1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
|
open Entries
open Pp
open Constr
open Names
open Declarations
open Libnames
open Util
open Constrexpr
open Constrexpr_ops
open Ppconstr
open Context
open Error
open Pattern
let cnt = ref 0
let fresh_name n : Id.t =
let base = Id.of_string n in
(* [is_visible_name id] returns [true] if [id] is already
used on the Coq side. *)
let is_visible_name id =
try
ignore (Nametab.locate (Libnames.qualid_of_ident id));
true
with Not_found -> false
in
(* Safe fresh name generation. *)
Namegen.next_ident_away_from base is_visible_name
let make_up_name () : Id.t =
let id = fresh_name (Printf.sprintf "mu%d_" (!cnt)) in
cnt := !cnt + 1;
id
#if COQ_VERSION >= (8, 19, 0)
let hole = CAst.make @@ CHole None
#elif COQ_VERSION >= (8, 18, 0)
let hole = CAst.make @@ CHole (None, Namegen.IntroAnonymous)
#else
let hole = CAst.make @@ CHole (None, Namegen.IntroAnonymous, None)
#endif
let id_of_name n =
match n with
| Name x -> x
| Anonymous -> failwith "id_of_name called with anonymous"
(* Everything marked "Opaque" should have its implementation be hidden in the .mli *)
type coq_expr = constr_expr (* Opaque *)
let interp_open_coq_expr env evd e = fst (Constrintern.interp_constr env evd e)
let debug_coq_expr (c : coq_expr) : unit =
let env = Global.env () in
let sigma = Evd.from_env env in
msg_debug (pr_constr_expr env sigma c)
let debug_constr env sigma (c : constr) : unit =
msg_debug (Printer.safe_pr_constr_env env sigma c ++ fnl ())
(* Non-dependent version *)
type var = Id.t (* Opaque *)
let var_of_id x = x
let id_of_var x = x
let var_to_string = Id.to_string
let gVar (x : var) : coq_expr =
CAst.make @@ CRef (qualid_of_ident x,None)
let inject_var (s : string) : var =
Id.of_string s
let qualid_to_coq_expr q =
mkRefC q
(* Maybe this should do checks? *)
let gInject s =
if s = "" then failwith "Called gInject with empty string";
CAst.make @@ CRef (qualid_of_string s, None)
#if COQ_VERSION >= (8, 20, 0)
let gType0 = CAst.make @@ CSort Constrexpr_ops.expr_Type_sort
#elif COQ_VERSION >= (8, 19, 0)
let gType0 = CAst.make @@ CSort (Glob_term.UAnonymous {rigid = UState.UnivRigid})
#else
let gType0 = CAst.make @@ CSort (Glob_term.UAnonymous {rigid = true})
#endif
type ty_param = Id.t (* Opaque *)
let ty_param_to_string (x : ty_param) = Id.to_string x
let inject_ty_param (s : string) : ty_param = Id.of_string s
let gTyParam = mkIdentC
type ty_ctr = qualid (* Opaque *)
let ty_ctr_to_string (x : ty_ctr) = string_of_qualid x
let gInjectTyCtr s =
if s = "" then failwith "Called gInjectTyCtr with empty string";
qualid_of_string s
let gTyCtr = qualid_to_coq_expr
let tyCtrToQualid x = x
type arg = local_binder_expr
let gArg ?assumName:(an=hole) ?assumType:(at=hole) ?assumImplicit:(ai=false) ?assumGeneralized:(ag=false) _ =
let n = match an with
| { CAst.v = CRef (qid, _); loc } -> (loc,Name (qualid_basename qid))
| { CAst.v = CHole _; loc } -> (loc,Anonymous)
| _a -> failwith "This expression should be a name" in
let max_implicit = Glob_term.MaxImplicit in
CLocalAssum ( [CAst.make ?loc:(fst n) @@ snd n],
#if COQ_VERSION >= (8, 20, 0)
None,
#endif
(if ag then Generalized (max_implicit, false)
else if ai then Default max_implicit else Default Glob_term.Explicit),
at )
let arg_to_var (x : arg) =
match x with
#if COQ_VERSION >= (8, 20, 0)
| CLocalAssum ([{CAst.v = id; _}], _, _ ,_ ) -> id_of_name id
#else
| CLocalAssum ([{CAst.v = id; _}], _ ,_ ) -> id_of_name id
#endif
| _ -> qcfail "arg_to_var must be named"
let str_lst_to_string sep (ss : string list) =
List.fold_left (fun acc s -> acc ^ sep ^ s) "" ss
type coq_type =
| Arrow of coq_type * coq_type
| TyCtr of ty_ctr * coq_type list
| TyParam of ty_param
let rec coq_type_size ct =
match ct with
| Arrow (_,ct') -> 1 + coq_type_size ct'
| _ -> 0
let rec coq_type_to_string ct =
match ct with
| Arrow (c1, c2) -> Printf.sprintf "%s -> %s" (coq_type_to_string c1) (coq_type_to_string c2)
| TyCtr (ty_ctr, cs) -> ty_ctr_to_string ty_ctr ^ " " ^ str_lst_to_string " " (List.map coq_type_to_string cs)
| TyParam tp -> ty_param_to_string tp
type constructor = qualid (* Opaque *)
let constructor_to_string (x : constructor) = string_of_qualid x
let gCtr id = qualid_to_coq_expr id
let injectCtr s =
if s = "" then failwith "Called gInject with empty string";
qualid_of_string s
let ty_ctr_to_ctr x = x
let ctr_to_ty_ctr x = x
let num_of_ctrs (c : constructor) =
let env = Global.env () in
let glob_ref = Nametab.global c in
let ((mind,n),_) = Globnames.destConstructRef glob_ref in
let mib = Environ.lookup_mind mind env in
Array.length (mib.mind_packets.(n).mind_consnames)
let belongs_to_inductive (c : constructor) =
(* let env = Global.env () in *)
let glob_ref = Nametab.global c in
Globnames.isIndRef glob_ref
module type Ord_ty_ctr_type = sig
type t = ty_ctr
val compare : t -> t -> int
end
module type Ord_ctr_type = sig
type t = constructor
val compare : t -> t -> int
end
module Ord_ty_ctr = struct
type t = ty_ctr
let compare x y = Stdlib.compare (string_of_qualid x) (string_of_qualid y)
end
module Ord_ctr = struct
type t = constructor
let compare x y = Stdlib.compare (string_of_qualid x) (string_of_qualid y)
end
type ctr_rep = constructor * coq_type
let ctr_rep_to_string (ctr, ct) =
Printf.sprintf "%s : %s" (constructor_to_string ctr) (coq_type_to_string ct)
type sdt_rep = ty_ctr * ty_param list * ctr_rep list
type dt_rep = sdt_rep list
let sdt_rep_to_string (ty_ctr, ty_params, ctrs) =
Printf.sprintf "%s %s :=\n%s" (ty_ctr_to_string ty_ctr)
(str_lst_to_string " " (List.map ty_param_to_string ty_params))
(str_lst_to_string "\n" (List.map ctr_rep_to_string ctrs))
let dt_rep_to_string r =
String.concat "\n" (List.map sdt_rep_to_string r)
(* Supertype of coq_type handling potentially dependent stuff - TODO : merge *)
type dep_type =
| DArrow of dep_type * dep_type (* Unnamed arrows *)
| DProd of (var * dep_type) * dep_type (* Binding arrows *)
| DTyParam of ty_param (* Type parameters - for simplicity *)
| DTyCtr of ty_ctr * dep_type list (* Type Constructor *)
| DCtr of constructor * dep_type list (* Regular Constructor (for dependencies) *)
| DTyVar of var (* Use of a previously captured type variable *)
| DApp of dep_type * dep_type list (* Type-level function applications *)
| DNot of dep_type (* Negation pushed up a level *)
| DHole
module OrdDepType = struct
type t = dep_type
let compare = Stdlib.compare
end
let rec dep_type_to_string dt =
match dt with
| DArrow (d1, d2) -> Printf.sprintf "%s -> %s" (dep_type_to_string d1) (dep_type_to_string d2)
| DProd ((x,d1), d2) -> Printf.sprintf "(%s : %s) -> %s" (var_to_string x) (dep_type_to_string d1) (dep_type_to_string d2)
| DTyCtr (ty_ctr, ds) -> ty_ctr_to_string ty_ctr ^ " " ^ str_lst_to_string " " (List.map dep_type_to_string ds)
