File: TacticExample.v

package info (click to toggle)
coq-quickchick 2.1.1-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,432 kB
  • sloc: ml: 4,367; ansic: 789; makefile: 388; sh: 27; python: 4; lisp: 2; perl: 2
file content (534 lines) | stat: -rw-r--r-- 16,136 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
From QuickChick Require Import QuickChick.
From Coq Require Import Nat Arith.

Extract Constant Test.defNumTests => "1000".

Definition to_be_generated :=
  forAll arbitrary (fun x =>
  forAll arbitrary (fun y =>
  if (x = y)? then checker ((x = 0)?)
  else checker tt)).

(* QuickChickDebug Debug On. *)
Theorem foo : forall (x y : nat) , x < 8.
Proof. quickchick. Admitted.

Theorem add_comm : forall n m : nat,
  n + m = m + n.
Proof. quickchick. Admitted.

Theorem add_assoc : forall n m p : nat,
  n + (m + p) = (n + m) + p.
Proof. quickchick. Admitted.

Local Open Scope nat_scope.

Theorem plus_leb_compat_l : forall (n m p : nat),
  (Nat.leb n m = true) -> (((p + n) <=? (p + m)) = true).
Proof. quickchick. Admitted.

(* ################################################################# *)

Inductive bin : Type :=
  | Z
  | B0 (n : bin)
  | B1 (n : bin)
.

Derive (Arbitrary, Show) for bin.

Fixpoint bineq (n m : bin) : bool :=
  match n, m with
  | Z, Z => true
  | B0 n, B0 m => bineq n m
  | B1 n, B1 m => bineq n m
  | _,_ => false
  end.

Fixpoint incr (m:bin) : bin :=
  match m with
  | Z => B1 Z
  | B0 m' => B1 m'
  | B1 m' => B0 (incr m')
  end.

Fixpoint bin_to_nat (m:bin) : nat :=
  match m with
  | Z => O
  | B0 m' => double (bin_to_nat m')
  | B1 m' => S (double (bin_to_nat m'))
  end.

Theorem bin_to_nat_pres_incr : forall b : bin,
  bin_to_nat (incr b) = 1 + bin_to_nat b.
Proof. quickchick. Admitted.

Fixpoint nat_to_bin (n:nat) : bin :=
  match n with
  | O => Z
  | S n' => incr (nat_to_bin n')
  end.

Theorem nat_bin_nat : forall n, bin_to_nat (nat_to_bin n) = n.
Proof. quickchick. Admitted.
(* ################################################################# *)

Inductive natlist : Type :=
  | nil'
  | cons' (n : nat) (l : natlist).

Derive Show for natlist.
Derive Arbitrary for natlist.
#[global] Instance Dec_eq_natlist (l l' : natlist) : Dec (l = l').
Proof. dec_eq. Defined.

Fixpoint app' (l l' : natlist) : natlist :=
  match l with
  | nil' => l'
  | cons' h l => cons' h (app' l l')
  end.

Fixpoint rev' (l:natlist) : natlist :=
  match l with
  | nil'    => nil'
  | cons' h t => app' (rev' t) (cons' h nil')
  end.

Fixpoint length' (l : natlist) : nat :=
  match l with
  | nil' => 0
  | cons' _ t => S (length' t)
  end.

Theorem app_length : forall l1 l2 : natlist,
  length' (app' l1 l2) = ((length' l1) + (length' l2)).
Proof. quickchick. Admitted.

Theorem rev_app_distr: forall l1 l2 : natlist,
  rev' (app' l1 l2) = app' (rev' l2) (rev' l1).
Proof. quickchick. Admitted.
Theorem rev_involutive : forall l : natlist,
  rev' (rev' l) = l.
Proof. quickchick. Admitted.

Theorem rev_injective : forall (l1 l2 : natlist),
  rev' l1 = rev' l2 -> l1 = l2.
Proof. quickchick. Admitted.



(*From Coq Require Import Strings.String.*)


(* ================================================================= *)

Inductive ty : Type :=
  | Ty_Bool  : ty
  | Ty_Arrow : ty -> ty -> ty.

