1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
From QuickChick Require Import QuickChick Tactics Instances Classes DependentClasses.
Require Import String. Open Scope string.
Require Import List.
From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype seq.
Import ListNotations.
Import QcDefaultNotation. Open Scope qc_scope.
Set Bullet Behavior "Strict Subproofs".
(* Typeclasses eauto := debug. *)
Require Import DependentTest.
(* XXX these instances should be present *)
Existing Instance GenSizedFoo.
Existing Instance ShrinkFoo.
Derive GenSized for Foo.
Inductive tree : Type :=
| Leaf : tree
| Node : nat -> tree -> tree -> tree.
(* Example with two IH *)
Inductive goodTree : nat -> tree -> Prop :=
| GL : goodTree 0 Leaf
| GN : forall k t1 t2 n m, goodTree n t1 ->
goodTree m t2 ->
goodTree m t1 ->
goodTree (S n) (Node k t1 t2).
(* Derive DecOpt for (goodTree n t). *)
Instance DecgoodTree (n : nat) (t : tree) : Dec (goodTree n t).
Admitted.
Instance DecTreeEq (t1 t2 : tree) : Dec (t1 = t2).
dec_eq. Defined.
Existing Instance GenOfGenSized.
Existing Instance genNatSized.
Derive ArbitrarySizedSuchThat for (fun foo => goodTree n foo).
QuickChickDebug Debug On.
Derive SizedProofEqs for (fun foo => goodTree n foo).
Derive SizeMonotonicSuchThatOpt for (fun foo => goodTree n foo).
Derive GenSizedSuchThatCorrect for (fun foo => goodTree n foo).
Derive GenSizedSuchThatSizeMonotonicOpt for (fun foo => goodTree n foo).
Definition genSTgooTree (n : nat) := @arbitraryST _ (fun foo => goodTree n foo) _.
(* Definition genSTgooTreeSound (n : nat) := @STCorrect _ _ (@arbitraryST _ (fun foo => goodTree n foo) _) _. *)
Existing Instance GenSizedSuchThatgoodFooUnif. (* ???? *)
Derive SizeMonotonicSuchThatOpt for (fun (x : Foo) => goodFooUnif input x).
Derive SizedProofEqs for (fun foo => goodFooUnif n foo).
Derive GenSizedSuchThatCorrect for (fun foo => goodFooUnif n foo).
Derive GenSizedSuchThatSizeMonotonicOpt for (fun foo => goodFooUnif n foo).
Definition genSTgoodFooUnif (n : nat) := @arbitraryST _ (fun foo => goodFooUnif n foo) _.
Definition genSTgoodFooUnifSound (n : nat) := @STCorrect _ _ (@arbitraryST _ (fun foo => goodFooUnif n foo) _) _.
(* Interesting. Do we need Global instance?? *)
Existing Instance GenSizedSuchThatgoodFooNarrow. (* Why???? *)
Derive SizeMonotonicSuchThatOpt for (fun foo => goodFooNarrow n foo).
Derive SizedProofEqs for (fun foo => goodFooNarrow n foo).
Derive GenSizedSuchThatCorrect for (fun foo => goodFooNarrow n foo).
Derive GenSizedSuchThatSizeMonotonicOpt for (fun foo => goodFooNarrow n foo).
Definition genSTgoodFooNarrow (n : nat) := @arbitraryST _ (fun foo => goodFooNarrow n foo) _.
Definition genSTgoodFooNarrowSound (n : nat) := @STCorrect _ _ (@arbitraryST _ (fun foo => goodFooNarrow n foo) _) _.
Existing Instance GenSizedSuchThatgoodFooCombo.
Derive SizeMonotonicSuchThatOpt for (fun foo => goodFooCombo n foo).
Derive SizedProofEqs for (fun foo => goodFooCombo n foo).
Derive GenSizedSuchThatCorrect for (fun foo => goodFooCombo n foo).
Derive GenSizedSuchThatSizeMonotonicOpt for (fun foo => goodFooCombo n foo).
Definition genSTgoodFooCombo (n : nat) := @arbitraryST _ (fun foo => goodFooCombo n foo) _.
Definition genSTgoodFooComboSound (n : nat) := @STCorrect _ _ (@arbitraryST _ (fun foo => goodFooCombo n foo) _) _.
Existing Instance GenSizedSuchThatgoodFoo.
Derive SizeMonotonicSuchThatOpt for (fun (x : Foo) => goodFoo input x).
Derive SizedProofEqs for (fun (x : Foo) => goodFoo input x).
Derive GenSizedSuchThatCorrect for (fun foo => goodFoo n foo).
Derive GenSizedSuchThatSizeMonotonicOpt for (fun foo => goodFoo n foo).
Definition genSTgoodFoo (n : nat) := @arbitraryST _ (fun foo => goodFoo n foo) _.
Definition genSTgoodFooSound (n : nat) := @STCorrect _ _ (@arbitraryST _ (fun foo => goodFoo n foo) _) _.
Existing Instance GenSizedSuchThatgoodFooPrec. (* ???? *)
Derive SizeMonotonicSuchThatOpt for (fun (x : Foo) => goodFooPrec input x).