| DCtr (ctr, ds) -> constructor_to_string ctr ^ " " ^ str_lst_to_string " " (List.map dep_type_to_string ds)
| DTyParam tp -> Printf.sprintf "(Param : %s)" (ty_param_to_string tp)
| DTyVar tv -> var_to_string tv
| DApp (d, ds) -> Printf.sprintf "(%s $ %s)" (dep_type_to_string d) (str_lst_to_string " " (List.map dep_type_to_string ds))
| DNot d -> Printf.sprintf "~ ( %s )" (dep_type_to_string d)
| DHole -> "_"
type dep_ctr = constructor * dep_type
let dep_ctr_to_string (ctr, dt) =
Printf.sprintf "%s : %s" (constructor_to_string ctr) (dep_type_to_string dt)
type dep_dt = ty_ctr * ty_param list * dep_ctr list * dep_type
let dep_dt_to_string (ty_ctr, ty_params, ctrs, dep_type) =
Printf.sprintf "%s %s :=\n%s\n%s" (ty_ctr_to_string ty_ctr)
(str_lst_to_string " " (List.map ty_param_to_string ty_params))
(str_lst_to_string "\n" (List.map dep_ctr_to_string ctrs))
(dep_type_to_string dep_type)
let rec nthType1 i dt =
match i, dt with
| 1, DArrow (dt1, _)
| 1, DProd ((_, dt1), _) -> dt1
| 1, _ -> failwith "Insufficient arrows"
| _, DArrow (_, dt)
| _, DProd (_, dt) -> nthType1 (i-1) dt
| _, _ -> failwith "Insufficient arrows"
let nthType i dt =
let msg =
"type: " ^ dep_type_to_string dt ^ "\n" ^
(Printf.sprintf "n: %n\n" i)
in
msg_debug (str msg);
nthType1 i dt
let rec dep_result_type dt =
match dt with
| DArrow (_, dt') -> dep_result_type dt'
| DProd (_, dt') -> dep_result_type dt'
| _ -> dt
let rec dep_type_len = function
| DArrow (_, dt')
| DProd (_, dt') -> 1 + dep_type_len dt'
| _ -> 0
(* Option monad *)
let option_map f ox =
match ox with
| Some x -> Some (f x)
| None -> None
let (>>=) m f =
match m with
| Some x -> f x
| None -> None
let isSome m =
match m with
| Some _ -> true
| None -> false
let rec cat_maybes = function
| [] -> []
| (Some x :: mxs) -> x :: cat_maybes mxs
| None :: mxs -> cat_maybes mxs
let foldM f b l = List.fold_left (fun accm x ->
accm >>= fun acc ->
f acc x
) b l
let sequenceM f l =
(foldM (fun acc x -> f x >>= fun x' -> Some (x' :: acc)) (Some []) l) >>= fun l -> Some (List.rev l)
let parse_type_params arity_ctxt =
let param_names =
foldM (fun acc decl ->
match Rel.Declaration.get_name decl with
| Name id -> Some (id :: acc)
| _ -> CErrors.user_err (str "Unnamed type parameter?" ++ fnl ())
) (Some []) arity_ctxt in
param_names
(* For /trunk
Rel.fold_inside
(fun accm decl ->
accm >>= fun acc ->
match Rel.Declaration.get_name decl with
| Name id -> Some (id :: acc)
| Anonymous -> msgerr (str "Unnamed type parameter?" ++ fnl ()); None
) [] arity_ctxt in
param_names
*)
let rec arrowify terminal l =
match l with
| [] -> terminal
| x::xs -> Arrow (x, arrowify terminal xs)
let qualid_to_mib (r : qualid) : mutual_inductive_body =
let (mind, _) = Nametab.global_inductive r in
let env = Global.env () in
let mib = Environ.lookup_mind mind env in
mib
(* Receives number of type parameters and one_inductive_body.
-> Possibly ty_param list as well?
Returns list of constructor representations
*)
let parse_constructors nparams param_names result_ty oib : ctr_rep list option =
let parse_constructor (branch : constructor * constr) =
let (ctr_id, ty_ctr) = branch in
let (_, ty) = Term.decompose_prod_n nparams ty_ctr in
let ctr_pats = if isConst ty then [] else fst (Term.decompose_prod ty) in
let _, pat_types = List.split (List.rev ctr_pats) in
msg_debug (str (string_of_qualid ctr_id) ++ fnl ());
let rec aux i ty =
if isRel ty then begin
msg_debug (int (i + nparams) ++ str " Rel " ++ int (destRel ty) ++ fnl ());
let db = destRel ty in
if i + nparams = db then (* Current inductive, no params *)
Some (TyCtr (qualid_of_ident oib.mind_typename, []))
else (* [i + nparams - db]th parameter *)
try Some (TyParam (List.nth param_names (i + nparams - db - 1)))
with _ -> CErrors.user_err (str "nth failed: " ++ int (i + nparams - db - 1) ++ fnl ())
end
else if isApp ty then begin
#if COQ_VERSION >= (8, 18, 0)
let (ctr, tms) = decompose_app_list ty in
#else
let (ctr, tms) = decompose_app ty in
#endif
foldM (fun acc ty ->
aux i ty >>= fun ty' -> Some (ty' :: acc)
) (Some []) tms >>= fun tms' ->
begin match aux i ctr with
| Some (TyCtr (c, _)) -> Some (TyCtr (c, List.rev tms'))
(* | Some (TyParam p) -> Some (TyCtr (p, tms')) *)
| None -> CErrors.user_err (str "Aux failed?" ++ fnl ())
| _ -> failwith "aux failed to return a TyCtr"
end
end
else if isInd ty then begin
let ((mind, i), _) = destInd ty in
let mib = qualid_to_mib @@ qualid_of_ident (Label.to_id (MutInd.label mind)) in
let oib = mib.mind_packets.(i) in
Some (TyCtr (qualid_of_ident @@ (oib.mind_typename), []))
end
else if isConst ty then begin
let (c,_) = destConst ty in
(* TODO: Rethink this for constants? *)
Some (TyCtr (qualid_of_ident (Label.to_id (Constant.label c)), []))
end
else CErrors.user_err (str "Case Not Handled" ++ fnl())
in sequenceM (fun x -> x) (List.mapi aux (List.map (Vars.lift (-1)) pat_types)) >>= fun types ->
Some (ctr_id, arrowify result_ty types)
in
let (cns : qualid list) = List.map qualid_of_ident (Array.to_list oib.mind_consnames) in
let map (ctx, t) = Term.it_mkProd_or_LetIn t ctx in
let lc = Array.map_to_list map oib.mind_nf_lc in
sequenceM parse_constructor (List.combine cns lc)
(* Convert mutual_inductive_body to this representation, if possible *)
let dt_rep_from_mib (mib : mutual_inductive_body) : dt_rep option =
let dt_rep_from_oib (oib : one_inductive_body) : sdt_rep option =
let ty_ctr = oib.mind_typename in
parse_type_params oib.mind_arity_ctxt >>= fun ty_params ->
let result_ctr = TyCtr (qualid_of_ident ty_ctr, List.map (fun x -> TyParam x) ty_params) in
parse_constructors mib.mind_nparams ty_params result_ctr oib >>= fun ctr_reps ->
Some (qualid_of_ident ty_ctr, ty_params, ctr_reps)
in
Array.fold_left
(fun dt oib -> dt >>= fun (dt : sdt_rep list) ->
dt_rep_from_oib oib >>=
fun (sdt : sdt_rep) -> Some (sdt::dt))
(Some [])
mib.mind_packets
let qualid_to_mib r =
let env = Global.env () in
let glob_ref = Nametab.global r in
let (mind,_) = Globnames.destIndRef glob_ref in
let mib = Environ.lookup_mind mind env in
mib
(* Legacy dt_rep_from_mib that fails on mutually inductive definitions *)
let sdt_rep_from_mib (mib : mutual_inductive_body) : sdt_rep option =
if Array.length mib.mind_packets > 1 then
CErrors.user_err (str "Mutual inductive types not supported yet." ++ fnl())
else
dt_rep_from_mib mib >>= fun dt -> Some (List.hd dt)
let coerce_reference_to_dt_rep (c : constr_expr) : dt_rep option =
let r = match c with
| { CAst.v = CRef (r,_);_ } -> r
| _ -> failwith "Not a reference"
in
let mib : mutual_inductive_body = qualid_to_mib r in
dt_rep_from_mib mib
(* Dependent derivations - lots of code reuse *)
(* Input : arity_ctxt [Name, Body (option) {expected None}, Type]
In reverse order.
