1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
From QuickChick Require Import QuickChick Tactics TacticsUtil Instances Classes
DependentClasses CheckerProofs EnumProofs.
Require Import String. Open Scope string.
Require Import List micromega.Lia.
Require Import enumProofs.
Import ListNotations.
From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype seq.
From Ltac2 Require Import Ltac2.
#[local] Open Scope set_scope.
Inductive square_of : nat -> nat -> Prop :=
sq : forall n m, m = n * n -> square_of n m.
Derive EnumSizedSuchThat for (fun x => square_of x n).
Inductive tree1 :=
| Leaf1 : tree1
| Node1 : nat -> tree1 -> tree1 -> tree1.
Inductive perfect' : nat -> tree1 -> Prop :=
| PerfectLeaf : perfect' 0 Leaf1
| PerfectNode : forall x l r n, perfect' n l -> perfect' n r ->
perfect' (S n) (Node1 x l r).
Derive DecOpt for (perfect' n t).
Derive EnumSizedSuchThat for (fun n => perfect' n t).
Inductive perfect : tree1 -> Prop :=
| Perfect : forall n t, perfect' n t -> perfect t.
Derive DecOpt for (perfect t).
Lemma semProdSizeOpt_bicupNone A s (S : set A) :
(\bigcup_(x in [:: returnEnum (@None A)]) semProdSizeOpt x s \subset S).
Proof.
intros x Hin. inv Hin. inv H. inv H0.
- inv H1. congruence.
inv H.
- inv H.
Qed.
Set Bullet Behavior "Strict Subproofs".
Inductive In' {A} : A -> list A -> Prop :=
| In_hd :
forall x l, In' x (cons x l)
| In_tl :
forall x y l, In' x l -> In' x (cons y l).
Derive DecOpt for (In' a l).
Instance DecOptIn'_listSizeMonotonic A {_ : Enum A} {_ : Dec_Eq A}
(x : A) (l : list A) : DecOptSizeMonotonic (In' x l).
Proof. derive_mon (). Qed.
Instance DecOptIn'_list_sound A {_ : Enum A} {_ : Dec_Eq A} (x : A) (l : list A) :
DecOptSoundPos (In' x l).
Proof. derive_sound (). Qed.
Instance DecOptIn'_list_complete A {_ : Enum A} {_ : Dec_Eq A} (x : A) (l : list A) :
DecOptCompletePos (In' x l).
Proof. derive_complete (). Qed.
Derive ArbitrarySizedSuchThat for (fun x => In' x l).
Derive EnumSizedSuchThat for (fun x => In' x l).
Instance EnumSizedSuchThatIn'_SizedMonotonic A {_ : Enum A} {_ : Dec_Eq A} l :
SizedMonotonicOpt (@enumSizeST A _ (EnumSizedSuchThatIn' l)).
Proof. derive_enumST_SizedMonotonic (). Qed.
Instance EnumSizedSuchThatIn'_SizeMonotonic A {_ : Enum A} {_ : Dec_Eq A}
(* `{EnumMonotonic A} *) l :
forall s, SizeMonotonicOpt (@enumSizeST _ _ (EnumSizedSuchThatIn' l) s).
Proof. derive_enumST_SizeMonotonic (). Qed.
Instance EnumSizedSuchThatIn'_Correct A {_ : Enum A} {_ : Dec_Eq A}
(* `{EnumMonotonicCorrect A} *) l :
CorrectSizedST (fun x => In' x l) (@enumSizeST _ _ (EnumSizedSuchThatIn' l)).
Proof. derive_enumST_Correct (). Admitted. (* TODO *)
Derive EnumSizedSuchThat for (fun l => In' x l).
Inductive bst : nat -> nat -> tree1 -> Prop :=
| BstLeaf : forall n1 n2, bst n1 n2 Leaf1
| BstNode : forall min max n t1 t2,
le min max -> le min n -> le n max ->
bst min n t1 -> bst n max t2 ->
bst min max (Node1 n t1 t2).
Derive DecOpt for (le min max).
Derive EnumSizedSuchThat for (fun m => le n m).
Derive EnumSizedSuchThat for (fun t => bst min max t).
Derive ArbitrarySizedSuchThat for (fun m => le n m).
Derive ArbitrarySizedSuchThat for (fun t => bst min max t).
Derive DecOpt for (bst min max t).
Instance EnumSizedSuchThatle_SizedAMonotonic n :
SizedMonotonicOptFP (@enumSizeST _ _ (@EnumSizedSuchThatle n)).
Proof. derive_enumST_SizedMonotonicFP (). Qed.
Instance EnumSizedSuchThatle_SizedMonotonic n :
SizedMonotonicOpt (@enumSizeST _ _ (@EnumSizedSuchThatle n)).
Proof. derive_enumST_SizedMonotonic (). Qed.
Instance EnumSizedSuchThatle_SizeMonotonic n :
forall s, SizeMonotonicOpt (@enumSizeST _ _ (@EnumSizedSuchThatle n) s).
Proof. derive_enumST_SizeMonotonic (). Qed.
Instance EnumSizedSuchThatle_SizeMonotonicFP n :
forall s, SizeMonotonicOptFP (@enumSizeST _ _ (@EnumSizedSuchThatle n) s).