(* ================================================================= *)

Inductive tm : Type :=
  | tm_var   : string -> tm
  | tm_app   : tm -> tm -> tm
  | tm_abs   : string -> ty -> tm -> tm
  | tm_true  : tm
  | tm_false : tm
  | tm_if    : tm -> tm -> tm -> tm.


Declare Custom Entry stlc.
Notation "<{ e }>" := e (e custom stlc at level 99).
Notation "( x )" := x (in custom stlc, x at level 99).
Notation "x" := x (in custom stlc at level 0, x constr at level 0).
Notation "S -> T" := (Ty_Arrow S T) (in custom stlc at level 50, right associativity).
Notation "x y" := (tm_app x y) (in custom stlc at level 1, left associativity).
Notation "\ x : t , y" :=
  (tm_abs x t y) (in custom stlc at level 90, x at level 99,
                     t custom stlc at level 99,
                     y custom stlc at level 99,
                     left associativity).
Coercion tm_var : string >-> tm.

Notation "'Bool'" := Ty_Bool (in custom stlc at level 0).
Notation "'if' x 'then' y 'else' z" :=
  (tm_if x y z) (in custom stlc at level 89,
                    x custom stlc at level 99,
                    y custom stlc at level 99,
                    z custom stlc at level 99,
                    left associativity).
Notation "'true'"  := true (at level 1).
Notation "'true'"  := tm_true (in custom stlc at level 0).
Notation "'false'"  := false (at level 1).
Notation "'false'"  := tm_false (in custom stlc at level 0).
Definition x : string := "x".
Definition y : string := "y".
Definition z : string := "z".
#[local] Hint Unfold x : core.
#[local] Hint Unfold y : core.
#[local] Hint Unfold z : core.

Inductive value : tm -> Prop :=
  | v_abs : forall x T2 t1,
      value <{\x:T2, t1}>
  | v_true :
      value <{true}>
  | v_false :
    value <{false}>.

Inductive value_set : tm -> Set :=
  | vs_abs : forall x T2 t1,
    value_set <{\x : T2, t1}>
  | vs_true : value_set <{true}>
  | vs_false : value_set <{false}>
.


(*Derive show and Arbitrary*)
Derive Show for ty.
Derive Arbitrary for ty.
Check elems_.
#[export] Instance Gen_var : Gen string :=
  {arbitrary := elems_ x (cons x (cons y (cons z nil)))}.

#[export] Instance shrink_var : Shrink string :=
  {shrink := fun s => match s with
                      | "x"%string => cons y (cons z nil)
                      | "y"%string => cons z nil
                      | _ => nil
                      end}.

Derive Arbitrary for tm.
Derive Show for tm.

(*Create Dec eq instances*)
#[export] Instance Dec_eq_ty (T T' : ty) : Dec (T = T').
Proof.
  constructor.
  unfold ssrbool.decidable.
  decide equality.
Defined.

#[export] Instance Dec_Eq_ty : Dec_Eq ty.
Proof. constructor. intros. apply Dec_eq_ty. Defined.

#[global] Instance Dec_eq_option {X} `{Dec_Eq X} (x x' : option X) : Dec (x = x').
Proof. dec_eq. Defined.

#[global] Instance Dec_eq_tm (t t' : tm) : Dec (t = t').
Proof. dec_eq. Defined.

#[export] Instance Dec_value (t : tm) : Dec (value t).
Proof. destruct t; dec_eq; try (right; intros c; inversion c; fail); left; constructor; constructor.
 Defined.

#[global] Hint Constructors value : core.

(* ================================================================= *)

Reserved Notation "'[' x ':=' s ']' t" (in custom stlc at level 20, x constr).

Fixpoint subst (x : string) (s : tm) (t : tm) : tm :=
  match t with
  | tm_var y =>
      if String.eqb x y then s else t
  | <{\y:T, t1}> =>
      if String.eqb x y then t else <{\y:T, [x:=s] t1}>
  | <{t1 t2}> =>
      <{([x:=s] t1) ([x:=s] t2)}>
  | <{true}> =>
      <{true}>
  | <{false}> =>
      <{false}>
  | <{if t1 then t2 else t3}> =>
      <{if ([x:=s] t1) then ([x:=s] t2) else ([x:=s] t3)}>
  end

where "'[' x ':=' s ']' t" := (subst x s t) (in custom stlc).
Check <{[x:=true] x}>.