ASSUME: all type parameters are first
Output: all type parameters (named arguments of type : Type)
in correct order *)
let dep_parse_type_params arity_ctxt =
let param_names =
foldM (fun acc decl ->
match Rel.Declaration.get_name decl with
| Name id ->
(* Actual parameters are named of type Type with some universe *)
if is_Type (Rel.Declaration.get_type decl) then Some (id :: acc) else Some acc
| _ -> (* Ignore *) Some acc
) (Some []) arity_ctxt in
param_names
let rec dep_arrowify terminal names types =
match names, types with
| [], [] -> terminal
| (Name x)::ns , t::ts -> DProd ((x,t), dep_arrowify terminal ns ts)
| Anonymous::ns, t::ts -> DArrow (t, dep_arrowify terminal ns ts)
| _, _ -> failwith "Invalid argument to dep_arrowify"
(* parse a type into a dep_type option
i : index of product (for DeBruijn)
nparams : number of <Type> parameters in the beginning
arg_names : argument names (type parameters, pattern specific variables
*)
let parse_dependent_type_internal i nparams ty oibopt arg_names =
let rec aux i ty =
let env = Global.env () in
let sigma = Evd.from_env env in
msg_debug (str "Calling aux with: " ++ int i ++ str " "
++ Printer.pr_constr_env env sigma ty ++ fnl());
if isRel ty then begin
(* msgerr (int (i + nparams) ++ str " Rel " ++ int (destRel ty) ++ fnl ()); *)
let db = destRel ty in
if i + nparams = db then (* Current inductive, no params *)
Some (DTyCtr (qualid_of_ident (let Some oib = oibopt in oib.mind_typename), []))
else begin (* [i + nparams - db]th parameter *)
msg_debug (str (Printf.sprintf "Non-self-rel: %s" (dep_type_to_string (List.nth arg_names (i + nparams - db - 1)))) ++ fnl ());
try Some (List.nth arg_names (i + nparams - db - 1))
with _ -> CErrors.user_err (str "nth failed: " ++ int i ++ str " " ++ int nparams ++ str " " ++ int db ++ str " " ++ int (i + nparams - db - 1) ++ fnl ())
end
end
else if isApp ty then begin
#if COQ_VERSION >= (8, 18, 0)
let (ctr, tms) = decompose_app_list ty in
#else
let (ctr, tms) = decompose_app ty in
#endif
foldM (fun acc ty ->
aux i ty >>= fun ty' -> Some (ty' :: acc)
) (Some []) tms >>= fun tms' ->
match aux i ctr with
| Some (DTyCtr (c, _)) -> Some (DTyCtr (c, List.rev tms'))
| Some (DCtr (c, _)) -> Some (DCtr (c, List.rev tms'))
| Some (DTyVar x) ->
let xs = var_to_string x in
if xs = "Coq.Init.Logic.not" || xs = "not" then
match tms' with
| [c] -> Some (DNot c)
| _ -> failwith "Not a valid negation"
else Some (DApp (DTyVar x, List.rev tms'))
| Some wat -> CErrors.user_err (str ("WAT: " ^ dep_type_to_string wat) ++ fnl ())
| None -> CErrors.user_err (str "Aux failed?" ++ fnl ())
end
else if isInd ty then begin
let ((mind, midx),_) = destInd ty in
let mib = Environ.lookup_mind mind env in
let id = mib.mind_packets.(midx).mind_typename in
(* msg_debug (str (Printf.sprintf "LOOK HERE: %s - %s - %s" (MutInd.to_string mind) (Label.to_string (MutInd.label mind))
(Id.to_string (Label.to_id (MutInd.label mind)))) ++ fnl ());*)
Some (DTyCtr (qualid_of_ident id, []))
end
else if isConstruct ty then begin
let (((mind, midx), idx),_) = destConstruct ty in
(* Lookup the inductive *)
let env = Global.env () in
let mib = Environ.lookup_mind mind env in
(* let (mp, _dn, _) = MutInd.repr3 mind in *)
(* HACKY: figure out better way to qualify constructors *)
let names = String.split_on_char '.' (MutInd.to_string mind) in
let prefix = List.rev (List.tl (List.rev names)) in
let qual = String.concat "." prefix in
#if COQ_VERSION >= (9, 1, 0)
let cwd_string = Libnames.string_of_path (Lib.cwd()) in
#else
let cwd_string = (DirPath.to_string (Lib.cwd ())) in
#endif
msg_debug (str (Printf.sprintf "CONSTR: %s %s" qual cwd_string) ++ fnl ());
(* Constructor name *)
let cname = Id.to_string (mib.mind_packets.(midx).mind_consnames.(idx - 1)) in
let cid = qualid_of_string (if (qual = "") || (qual = cwd_string)
then cname else qual ^ "." ^ cname) in
Some (DCtr (cid, []))
end
else if isProd ty then begin
let (n, t1, t2) = destProd ty in
(* Are the 'i's correct? *)
aux i t1 >>= fun t1' ->
aux i t2 >>= fun t2' ->
Some (DProd ((id_of_name n.binder_name, t1'), t2'))
end
(* Rel, App, Ind, Construct, Prod *)
else if isConst ty then begin
let (x,_) = destConst ty in
Some (DTyVar (Label.to_id (Constant.label x)))
end
else (
let env = Global.env() in
let sigma = Evd.from_env env in
CErrors.user_err (str "Dep Case Not Handled: " ++ Printer.pr_constr_env env sigma ty ++ fnl())
) in
aux i ty
let parse_dependent_type ty =
let (ctr_pats, result) = if isConst ty then ([],ty) else Term.decompose_prod ty in
let pat_names, pat_types = List.split (List.rev ctr_pats) in
let pat_names = List.map (fun n -> n.binder_name) pat_names in
let arg_names =
List.map (fun n -> match n with
| Name x -> DTyVar x
| Anonymous -> DTyVar (make_up_name ()) (* Make up a name, but probably can't be used *)
) pat_names in
parse_dependent_type_internal (1 + (List.length ctr_pats)) 0 result None arg_names >>= fun result_ty ->
sequenceM (fun x -> x) (List.mapi (fun i ty -> parse_dependent_type_internal i 0 ty None arg_names) (List.map (Vars.lift (-1)) pat_types)) >>= fun types ->
Some (dep_arrowify result_ty pat_names types)
let dep_parse_type nparams param_names arity_ctxt oib =
let len = List.length arity_ctxt in
(* Only type parameters can be used - no dependencies on the types *)
let arg_names = List.map (fun x -> DTyParam x) param_names in
foldM (fun acc (i, decl) ->
let n = Rel.Declaration.get_name decl in
let t = Rel.Declaration.get_type decl in
let env = Global.env () in
let sigma = Evd.from_env env in
debug_constr env sigma t;
match n with
| Name id -> (* Check if it is a parameter to add its type / name *)
if is_Type t then Some acc
else parse_dependent_type_internal i nparams t (Some oib) arg_names >>= fun dt -> Some ((n,dt) :: acc)
| _ -> parse_dependent_type_internal i nparams t (Some oib) arg_names >>= fun dt -> Some ((n,dt) :: acc)
) (Some []) (List.mapi (fun i x -> (len - nparams - i, x)) arity_ctxt) >>= fun nts ->
let (names, types) = List.split nts in
Some (dep_arrowify (DTyCtr (injectCtr "Prop", [])) names types)
(* Dependent version:
nparams is numver of Type parameters
param_names are type parameters (length = nparams)
Returns list of constructor representations
*)