Proof. derive_enumST_SizeMonotonicFP (). Qed.
(* XXX predicate must be eta expanded, otherwise typeclass resolution fails *)
Instance EnumSizedSuchThatle_Correct n :
CorrectSizedST [eta le n] (@enumSizeST _ _ (@EnumSizedSuchThatle n)).
Proof. derive_enumST_Correct (). Qed.
Instance EnumSizedSuchThatbst_SizedMonotonicFP min max :
SizedMonotonicOptFP (@enumSizeST _ _ (@EnumSizedSuchThatbst min max)).
Proof. derive_enumST_SizedMonotonicFP (). Qed.
Instance EnumSizedSuchThatbst_SizedMonotonic min max :
SizedMonotonicOpt (@enumSizeST _ _ (@EnumSizedSuchThatbst min max)).
Proof. derive_enumST_SizedMonotonic (). Qed.
Instance EnumSizedSuchThatbst_SizeMonotonic min max :
forall s, SizeMonotonicOpt (@enumSizeST _ _ (@EnumSizedSuchThatbst min max) s).
Proof. derive_enumST_SizeMonotonic (). Qed.
Instance EnumSizedSuchThatbst_SizeMonotonicFP min max :
forall s, SizeMonotonicOptFP (@enumSizeST _ _ (@EnumSizedSuchThatbst min max) s).
Proof. derive_enumST_SizeMonotonicFP (). Qed.
Instance EnumSizedSuchThatbst_Correct n m :
CorrectSizedST (bst n m) (@enumSizeST _ _ (@EnumSizedSuchThatbst n m)).
Proof. derive_enumST_Correct (). Qed.
(* XXX missing enum list instances. *)
(* Instance EnumSizedSuchThatIn'0_SizedMonotonic A {_ : Enum A} x : *)
(* SizedMonotonicOpt (@enumSizeST _ _ (EnumSizedSuchThatIn'0 x)). *)
(* Proof. derive_enumST_SizedMonotonic (). Qed. *)
Inductive ltest : list nat -> nat -> Prop :=
| ltestnil :
ltest [] 0
| ltestcons :
forall x m' m l,
(m' + 1) = m ->
(* In' m' l -> *)
ltest l m' ->
ltest (x :: l) m.
Derive EnumSizedSuchThat for (fun n => eq x n).
Derive EnumSizedSuchThat for (fun n => eq n x).
Derive DecOpt for (ltest l n).
Instance DecOptltest_listSizeMonotonic l x : DecOptSizeMonotonic (ltest l x).
Proof. derive_mon (). Qed.
Instance DecOptltest_listsound l x : DecOptSoundPos (ltest l x).
Proof. derive_sound (). Qed.
Instance DecOptIn'ltest_complete A {_ : Enum A} {_ : Dec_Eq A} x l :
DecOptCompletePos (ltest x l).
Proof. derive_complete (). Qed.
(* Set Typeclasses Debug. *)
(* QuickChickDebug Debug On. *)
(* XXX error *)
(* Derive EnumSizedSuchThat for (fun l => ltest l n). *)
Inductive goodTree : nat -> tree nat -> Prop :=
| GL : forall a, goodTree 0 (Leaf nat a)
| GN :
forall k t1 t2 n (* m : nat)*),
(* le m n -> *)
goodTree n t1 ->
goodTree n t1 ->
goodTree (S n) (Node nat k t1 t2).
Derive DecOpt for (goodTree n t).
(* XXX this fails if tree has type param A ... *)
Instance DecOptgoodTree_listSizeMonotonic n t : DecOptSizeMonotonic (goodTree n t).
Proof. derive_mon (). Qed.
Instance DecOptgoodTree_list_sound n t : DecOptSoundPos (goodTree n t).
Proof. derive_sound (). Qed.
Instance DecOptgoodTree_list_complete n t : DecOptCompletePos (goodTree n t).
Proof. derive_complete (). Qed.
Derive EnumSizedSuchThat for (fun t => goodTree k t).
Instance EnumSizedSuchThatgoodTree_SizedMonotonic n :
SizedMonotonicOpt (@enumSizeST _ _ (@EnumSizedSuchThatgoodTree n)).
Proof. derive_enumST_SizedMonotonic (). Qed.
Instance EnumSizedSuchThatgoodTree_SizeMonotonic n :
forall s, SizeMonotonicOpt (@enumSizeST _ _ (@EnumSizedSuchThatgoodTree n) s).
Proof. derive_enumST_SizeMonotonic (). Qed.
Instance EnumSizedSuchThatgoodTree_SizedMonotonicFP n :
SizedMonotonicOptFP (@enumSizeST _ _ (@EnumSizedSuchThatgoodTree n)).
Proof. derive_enumST_SizedMonotonicFP (). Qed.
Instance EnumSizedSuchThatgoodTree_SizeMonotonicFP n :
forall s, SizeMonotonicOptFP (@enumSizeST _ _ (@EnumSizedSuchThatgoodTree n) s).
Proof. derive_enumST_SizeMonotonicFP (). Qed.
Instance EnumSizedSuchThatgoodTree_Correct n :
CorrectSizedST (goodTree n) (@enumSizeST _ _ (@EnumSizedSuchThatgoodTree n)).
Proof. derive_enumST_Correct (). Qed.
|