Print tm.
Inductive substi (s : tm) (x : string) : tm -> tm -> Prop :=
  | s_var_eq :
      substi s x (tm_var x) s
  | s_var_neq : forall y,
      x <> y ->
      substi s x (tm_var y) (tm_var y)
  | s_abs_eq : forall T e,
      substi s x (tm_abs x T e) (tm_abs x T e)
  | s_abs_neq : forall y T e e',
      x <> y ->
      substi s x e e' ->
      substi s x (tm_abs y T e) (tm_abs y T e')
  | s_app : forall f y f' y',
      substi s x f f' ->
      substi s x y y' ->
      substi s x (tm_app f y) (tm_app f' y')
  | s_true : substi s x tm_true tm_true
  | s_false : substi s x tm_false tm_false
  | s_if : forall b b' t t' f f',
      substi s x b b' ->
      substi s x t t' ->
      substi s x f f' ->
      substi s x (tm_if b t f) (tm_if b' t' f')
.

#[global] Hint Constructors substi : core.

(*Derive show and arbitrary*)

Ltac gen x := generalize dependent x.

#[export] Instance Dec_Eq_tm : Dec_Eq tm.
Proof. dec_eq. Defined.

Theorem substi_exists : forall s x t,  { t' | substi s x t t'}.
Proof.
  intros s x0 t; induction t; intros; eauto.
  - destruct (dec_eq x0 s0); subst; eauto.
  - destruct IHt1, IHt2; eauto.
  - destruct (dec_eq x0 s0), IHt; subst; eauto.
  - destruct IHt1, IHt2, IHt3; eauto.
Qed.
Theorem substi_uniq : forall s x t t' t'', substi s x t t' -> substi s x t t'' -> t' = t''.
Proof.
  intros s x t. induction t; intros; inversion H0; inversion H; subst; eauto;
    try (exfalso; eauto; fail).
  - f_equal.
    + apply IHt1; auto.
    + apply IHt2; auto.
  - f_equal; apply IHt; auto.
  - f_equal.
    + apply IHt1; auto.
    + apply IHt2; auto.
    + apply IHt3; auto.
Qed.

#[export] Instance Dec_substi (s : tm) (x : string) (t t' : tm) : Dec (substi s x t t').
Proof with try (right; intros c; inversion c; subst; eauto; fail).
  dec_eq.
  gen t'. gen x. gen s. induction t; intros; try (right; intros c; inversion c; fail).
  - destruct (dec_eq x0 s).
    + subst. destruct (dec_eq s0 t'); subst...
      left; constructor.
    + destruct (dec_eq (tm_var s) t'); subst...
      left; constructor; auto.
  - destruct (substi_exists s x0 t1), (substi_exists s x0 t2).
    destruct (dec_eq (tm_app x1 x2) t').
    + subst. auto.
    + right. intros c. assert (substi s x0 <{t1 t2}> <{x1 x2}>) by (econstructor; eauto).
      eapply substi_uniq in H; eauto.
  - destruct (dec_eq x0 s).
    + subst. destruct (dec_eq (<{ \ s : t, t0 }>) t'); subst...
      left; constructor.
    + destruct (substi_exists s0 x0 t0). destruct (dec_eq <{ \s : t, x1 }> t'); subst; auto.
      right. intros c.
      assert (substi s0 x0 <{\s : t, t0}> <{\s : t, x1}>) by (econstructor; eauto).
      eapply substi_uniq in H; eauto.
  - destruct (dec_eq tm_true t'); subst... left; auto.
  - destruct (dec_eq tm_false t'); subst... left; auto.
  - destruct (substi_exists s x0 t1), (substi_exists s x0 t2), (substi_exists s x0 t3).
    destruct (dec_eq (tm_if x1 x2 x3) t').
    + subst; auto.
    + right; intros c;
        assert (substi s x0 (tm_if t1 t2 t3) (tm_if x1 x2 x3)) by (econstructor; eauto).
      eapply substi_uniq in H; eauto.
Defined.