let dep_parse_constructors nparams param_names oib : dep_ctr list option =
let parse_constructor branch : dep_ctr option =
let (ctr_id, ty_ctr) = branch in
let (_, ty) = Term.decompose_prod_n nparams ty_ctr in
let (ctr_pats, result) = if isConst ty then ([],ty) else Term.decompose_prod ty in
let pat_names, pat_types = List.split (List.rev ctr_pats) in
let pat_names = List.map (fun n -> n.binder_name) pat_names in
let arg_names =
List.map (fun x -> DTyParam x) param_names @
List.map (fun n -> match n with
| Name x -> DTyVar x
| Anonymous -> DTyVar (make_up_name ()) (* Make up a name, but probably can't be used *)
) pat_names in
(* msgerr (str "Calculating result type" ++ fnl ()); *)
parse_dependent_type_internal (1 + (List.length ctr_pats)) nparams result (Some oib) arg_names >>= fun result_ty ->
(* msgerr (str "Calculating types" ++ fnl ()); *)
sequenceM (fun x -> x) (List.mapi (fun i ty -> parse_dependent_type_internal i nparams ty (Some oib) arg_names) (List.map (Vars.lift (-1)) pat_types)) >>= fun types ->
Some (ctr_id, dep_arrowify result_ty pat_names types)
in
let cns = List.map qualid_of_ident (Array.to_list oib.mind_consnames) in
let map (ctx, t) = Term.it_mkProd_or_LetIn t ctx in
let lc = Array.map_to_list map oib.mind_nf_lc in
sequenceM parse_constructor (List.combine cns lc)
let dep_dt_from_mib mib =
if Array.length mib.mind_packets > 1 then begin
CErrors.user_err (str "Mutual inductive types not supported yet." ++ fnl())
end else
let oib = mib.mind_packets.(0) in
let ty_ctr = oib.mind_typename in
dep_parse_type_params oib.mind_arity_ctxt >>= fun ty_params ->
List.iter (fun tp -> msg_debug (str (ty_param_to_string tp) ++ fnl ())) ty_params;
dep_parse_constructors (List.length ty_params) ty_params oib >>= fun ctr_reps ->
dep_parse_type (List.length ty_params) ty_params oib.mind_arity_ctxt oib >>= fun result_ty ->
Some (qualid_of_ident ty_ctr, ty_params, ctr_reps, result_ty)
let coerce_reference_to_dep_dt c =
let r = match c with
| { CAst.v = CRef (r,_); _ } -> r
| _ -> failwith "Not a reference" in
let env = Global.env () in
let glob_ref = Nametab.global r in
let (mind,_) = Globnames.destIndRef glob_ref in
let mib = Environ.lookup_mind mind env in
dep_dt_from_mib mib
let gApp ?explicit:(expl=false) c cs =
if expl then
let f c = match c with
| CRef (r,_) -> Constrexpr.CAppExpl((r, None), cs)
| _ -> failwith "invalid argument to gApp"
in CAst.map f c
else mkAppC (c, cs)
let gProdWithArgs args f_body =
#if COQ_VERSION >= (8, 20, 0)
let xvs = List.map (fun (CLocalAssum ([{CAst.v = n;_}], _, _, _)) ->
#else
let xvs = List.map (fun (CLocalAssum ([{CAst.v = n;_}], _, _)) ->
#endif
match n with
| Name x -> x
| _ -> make_up_name ()
) args in
let fun_body = f_body xvs in
mkCProdN args fun_body
let gFunWithArgs args f_body =
#if COQ_VERSION >= (8, 20, 0)
let xvs = List.map (fun (CLocalAssum ([{CAst.v = n;_}], _, _, _)) ->
#else
let xvs = List.map (fun (CLocalAssum ([{CAst.v = n;_}], _, _)) ->
#endif
match n with
| Name x -> x
| _ -> make_up_name ()
) args in
let fun_body = f_body xvs in
mkCLambdaN args fun_body
let gIf b t f = CAst.make @@ CIf (b, (None, None) , t, f)
let gFun xss (f_body : var list -> coq_expr) =
match xss with
| [] -> f_body []
| _ ->
let xvs = List.map (fun x -> fresh_name x) xss in
(* TODO: optional argument types for xss *)
#if COQ_VERSION >= (8, 20, 0)
let binder_list = List.map (fun x -> CLocalAssum ([CAst.make @@ Name x], None, Default Glob_term.Explicit, hole)) xvs in
#else
let binder_list = List.map (fun x -> CLocalAssum ([CAst.make @@ Name x], Default Glob_term.Explicit, hole)) xvs in
#endif
let fun_body = f_body xvs in
mkCLambdaN binder_list fun_body
let gFunTyped xts (f_body : var list -> coq_expr) =
match xts with
| [] -> f_body []
| _ ->
let xvs = List.map (fun (x,t) -> (fresh_name x,t)) xts in
(* TODO: optional argument types for xss *)
#if COQ_VERSION >= (8, 20, 0)
let binder_list = List.map (fun (x,t) -> CLocalAssum ([CAst.make @@ Name x], None, Default Glob_term.Explicit, t)) xvs in
#else
let binder_list = List.map (fun (x,t) -> CLocalAssum ([CAst.make @@ Name x], Default Glob_term.Explicit, t)) xvs in
#endif
let fun_body = f_body (List.map fst xvs) in
mkCLambdaN binder_list fun_body
(* with Explicit/Implicit annotations *)
let gRecFunInWithArgs ?structRec:(rec_id=None) ?assumType:(typ=hole) (fs : string) args (f_body : (var * var list) -> coq_expr) (let_body : var -> coq_expr) =
let fv = fresh_name fs in
#if COQ_VERSION >= (8, 20, 0)
let xvs = List.map (fun (CLocalAssum ([{CAst.v = n;_}], _, _, _)) ->
#else
let xvs = List.map (fun (CLocalAssum ([{CAst.v = n;_}], _, _)) ->
#endif
match n with
| Name x -> x
| _ -> make_up_name ()
) args in
let fix_body = f_body (fv, xvs) in
let rec_wf = match rec_id with
| None -> None
| Some id -> Some (CAst.make @@ CStructRec (CAst.make id)) in
CAst.make @@ CLetIn (CAst.make @@ Name fv,
#if COQ_VERSION >= (8, 20, 0)
CAst.make @@ CFix(CAst.make fv,[(CAst.make fv, None, rec_wf, args, typ, fix_body)]), None,
#else
CAst.make @@ CFix(CAst.make fv,[(CAst.make fv, rec_wf, args, typ, fix_body)]), None,
#endif
let_body fv)
let gRecFunIn ?structRec:(rec_id=None) ?assumType:(typ = hole) (fs : string) (xss : string list) (f_body : (var * var list) -> coq_expr) (let_body : var -> coq_expr) =
let xss' = List.map (fun s -> fresh_name s) xss in
gRecFunInWithArgs ~structRec:rec_id ~assumType:typ fs (List.map (fun x -> gArg ~assumName:(gVar x) ()) xss') f_body let_body
let gLetIn (x : string) (e : coq_expr) (body : var -> coq_expr) =
let fx = fresh_name x in
CAst.make @@ CLetIn (CAst.make @@ Name fx, e, None, body fx)
let gLetTupleIn (x : var) (xs : var list) (body : coq_expr) =
CAst.make @@ CLetTuple (List.map (fun x -> CAst.make @@ Names.Name x) xs, (None, None), gVar x, body)
let gMatch discr ?catchAll:(body=None) ?params:(holes=0) (branches : (constructor * string list * (var list -> coq_expr)) list) : coq_expr =
CAst.make @@ CCases (RegularStyle,
None (* return *),
[(discr, None, None)], (* single discriminee, no as/in *)
(List.map (fun (c, cs, bf) ->
let cvs : Id.t list = List.map fresh_name cs in
CAst.make ([[CAst.make @@ CPatCstr (c,
None,
List.init holes (fun _ -> CAst.make @@ CPatAtom None) @
