add e1 e2).
*)
Inductive linear : list bool -> Term -> Prop :=
| l_var : forall u_ n_, var_linear u_ n_ -> linear u_ (var n_)
| l_app : forall u1_ u2_ u3_ e1_ e2_, linear u1_ e1_ -> linear u2_ e2_
-> combine u1_ u2_ u3_ -> linear u3_ (app e1_ e2_)
| l_con : forall len_ n_, linear (falses len_) (const n_)
| l_lam : forall u_ e_, linear (true :: u_) e_ -> linear u_ (lam e_)
| l_add : forall u1_ u2_ u3_ e1_ e2_, linear u1_ e1_ -> linear u2_ e2_
-> combine u1_ u2_ u3_ -> linear u3_ (add e1_ e2_).
Merge (fun t => typed gamma ty t) With (fun t => linear used t) As typed_and_linear.
Print typed_and_linear.
Axiom sub : Term -> Term -> Term.
Inductive Even : nat -> Prop :=
| Z_Even : Even 0
| SS_Even : forall n, Even n -> Even (S (S n)).
Inductive Odd : nat -> Prop :=
| SZ_Odd : Odd 1
| SS_Odd : forall n, Odd n -> Odd (S (S n)).
Merge (fun n => Even n) With (fun n => Odd n) As EO.
Print EO.
Inductive step : Term -> Term -> Prop :=
| beta_step : forall e1 e2,
step (app (lam e1) e2) (sub e1 e2).
Print typed.
Merge (fun t => typed gamma ty t) With (fun t => step t t2) As steptype.
Print steptype.
Inductive less : nat -> nat -> Prop :=
| less_n : forall n, less n n
| less_S : forall m n, less n m -> less n (S m).
Merge (fun y => less x y) With (fun y => less y z) As between.
Print between.
|