(* In the test suite we mainly care that this runs at all, so we lower Test.defNumTests to not waste 5 sec per test. *)
(* Even though most of the tests are discarded. *)
Extract Constant Test.defNumTests => "100".

Theorem substi_correct_l : forall s x (ts t' : tm),
  subst x s ts = t' -> substi s x ts t'.
Proof.
  quickchick. Admitted.

Theorem substi_correct_r : forall s x (ts t' : tm),
  substi s x ts t' -> subst x s ts = t'.
Proof.
  quickchick. Admitted.



(* ================================================================= *)


Reserved Notation "t '-->' t'" (at level 40).

Inductive step : tm -> tm -> Prop :=
  | ST_AppAbs : forall x T2 t1 v2,
         value v2 ->
         <{(\x:T2, t1) v2}> --> <{ [x:=v2]t1 }>
  | ST_App1 : forall t1 t1' t2,
         t1 --> t1' ->
         <{t1 t2}> --> <{t1' t2}>
  | ST_App2 : forall v1 t2 t2',
         value v1 ->
         t2 --> t2' ->
         <{v1 t2}> --> <{v1  t2'}>
  | ST_IfTrue : forall t1 t2,
      <{if true then t1 else t2}> --> t1
  | ST_IfFalse : forall t1 t2,
      <{if false then t1 else t2}> --> t2
  | ST_If : forall t1 t1' t2 t3,
      t1 --> t1' ->
      <{if t1 then t2 else t3}> --> <{if t1' then t2 else t3}>

where "t '-->' t'" := (step t t').

Derive DecOpt for (step t t').

Reserved Notation "Gamma '|--' t '\in' T"
            (at level 101,
             t custom stlc, T custom stlc at level 0).
(* Print Grammar constr. *)

Definition t_update (Gamma : string -> option ty) (x : string) (T : ty) (x' : string) : option ty :=
  if (x = x')? then Some T else Gamma x'.

Inductive has_type : (string -> option ty) -> tm -> ty -> Prop :=
  | T_Var : forall Gamma x T1,
      Gamma x = Some T1 ->
      Gamma |-- x \in T1
  | T_Abs : forall Gamma x T1 T2 t1,
      t_update Gamma x T2 |-- t1 \in T1 ->
      Gamma |-- \x:T2, t1 \in (T2 -> T1)
  | T_App : forall T1 T2 Gamma t1 t2,
      Gamma |-- t1 \in (T2 -> T1) ->
      Gamma |-- t2 \in T2 ->
      Gamma |-- t1 t2 \in T1
  | T_True : forall Gamma,
       Gamma |-- true \in Bool
  | T_False : forall Gamma,
       Gamma |-- false \in Bool
  | T_If : forall t1 t2 t3 T1 Gamma,
       Gamma |-- t1 \in Bool ->
       Gamma |-- t2 \in T1 ->
       Gamma |-- t3 \in T1 ->
       Gamma |-- if t1 then t2 else t3 \in T1

where "Gamma '|--' t '\in' T" := (has_type Gamma t T).
Print tm.

Definition bindop {A B} (ma : option A) (f : A -> option B) : option B :=
  match ma with
  | None => None
  | Some a => f a
  end.
Print ty.
Fixpoint type_eqb (T T' : ty) : bool :=
  match T, T' with
  | Ty_Bool, Ty_Bool => true
  | Ty_Arrow l r, Ty_Arrow l' r' => (type_eqb l l') && (type_eqb r r')
  | _, _ => false
  end.

Theorem type_eq_eqb : forall T T',  type_eqb T T' = true <-> T = T'.
Proof.
  induction T; intros; destruct T'; simpl in *;
    split; intros; auto; try discriminate.
  - rewrite Bool.andb_true_iff in H. destruct H. apply IHT1 in H.
    apply IHT2 in H0. subst; auto.
  - injection H as H. subst; simpl; auto.
    assert (forall T, type_eqb T T = true).
    + induction T; simpl; auto. rewrite IHT3, IHT4; auto.
    + do 2 rewrite H. auto.
  Qed.