List.map (fun s -> CAst.make @@ CPatAtom (Some (qualid_of_ident s))) cvs (* Constructor applied to patterns *)
)
]],
bf cvs)
) branches) @ match body with
| None -> []
| Some c' -> [CAst.make ([[CAst.make @@ CPatAtom None]], c')])
let gMatchReturn (discr : coq_expr)
?catchAll:(body=None)
(as_id : string)
(ret : var -> coq_expr)
(branches : (constructor * string list * (var list -> coq_expr)) list) : coq_expr =
let as_id' = fresh_name as_id in
CAst.make @@ CCases (RegularStyle,
Some (ret as_id'), (* return *)
[(discr, Some (CAst.make (Name as_id')), None)], (* single discriminee, no in *)
(List.map (fun (c, cs, bf) ->
let cvs : Id.t list = List.map fresh_name cs in
CAst.make ([[CAst.make @@ CPatCstr (c,
None,
List.map (fun s -> CAst.make @@ CPatAtom (Some (qualid_of_ident s))) cvs (* Constructor applied to patterns *)
)]],
bf cvs)
) branches) @ (match body with
| None -> []
| Some c' -> [CAst.make ([([CAst.make @@ CPatAtom None])], c')])
)
let gRecord names_and_bodies =
CAst.make @@ CRecord (List.map (fun (n,b) -> (qualid_of_ident @@ Id.of_string n, b)) names_and_bodies)
let gAnnot (p : coq_expr) (tau : coq_expr) =
#if COQ_VERSION >= (8, 18, 0)
CAst.make @@ CCast (p, Some DEFAULTcast, tau)
#elif COQ_VERSION >= (8, 15, 0)
CAst.make @@ CCast (p, DEFAULTcast, tau)
#else
CAst.make @@ CCast (p, Glob_term.CastConv tau)
#endif
(* Convert types back into coq *)
let gType ty_params dep_type =
let rec aux dt : coq_expr =
match dt with
| DArrow (dt1, dt2) -> let t1 = aux dt1 in
let t2 = aux dt2 in
gFunWithArgs [gArg ~assumType:t1 ()] (fun _ -> t2)
| DProd ((x,dt1), dt2) -> let t1 = aux dt1 in
let t2 = aux dt2 in
gProdWithArgs [gArg ~assumName:(gVar x) ~assumType:t1 ()] (fun _ -> t2)
| DTyParam tp -> gTyParam tp
| DTyCtr (c,dts) -> gApp (gTyCtr c) (List.map aux dts)
| DCtr (c, dts) -> gApp (gCtr c) (List.map aux dts)
| DTyVar x -> gVar x
| DApp (c, dts) -> gApp (aux c) (List.map aux dts)
| DHole -> hole
| DNot dt -> gApp (gInject "Coq.Init.Datatypes.negb") [aux dt]
in
aux dep_type
let gType' ty_params dep_type =
msg_debug (str "Calling gType' with: " ++ str (dep_type_to_string dep_type) ++ fnl ());
let rec aux dt : coq_expr =
match dt with
| DArrow (dt1, dt2) -> let t1 = aux dt1 in
let t2 = aux dt2 in
gFunWithArgs [gArg ~assumType:t1 ()] (fun _ -> t2)
| DProd ((x,dt1), dt2) -> let t1 = aux dt1 in
let t2 = aux dt2 in
gProdWithArgs [gArg ~assumName:(gVar x) ~assumType:t1 ()] (fun _ -> t2)
| DTyParam tp -> gTyParam tp
| DTyCtr (c,dts) -> gApp ~explicit:true (gTyCtr c) (List.map aux dts)
| DCtr (c, dts) -> gApp (gCtr c) (List.map aux dts)
| DTyVar x -> gVar x
| DApp (c, dts) -> gApp (aux c) (List.map aux dts)
| DHole -> hole
| DNot dt -> gApp (gInject "Coq.Init.Logic.not") [aux dt]
in
debug_coq_expr (aux dep_type); aux dep_type
(*
match ty_params with
| [] -> aux dep_type
| _ -> gProdWithArgs (List.map (fun x -> gArg ~assumName:(gTyParam x) ()) ty_params)
(fun _ -> aux dep_type)
*)
(*
let locate_constant c =
match Nametab.locate c with GlobRef.ConstRef x -> x | _ -> failwith ("loc_const: " ^ string_of_qualid c)
*)
let locate_ind c =
begin
try begin match Nametab.locate c with
| GlobRef.IndRef x -> x
| _ -> failwith ("loc_ind: " ^ string_of_qualid c)
end
with Not_found -> failwith ("Locate_ind: " ^ string_of_qualid c)
end
let locate_constant_of_id (c : Id.t) : Constant.t option =
begin
begin
try match Nametab.locate (qualid_of_ident c) with
| GlobRef.ConstRef x -> Some x
| _ -> None
with Not_found -> None (* failwith ("locate constant: " ^ (Id.to_string c))*)
end
end
let locate_constructor c =
try (match Nametab.locate c with GlobRef.ConstructRef x -> x | _ -> failwith ("loc_constr: " ^ string_of_qualid c))
with Not_found -> failwith ("locate constr: " ^ string_of_qualid c)
(* Convert types back into constr *)
let constr_of_type name ty_params dep_type =
let rec find_param (x : Id.t) i j params =
msg_debug (str "Finding param: " ++ str (Id.to_string x) ++ str " " ++ int i ++ str " " ++ int j ++ fnl ());
match params with
| [] -> failwith "Param not found"
| p::ps -> if p = x then Constr.mkRel (i - j)
else find_param x i (j+1) ps
in
let rec find_index (x : Id.t) i j vars params =
msg_debug (str "Finding index: " ++ str (Id.to_string x) ++ str " " ++ int i ++ str " " ++ int j ++ fnl ());
match vars with
| [] -> begin match locate_constant_of_id x with
| Some c -> Constr.mkConst c
| None -> find_param x (List.length params + i) 1 params
end
(* TODO: Find DeBruijn equation *)
| y::ys -> if x = y then Constr.mkRel (i - j)
else find_index x i (j-1) ys params
in
let rec aux vars ty_params i dt : Constr.t =
msg_debug (str "Calling aux with: " ++ str (dep_type_to_string dt) ++ str " " ++ int i ++ fnl ());
List.iter (fun v -> msg_debug (str (var_to_string v) ++ str " ")) vars;
msg_debug (fnl ());
List.iter (fun v -> msg_debug (str (var_to_string v) ++ str " ")) ty_params;
msg_debug (fnl ());
msg_debug (str "End preamble aux" ++ fnl ());
match dt with
| DArrow (dt1, dt2) ->
begin
msg_debug (str "In DArrow" ++ fnl ());
let t1 = aux vars ty_params i dt1 in
let t2 = aux (make_up_name () :: vars) ty_params (i+1) dt2 in
Constr.mkProd (Context.anonR, t1, t2)
end
| DProd ((x,dt1), dt2) ->
begin
msg_debug (str "In DProd" ++ fnl ());
let t1 = aux vars ty_params i dt1 in
let t2 = aux (x :: vars) ty_params (i+1) dt2 in
Constr.mkProd (Context.nameR x, t1, t2)
end
| DTyParam tp ->
begin
msg_debug (str "In DTyParam" ++ fnl ());
msg_debug (str "Finding ty_param: " ++ str (ty_param_to_string tp) ++ str " with i: " ++ int i ++ fnl ());
find_param tp i 1 ty_params
end
| DTyCtr (c,dts) ->
begin
msg_debug (str "In DTyCtr" ++ fnl ());
let cname = string_of_qualid c in
let c' = if cname = "Prop" then Constr.mkProp
else if cname = "Type" then Constr.mkType Univ.Universe.type1
else if cname = name then Constr.mkRel i
else Constr.mkInd (locate_ind c) in
Constr.mkApp (c', Array.of_list (List.map (aux vars ty_params i) dts))
end
| DCtr (c,dts) ->
begin
msg_debug (str "In DCtr" ++ fnl ());
Constr.mkApp (Constr.mkConstruct (locate_constructor c), Array.of_list (List.map (aux vars ty_params i) dts))
end
| DTyVar x ->
begin
msg_debug (str "In DTyVar" ++ fnl ());
find_index x (i - List.length ty_params) (List.length vars) (vars) ty_params
end
| DApp (c, dts) ->
begin