Derive SizedProofEqs for (fun (x : Foo) => goodFooPrec input x).
Derive GenSizedSuchThatCorrect for (fun foo => goodFooPrec n foo).
Derive GenSizedSuchThatSizeMonotonicOpt for (fun foo => goodFooPrec n foo).
Definition genSTgoodFooPrec (n : nat) := @arbitraryST _ (fun foo => goodFooPrec n foo) _.
Definition genSTgoodFooPrecSound (n : nat) := @STCorrect _ _ (@arbitraryST _ (fun foo => goodFooPrec n foo) _) _.
Existing Instance GenSizedSuchThatgoodFooMatch. (* ???? *)
Derive SizeMonotonicSuchThatOpt for (fun foo => goodFooMatch n foo).
Derive SizedProofEqs for (fun foo => goodFooMatch n foo).
Derive GenSizedSuchThatCorrect for (fun foo => goodFooMatch n foo).
Derive GenSizedSuchThatSizeMonotonicOpt for (fun foo => goodFooMatch n foo).
Definition genSTgoodFooMatch (n : nat) := @arbitraryST _ (fun foo => goodFooMatch n foo) _.
Definition genSTgoodFooMatchSound (n : nat) := @STCorrect _ _ (@arbitraryST _ (fun foo => goodFooMatch n foo) _) _.
Existing Instance GenSizedSuchThatgoodFooRec. (* ???? *)
Derive SizeMonotonicSuchThatOpt for (fun (x : Foo) => goodFooRec input x).
Derive SizedProofEqs for (fun (x : Foo) => goodFooRec input x).
Derive GenSizedSuchThatCorrect for (fun foo => goodFooRec n foo).
Derive GenSizedSuchThatSizeMonotonicOpt for (fun foo => goodFooRec n foo).
Definition genSTgoodFooRec (n : nat) := @arbitraryST _ (fun foo => goodFooRec n foo) _.
Definition genSTgoodFooRecSound (n : nat) := @STCorrect _ _ (@arbitraryST _ (fun foo => goodFooRec n foo) _) _.
Inductive goodFooB : nat -> Foo -> Prop :=
| GF1 : goodFooB 2 (Foo2 Foo1)
| GF2 : goodFooB 3 (Foo2 (Foo2 Foo1)).
Derive ArbitrarySizedSuchThat for (fun (x : Foo) => goodFooB input x).
Derive SizedProofEqs for (fun (x : Foo) => goodFooB input x).
Derive SizeMonotonicSuchThatOpt for (fun foo => goodFooB n foo).
Derive GenSizedSuchThatCorrect for (fun foo => goodFooB n foo).
Derive GenSizedSuchThatSizeMonotonicOpt for (fun foo => goodFooB n foo).
Definition genSTgoodFooB (n : nat) := @arbitraryST _ (fun foo => goodFooB n foo) _.
Definition genSTgoodFooBSound (n : nat) := @STCorrect _ _ (@arbitraryST _ (fun foo => goodFooB n foo) _) _.
(* Derive SizeMonotonicSuchThat for (fun foo => goodTree n foo). *)
(* XXX
bug for
| GL : goodTree 0 Leaf
| GN : forall k t1 t2 n, goodTree n t1 ->
~ t1 = t2 ->υ
(* goodTree m t1 -> *)
goodTree (S n) (Node k t1 t2).
*)
Inductive LRTree : tree -> Prop :=
| PLeaf : LRTree Leaf
| PNode :
forall m t1 t2,
~ t1 = Node 2 Leaf Leaf ->
~ Node 4 Leaf Leaf = t1 ->
LRTree t1 ->
LRTree t2 ->
LRTree (Node m t1 t2).
Derive ArbitrarySizedSuchThat for (fun (x : tree) => LRTree x).
(* XXX sucThatMaybe case *)
Instance DecidableLRTree t : Dec (LRTree t).
Proof.
Admitted.
Derive SizedProofEqs for (fun (x : tree) => LRTree x).
Derive SizeMonotonicSuchThatOpt for (fun foo => LRTree foo).
Derive GenSizedSuchThatCorrect for (fun foo => LRTree foo).
Derive GenSizedSuchThatSizeMonotonicOpt for (fun foo => LRTree foo).
Definition genSTLRTree (n : nat) := @arbitraryST _ (fun foo => LRTree foo) _.
Definition genSTLRTreeSound (n : nat) := @STCorrect _ _ (@arbitraryST _ (fun foo => LRTree foo) _) _.
Inductive HeightTree : nat -> tree -> Prop :=
| HLeaf : forall n, HeightTree n Leaf
| HNode :
forall t1 t2 n m,
HeightTree n t1 ->
HeightTree n t2 ->
HeightTree (S n) (Node m t1 t2).
Instance ArbitrarySuchThatEql {A} (x : A) : GenSuchThat A (fun y => eq x y) :=
{| arbitraryST := returnGen (Some x) |}.