Fixpoint type_of (Gamma : string -> option ty) (t : tm) : option ty :=
  match t with
  | tm_var s => Gamma s
  | tm_abs x T e => bindop (type_of (t_update Gamma x T) e)
                      (fun T' => Some <{T -> T'}>)
  | tm_app f e =>
      bindop (type_of Gamma f) (fun T21 =>
       match T21 with
       | <{T2 -> T1}> =>
           bindop (type_of Gamma e) (fun T2' =>
               if type_eqb T2 T2' then Some T1 else None
             )
       | _ => None
       end
        )
  | tm_true | tm_false => Some Ty_Bool
  | tm_if b t f =>
      bindop (type_of Gamma b) (fun Tb =>
      bindop (type_of Gamma t) (fun Tt =>
      bindop (type_of Gamma f) (fun Tf =>
       if andb (type_eqb Tb Ty_Bool) (type_eqb Tt Tf) then
         Some Tt
       else
         None
      )))
  end.

Theorem type_of_correct : forall Gamma t T,
    type_of Gamma t = Some T -> has_type Gamma t T.
Proof.
  intros. gen Gamma; gen T. induction t; intros; simpl 1 in *.
  - constructor; auto.
  - destruct (type_of Gamma t1) eqn: E.
    + simpl in H. rewrite E in H. simpl in H.
      destruct t; try discriminate.
      destruct (type_of Gamma t2) eqn: E'; try discriminate.
      simpl in *.  destruct (type_eqb t3 t) eqn: E''; try discriminate.
      injection H as H. subst. apply type_eq_eqb in E''. subst.
      apply IHt2 in E'. apply IHt1 in E.
      econstructor; eauto.
    + simpl in H. rewrite E in *. discriminate.
  - simpl in *. unfold bindop in H.
    destruct (type_of (t_update Gamma s t) t0) eqn: E; try discriminate.
    injection H as H; subst. constructor.
    apply IHt. apply E.
  - injection H as H; subst. constructor.
  - injection H as H; subst; constructor.
  - simpl in H. destruct (type_of Gamma t1) eqn: E;
      destruct (type_of Gamma t2) eqn: E';
      destruct (type_of Gamma t3) eqn: E''; simpl in H; try discriminate.
    apply IHt1 in E. apply IHt2 in E'. apply IHt3 in E''.
    destruct (type_eqb t <{ Bool }> && type_eqb t0 t4)%bool eqn: E''';
      try discriminate.
    injection H as H; subst. apply Bool.andb_true_iff in E'''.
    destruct E'''. apply type_eq_eqb in H, H0. subst.
    constructor; auto.
Qed.

Definition decopt_has_type (Gamma : string -> option ty) (t : tm) (T : ty) (n : nat) : option bool := bindop (type_of Gamma t) (fun T' => Some ((T = T')?)).

#[export] Instance DecOpt_has_type (Gamma : string -> option ty) (t : tm) (T : ty) : DecOpt (has_type Gamma t T).
Proof.
  constructor. apply decopt_has_type; auto.
  Defined.

#[global] Hint Constructors has_type : core.

Definition empty_env : string -> option ty := fun _ => None.

Lemma canonical_forms_bool : forall term,
  empty_env |-- term \in Bool ->
  value term ->
  (term = <{true}>) \/ (term = <{false}>).
Proof. quickchick. Admitted.

(* Quantifying over the type string -> option for Gamma causes bug.
   Failure(id_of_name called with anonymous).
Lemma weakening_empty : forall Gamma e T,
     empty_env |-- e \in T  ->
     has_type Gamma e T.
Proof. quickchick. Admitted.
*)

(* Dep case not handled yet for exists
Theorem progress : forall e T,
  empty_env |-- e \in T ->
  value e \/ exists e', e --> e'.
Proof. quickchick. Admitted.
 *)

Theorem preservation : forall e e' T,
  empty_env |-- e \in T  ->
  e --> e'  ->
  empty_env |-- e' \in T.
Proof. quickchick. Admitted.