msg_debug (str "In DApp" ++ fnl ());
Constr.mkApp (aux vars ty_params i c, Array.of_list (List.map (aux vars ty_params i) dts))
end
| DNot dt -> failwith "Not" (* Constr.mkApp (Constr.mkVar (Id.of_string "negb"), [| aux dt |])*)
| _ -> failwith "No holes allowed in constr_of_type"
(*
| DHole -> hole
*)
in
let rec handle_ty_params ty_ps dt =
match ty_ps with
| [] -> dt
| p::ps -> Constr.mkProd (Context.nameR p, Constr.mkType (Univ.Universe.type1), handle_ty_params ps dt)
in
handle_ty_params ty_params (aux [] ty_params (List.length ty_params + 1) dep_type)
(* let cexpr = gType ty_params dep_type in
let env = Global.env () in
let evd = Evd.from_env env in
let _,_ec = Constrintern.interp_open_constr env evd cexpr in
failwith "Reaching here" *)
(* EConstr.Unsafe.to_constr es *)
(* Lookup the type of an identifier *)
let get_type (id : Id.t) =
msg_debug (str ("Trying to global:" ^ Id.to_string id) ++ fnl ());
let glob_ref = Nametab.global (qualid_of_ident id) in
let open GlobRef in
match glob_ref with
| VarRef _ -> msg_debug (str "Var" ++ fnl ())
| ConstRef _ -> msg_debug (str "Constant" ++ fnl ())
| IndRef _ -> msg_debug (str "Inductive" ++ fnl ())
| ConstructRef _ -> msg_debug (str "Constructor" ++ fnl ())
let is_inductive c =
let glob_ref = Nametab.global c in
match glob_ref with
| GlobRef.IndRef _ -> true
| _ -> false
let is_inductive_dt dt =
match dt with
| DTyCtr (c, dts) -> is_inductive c
| _ -> false
(* Specialized match *)
type matcher_pat =
| MatchCtr of constructor * matcher_pat list
| MatchU of var
| MatchParameter of ty_param (* Should become hole in pattern, so no binding *)
let rec matcher_pat_to_string = function
| MatchU u -> var_to_string u
| MatchCtr (c, ms) -> constructor_to_string c ^ " " ^ str_lst_to_string " " (List.map matcher_pat_to_string ms)
| MatchParameter p -> ty_param_to_string p
let construct_match c ?catch_all:(mdef=None) alts =
let rec aux = function
| MatchU u' -> begin
CAst.make @@ CPatAtom (Some (qualid_of_ident u'))
end
| MatchCtr (c, ms) -> begin
if is_inductive c then CAst.make @@ CPatAtom None
else CAst.make @@ CPatCstr (c,
Some (List.map (fun m -> aux m) ms),
[])
end
| MatchParameter p -> CAst.make @@ CPatAtom None
in CAst.make @@ CCases (RegularStyle,
None (* return *),
[ (c, None, None)], (* single discriminee, no as/in *)
List.map (fun (m, body) -> CAst.make @@ ([[aux m]], body)) alts
@ (match mdef with
| Some body -> [(CAst.make @@ ([[CAst.make @@ CPatAtom None]], body))]
| _ -> []
)
)
let construct_match_with_return c ?catch_all:(mdef=None) (as_id : string) (ret : var -> coq_expr) (alts : (matcher_pat * coq_expr) list) =
let as_id' = fresh_name as_id in
let rec aux = function
| MatchU u' -> begin
CAst.make @@ CPatAtom (Some (qualid_of_ident u'))
end
| MatchCtr (c, ms) -> begin
if is_inductive c then begin
CAst.make @@ CPatAtom None
end
else begin
CAst.make @@ CPatCstr (c,
Some (List.map (fun m -> aux m) ms),
[])
end
end
| MatchParameter p -> CAst.make @@ CPatAtom None
in
let main_opts =
List.map (fun (m, body) -> CAst.make @@ ([[aux m]], body)) alts in
let default =
match mdef with
| Some body -> [CAst.make ([[CAst.make @@ CPatAtom None]], body)]
| _ -> [] in
CAst.make @@ CCases (RegularStyle,
Some (ret as_id') (* return *),
[ (c, Some (CAst.make @@ Name as_id'), None)], (* single discriminee, no as/in *)
main_opts @ default
)
(* Generic List Manipulations *)
let list_nil = gInject "Coq.Lists.List.nil"
let lst_append c1 c2 = gApp (gInject "Coq.Lists.List.app") [c1; c2]
let rec lst_appends = function
| [] -> list_nil
| c::cs -> lst_append c (lst_appends cs)
let gCons x xs = gApp (gInject "Coq.Lists.List.cons") [x; xs]
let rec gList = function
| [] -> gInject "Coq.Lists.List.nil"
| x::xs -> gCons x (gList xs)
(* Generic String Manipulations *)
#if COQ_VERSION >= (8, 19, 0)
let string_scope ast = CAst.make @@ CDelimiters (DelimUnboundedScope, "string", ast)
#else
let string_scope ast = CAst.make @@ CDelimiters ("string", ast)
#endif
let gStr s = string_scope (CAst.make @@ CPrim (String s))
let emptyString = gInject "Coq.Strings.String.EmptyString"
let str_append c1 c2 = gApp (gInject "Coq.Strings.String.append") [c1; c2]
let rec str_appends cs =
match cs with
| [] -> emptyString
| [c] -> c
| c1::cs' -> str_append c1 (str_appends cs')
let smart_paren c = gApp (gInject "QuickChick.Show.smart_paren") [c]
(* Pair *)
let gPair (c1, c2) = gApp (gInject "Coq.Init.Datatypes.pair") [c1;c2]
let gProd (c1, c2) = gApp (gInject "Coq.Init.Datatypes.prod") [c1;c2]
let listToPairAux (f : ('a *'b) -> 'a) (l : 'b list) : 'a =
match l with
| [] -> qcfail "listToPair called with empty list"
| c :: cs' ->
let rec go (l : 'a list) (acc : 'a) : 'a =
match l with
| [] -> acc
| x :: xs -> go xs (f (acc, x))
in go cs' c
(*
let gTupleAux f cs =
match cs with
| [] -> qcfail "gTuple called with empty list" (* Should this be unit? *)
| c :: cs' ->
let rec go l acc =
match l with
| [] -> acc
| x :: xs -> go xs (f (acc, x))
in go cs' cx
*)
let gTuple = listToPairAux gPair
let gTupleType = listToPairAux gProd
let dtTupleType =
listToPairAux (fun (acc,x) -> DTyCtr (injectCtr "Coq.Init.Datatypes.prod", [acc;x]))
(*
match dts with
| [] -> qcfail "dtTuple called with empty list"
| dt :: dts' ->
let rec go l acc =
match l with
| [] -> acc
| x :: xs -> go xs (DTyCtr (injectCtr "Coq.Init.Datatypes.Prod", [acc; x]))
in go dts' dt
*)
(* Int *)
#if COQ_VERSION >= (8, 19, 0)
let nat_scope ast = CAst.make @@ CDelimiters (DelimUnboundedScope, "nat", ast)
#else
let nat_scope ast = CAst.make @@ CDelimiters ("nat", ast)
#endif
let gInt n =
let number =
Number (NumTok.Signed.of_int_string (string_of_int n))
in nat_scope (CAst.make @@ CPrim number)
let gSucc x = gApp (gInject "Coq.Init.Datatypes.S") [x]
let rec maximum = function
| [] -> failwith "maximum called with empty list"
| [c] -> c
| (c::cs) -> gApp (gInject "Coq.Init.Peano.max") [c; maximum cs]
let gle x y = gApp (gInject "ssrnat.leq") [x; y]
let glt x y = gle (gApp (gInject "Coq.Init.Datatypes.S") [x]) y
let gEq x y = gApp (gInject "Coq.Init.Logic.eq") [x; y]
(* option type in Coq *)
let gNone typ = gApp ?explicit:(Some true) (gInject "Coq.Init.Datatypes.None") [typ]
let gSome typ c = gApp ?explicit:(Some true) (gInject "Coq.Init.Datatypes.Some") [typ; c]