(* XXX breaks gen *)
(* Inductive ex_test : tree -> Prop := *)
(* | B : ex_test Leaf *)
(* | Ind : *)
(* forall (list y12 : nat) t, *)
(* list = y12 -> *)
(* ex_test (Node 4 t t). *)
(* Derive ArbitrarySizedSuchThat for (fun (x : tree) => ex_test x). *)
(* Set Printing All. *)
(* Inductive LRTree : tree -> Prop := *)
(* | PLeaf : LRTree Leaf *)
(* | PNode : *)
(* forall m t1 t2, *)
(* Node 2 Leaf Leaf = t1 -> *)
(* t1 = Node 2 Leaf Leaf -> *)
(* LRTree t1 -> *)
(* LRTree t2 -> *)
(* LRTree (Node m t1 t2). *)
(* Inductive test : nat -> Foo -> Prop := *)
(* | T : forall (x : False), test 1 Foo1. *)
(* Derive ArbitrarySizedSuchThat for (fun foo => test n foo). *)
(* Inductive test1 : bool -> Foo -> Prop := *)
(* | T1 : forall (x1 x2 x3 : bool), x1 = x3 -> test1 x2 Foo1. *)
(* Derive ArbitrarySizedSuchThat for (fun foo => test1 n foo). *)
(* Inductive test2 : nat -> Foo -> Prop := *)
(* | T2 : forall (x1 x2 : bool), x1 = x2 -> test2 1 Foo1. *)
(* Derive ArbitrarySizedSuchThat for (fun foo => test2 n foo). *)
(* XXX weird bug when naming binders with name of already existing ids,
e.g. nat, list*)
(* Inductive HeightTree : nat -> tree -> Prop := *)
(* | HLeaf : forall n, HeightTree n Leaf *)
(* | HNode : *)
(* forall t1 t2 n k m, *)
(* k = 3 -> *)
(* HeightTree k t2 -> *)
(* HeightTree k t1 -> *)
(* HeightTree n (Node m t1 t2). *)
(* Inductive goodTree : nat -> tree -> Prop := *)
(* | GL : goodTree 0 Leaf *)
(* | GN : forall k t1 t2 n m, goodTree n t1 -> *)
(* goodTree m t2 -> *)
(* goodTree (n + m + 1) (Node k t1 t2). *)
(* Lemma test2 {A} (gs1 gs2 : nat -> list (nat * G (option A))) s s1 s2 : *)
(* \bigcup_(g in gs1 s1) (semGenSize (snd g) s) \subset \bigcup_(g in gs2 s2) (semGenSize (snd g) s) -> *)
(* semGenSize (backtrack (gs1 s1)) s \subset semGenSize (backtrack (gs2 s2)) s. *)
(* Admitted. *)
(* Goal (forall inp : nat, SizedMonotonic (@arbitrarySizeST Foo (fun (x : Foo) => goodFooRec inp x) _)). *)
(* Proof. *)
(* intros inp. *)
(* constructor. *)
(* intros s s1 s2. *)
(* revert inp. *)
(* induction s1; induction s2; intros. *)
(* - simpl. eapply subset_refl. *)
(* - simpl. *)
(* refine (test *)
(* (fun s => [(1, returnGen (Some Foo1))]) *)
(* (fun s => [(1, returnGen (Some Foo1)); *)
(* (1, *)
(* doM! foo <- *)
(* (fix aux_arb (size0 input0_ : nat) {struct size0} : *)
(* G (option Foo) := *)
(* match size0 with *)
(* | 0 => backtrack [(1, returnGen (Some Foo1))] *)
(* | size'.+1 => *)
(* backtrack *)
(* [(1, returnGen (Some Foo1)); *)
(* (1, doM! foo <- aux_arb size' 0; returnGen (Some (Foo2 foo)))] *)
(* end) s 0; returnGen (Some (Foo2 foo)))]) *)
(* s 0 s2 _). *)
(* admit. *)
(* - ssromega. *)
(* - simpl. *)
(* refine (test *)
(* (fun s => [(1, returnGen (Some Foo1)); *)
(* (1, *)
(* doM! foo <- *)
(* (fix aux_arb (size0 input0_ : nat) {struct size0} : *)
(* G (option Foo) := *)
(* match size0 with *)
(* | 0 => backtrack [(1, returnGen (Some Foo1))] *)
(* | size'.+1 => *)
(* backtrack *)
(* [(1, returnGen (Some Foo1)); *)
(* (1, doM! foo <- aux_arb size' 0; returnGen (Some (Foo2 foo)))] *)
(* end) s 0; returnGen (Some (Foo2 foo)))]) *)
(* (fun s => [(1, returnGen (Some Foo1)); *)
(* (1, *)
(* doM! foo <- *)
(* (fix aux_arb (size0 input0_ : nat) {struct size0} : *)
(* G (option Foo) := *)
(* match size0 with *)
(* | 0 => backtrack [(1, returnGen (Some Foo1))] *)
(* | size'.+1 => *)
(* backtrack *)
(* [(1, returnGen (Some Foo1)); *)
(* (1, doM! foo <- aux_arb size' 0; returnGen (Some (Foo2 foo)))] *)
(* end) s 0; returnGen (Some (Foo2 foo)))]) *)
(* s s1 s2 _). *)
(* admit. *)
Definition success := "Proofs work!".
Print success.
|