let gNone' = gInject "Coq.Init.Datatypes.None"
let gSome' c = gApp (gInject "Coq.Init.Datatypes.Some") [c]
let gOption c = gApp (gInject "Coq.Init.Datatypes.option") [c]
(* Boolean *)
let g_true = gInject "Coq.Init.Datatypes.true"
let g_false = gInject "Coq.Init.Datatypes.false"
let gNot c = gApp (gInject "Coq.Init.Datatypes.negb") [c]
let gBool = gInject "Coq.Init.Datatypes.bool"
let decToBool c =
gMatch c [ (injectCtr "Coq.Init.Specif.left" , ["eq" ], fun _ -> g_true )
; (injectCtr "Coq.Init.Specif.right", ["neq"], fun _ -> g_false)
]
let decOptToBool c =
gMatch c [ (injectCtr "Coq.Init.Datatypes.Some", ["res"], fun [res] -> gVar res)
; (injectCtr "Coq.Init.Datatypes.None", [], fun [] -> g_false)
]
(* Unit *)
let gUnit = gInject "Coq.Init.Datatypes.unit"
let gTT = gInject "Coq.Init.Datatypes.tt"
(* dec *)
let g_dec typ = gApp ?explicit:(Some true) (gInject "QuickChick.Decidability.dec") [typ]
let g_decOpt typ n = gApp ?explicit:(Some true) (gInject "QuickChick.Decidability.decOpt") [typ; hole; n]
let g_dec_decOpt = gInject "QuickChick.Decidability.dec_decOpt"
(* checker *)
let g_checker toCheck = gApp (gInject "QuickChick.Checker.checker") [toCheck]
(* Gen combinators *)
let g_forAll gen prop = gApp (gInject "QuickChick.Checker.forAll") [gen; prop]
let g_arbitrary = gInject "QuickChick.Classes.arbitrary"
let g_quickCheck p = gApp (gInject "QuickChick.Test.quickCheck") [p]
let g_show typ = gApp (gInject "QuickChick.Show.show") [typ]
(* Recursion combinators / fold *)
(* fold_ty : ( a -> coq_type -> a ) -> ( ty_ctr * coq_type list -> a ) -> ( ty_param -> a ) -> coq_type -> a *)
let rec fold_ty arrow_f ty_ctr_f ty_param_f ty =
match ty with
| Arrow (ty1, ty2) ->
let acc = fold_ty arrow_f ty_ctr_f ty_param_f ty2 in
arrow_f acc ty1
| TyCtr (ctr, tys) -> ty_ctr_f (ctr, tys)
| TyParam tp -> ty_param_f tp
let fold_ty' arrow_f base ty =
fold_ty arrow_f (fun _ -> base) (fun _ -> base) ty
let rec dep_fold_ty arrow_f prod_f ty_ctr_f ctr_f ty_param_f var_f ty =
match ty with
| DArrow (ty1, ty2) ->
let acc = dep_fold_ty arrow_f prod_f ty_ctr_f ctr_f ty_param_f var_f ty2 in
arrow_f acc ty1
| DProd ((x,ty1), ty2) ->
let acc = dep_fold_ty arrow_f prod_f ty_ctr_f ctr_f ty_param_f var_f ty2 in
prod_f acc x ty1
| DTyCtr (ctr, tys) -> ty_ctr_f (ctr, tys)
| DCtr (ctr, tys) -> ctr_f (ctr, tys)
| DTyParam tp -> ty_param_f tp
| DTyVar tp -> var_f tp
(* Generate Type Names *)
let generate_names_from_type base_name ty =
List.rev (snd (fold_ty' (fun (i, names) _ -> (i+1, (Printf.sprintf "%s%d" base_name i) :: names)) (0, []) ty))
(* a := var list -> var -> a *)
let fold_ty_vars (f : var list -> var -> coq_type -> 'a) (mappend : 'a -> 'a -> 'a) (base : 'a) ty : var list -> 'a =
fun allVars -> fold_ty' (fun acc ty -> fun (v::vs) -> mappend (f allVars v ty) (acc vs)) (fun _ -> base) ty allVars
(* Declarations *)
(* LEO : There used to be defineConstant stuff here. WHY? *)
(*
let defineTypedConstant s c typ =
let id = fresh_name s in
(* TODO: DoDischarge or NoDischarge? *)
let v = Constrintern.interp_constr (Global.env())
(Evd.from_env (Global.env())) e in
(* Borrowed from CIW tutorial *)
*)
(* Declare an instance *)
let create_names_for_anon a =
match a with
#if COQ_VERSION >= (8, 20, 0)
| CLocalAssum ([{CAst.v = n; loc}], r, x, y) ->
#else
| CLocalAssum ([{CAst.v = n; loc}], x, y) ->
#endif
begin match n with
| Name x -> (x, a)
| Anonymous -> let n = make_up_name () in
#if COQ_VERSION >= (8, 20, 0)
(n, CLocalAssum ([CAst.make ?loc:loc @@ Names.Name n], r, x, y))
#else
(n, CLocalAssum ([CAst.make ?loc:loc @@ Names.Name n], x, y))
#endif
end
| _ -> failwith "Non RawAssum in create_names"
let declare_class_instance ?(global=true) ?(priority=42) instance_arguments instance_name instance_type instance_record =
msg_debug (str "Declaring class instance..." ++ fnl ());
msg_debug (str (Printf.sprintf "Total arguments: %d" (List.length instance_arguments)) ++ fnl ());
let (vars,iargs) = List.split (List.map create_names_for_anon instance_arguments) in
let instance_type_vars = instance_type vars in
msg_debug (str "Calculated instance_type_vars" ++ fnl ());
let instance_record_vars = instance_record vars in
msg_debug (str "Calculated instance_record_vars" ++ fnl ());
let cid =
Classes.new_instance
#if COQ_VERSION >= (8, 15, 0)
~locality:(if global then Hints.SuperGlobal else Hints.Local)
#elif COQ_VERSION >= (8, 14, 0)
~locality:(if global then Goptions.OptGlobal else Goptions.OptLocal)
#else
~global
#endif
~poly:false
(CAst.make @@ Name (Id.of_string instance_name), None) iargs
instance_type_vars
(true, instance_record_vars) (* TODO: true or false? *)
{ Typeclasses.hint_priority = Some priority; hint_pattern = None }
in
#if COQ_VERSION >= (9, 1, 0)
let cid = cid.CAst.v in
#endif
msg_debug (str (Id.to_string cid) ++ fnl ())
let define_new_inductive (ty_ctr, ty_params, ctrs, typ) =
let me_typename = Id.of_string (string_of_qualid ty_ctr) in
msg_debug (str "constr_of_type: " ++ str (dep_type_to_string typ) ++ fnl ());
msg_debug (str "me_arity ty_ctr: " ++ str (string_of_qualid ty_ctr) ++ fnl ());
let me_arity = constr_of_type (string_of_qualid ty_ctr) ty_params typ in
let oie =
{ mind_entry_typename = me_typename
; mind_entry_arity = me_arity
; mind_entry_consnames = List.map (fun (c,_) -> Id.of_string (string_of_qualid c)) ctrs
; mind_entry_lc = List.map (fun (_, t) -> constr_of_type (string_of_qualid ty_ctr) ty_params t) ctrs
} in
msg_debug (str "oie done" ++ fnl ());
let entry =
{ mind_entry_record = None
; mind_entry_finite = Declarations.Finite
; mind_entry_params = []
; mind_entry_inds = [ oie ]
; mind_entry_universes = Entries.Monomorphic_ind_entry
; mind_entry_variance = None
; mind_entry_private = None
} in
let env = Global.env () in
let evd = Evd.from_env env in
let uentry = Evd.univ_entry ~poly:false evd in
let impls = [] in
Flags.quiet := false;
msg_debug (str "About to declare: " ++ fnl ());
msg_debug (str "me_arity: " ++ Constr.debug_print oie.mind_entry_arity ++ fnl ());
List.iteri (fun i c -> msg_debug (str "me_consname: " ++ int i ++ Constr.debug_print c ++ fnl ())) oie.mind_entry_lc;
ignore (DeclareInd.declare_mutual_inductive_with_eliminations entry uentry impls)
(* Declares a new Fixpoint function.
functions is a list of tuples that are, in this order:
- the function name
- the list of arguments
- the function argument to use to prove that the function terminates
- the return type
- the function body
*)
let define_new_fixpoint (functions : (var * arg list * var * coq_expr * coq_expr) list) =
let open Vernacexpr in
let fixpoint_exprs = List.map
(fun (name, arguments, structural_wf_variable, return, body) ->
{
#if COQ_VERSION < (9, 0, 0)
rec_order = Some (CAst.make @@ CStructRec (CAst.make @@ structural_wf_variable));
#endif
fname = CAst.make name;
univs = None;
binders = arguments;
rtype = return;
body_def = Some body;
notations = []
}
) functions in
#if COQ_VERSION >= (9, 0, 0)
let rec_orders = List.map
(fun (_, _, structural_wf_variable, _, _) ->
Some (CAst.make @@ CStructRec (CAst.make @@ structural_wf_variable)))
functions in
let kind = Decls.(IsDefinition Fixpoint) in
ignore (ComFixpoint.do_mutually_recursive
#if COQ_VERSION >= (9, 1, 0)
~refine:false
#endif
~poly:false ~kind ~program_mode:false (CFixRecOrder rec_orders, fixpoint_exprs))
#elif COQ_VERSION >= (8, 20, 0)
ignore (ComFixpoint.do_fixpoint ~poly:false fixpoint_exprs)
#elif COQ_VERSION >= (8, 16, 0)
ComFixpoint.do_fixpoint ~poly:false fixpoint_exprs
#else
let default_scope = Locality.Global Locality.ImportDefaultBehavior in
ComFixpoint.do_fixpoint ~scope:default_scope ~poly:false fixpoint_exprs
#endif
(* List Utils. Probably should move to a util file instead *)
let list_last l = List.nth l (List.length l - 1)
let list_init l = List.rev (List.tl (List.rev l))
let list_drop_every n l =
let rec aux i = function
| [] -> []
| x::xs -> if i == n then aux 1 xs else x::aux (i+1) xs
in aux 1 l
let rec take_last l acc =
match l with
| [x] -> (List.rev acc, x)
| x :: l' -> take_last l' (x :: acc)
let rec list_insert_nth x l n =
match n, l with
| 0, _
| _, [] -> x :: l
| _, h::t -> h :: list_insert_nth x t (n-1)
(* Leo: Where should these util functions live? *)
let sameTypeCtr c_ctr = function
| TyCtr (ty_ctr', _) -> c_ctr = ty_ctr'
| _ -> false
let isBaseBranch ty_ctr ty =
fold_ty' (fun b ty' -> b && not (sameTypeCtr ty_ctr ty')) true ty
(* Look for typeclass instances *)
let debug_pattern s p =
match p with
| PMeta _ -> failwith (s ^ "META")
| PRef _ -> failwith (s ^ "REF")
| PRel _ -> failwith (s ^ "REL")
| PVar _ -> failwith (s ^ "VAR")
| PEvar _ -> failwith (s ^ "EVAR")
| PLetIn _ -> failwith (s ^ "LET")
| PSort _ -> failwith (s ^ "SORT")
| PInt _ -> failwith (s ^ "INT")
| PFloat _ -> failwith (s ^ "FLOAT")
| PApp _ -> failwith (s ^ "APP")
| PSoApp _ -> failwith (s ^ "SOAPP")
| PLambda _ -> failwith (s ^ "LAMBDA")
| PProj _ -> failwith (s ^ "PROJ")
| PIf _ -> failwith (s ^ "IF")
| PCase _ -> failwith (s ^ "CASE")
| PFix _ -> failwith (s ^ "FIX")
| PCoFix _ -> failwith (s ^ "COFIX")
| PArray _ -> failwith (s ^ "ARRAY")
| PProd _ -> failwith (s ^ "PROD")
let find_typeclass_bindings typeclass_name ctr =
msg_debug (str ("Finding typeclass bindings for:" ^ string_of_qualid ctr) ++ fnl());
let env = Global.env () in
let evd = Evd.from_env env in
let db = Hints.searchtable_map "typeclass_instances" in
let result = ref [] in
let prod_check i =
String.equal (MutInd.to_string (fst i)) ("QuickChick.DependentClasses." ^ typeclass_name) in
let dec_check i =
String.equal (MutInd.to_string (fst i)) ("QuickChick.Decidability." ^ typeclass_name) in
let type_of_hint h =
(* Go from the hint to the type of its constant *)
let (_,ec) = Hints.hint_as_term h in
let c = EConstr.to_constr evd ec in
let cst = Constr.destConst c in
let (typ,_constraints) = Environ.constant_type env cst in
typ in
(* Find the conclusion of a type *)
let rec find_concl typ =
if Constr.isLambda typ then
let (_binder,_binder_type,typ') = Constr.destLambda typ in
find_concl typ'
else if Constr.isProd typ then
let (_binder,_binder_type,typ') = Constr.destProd typ in
find_concl typ'
else if Constr.isApp typ then
typ
else failwith "FindConcl"
in
let handle_producer_hint lambda =
if Constr.isLambda lambda then (
msg_debug (str "Entering producer lambda" ++ fnl ());
let (_binder, _binder_type, typ') = Constr.destLambda lambda in
if Constr.isApp typ' then (
let (cln, clargs) = Constr.destApp typ' in
msg_debug (str "Found a hint for: " ++ Constr.debug_print cln ++ fnl ());
if Constr.isInd cln then (
(* TODO: Search for Mutual inductives properly *)
let ((mind,_),_) = Constr.destInd cln in
let mind_id = Label.to_id (MutInd.label mind) in
let ctr_id = qualid_basename ctr in
if Id.equal mind_id ctr_id then (
msg_debug (str "Producer Match Found: " ++ Id.print ctr_id ++ fnl ());
let standard = ref true in
(* Calculate mode as list of booleans: *)
let res = List.map (fun arg ->
if Constr.isMeta arg then
false (* Check not equal id name *)
else if Constr.isRef arg then
false
(* Bound by the last lambda means it's output *)
else if Constr.isRelN 1 arg then
true
else if Constr.isRel arg then
false
else if Constr.isApp arg then
begin standard := false; true end
else failwith "New FTB/0"
) (Array.to_list clargs) in
if !standard then begin
List.iter (fun b -> msg_debug (bool b ++ str " ")) res;
msg_debug (fnl ());
result := res :: !result
end
else msg_debug (str "not standard/producer" ++ fnl ())
)
else
msg_debug (str "Not equal: " ++ Id.print ctr_id ++ str " " ++ Id.print mind_id ++ fnl ()))
else msg_debug (str "Not Ind" ++ fnl ())
)
else msg_debug (str "First arg not lambda" ++ fnl ())
) in
let handle_checker_hint app =
if Id.to_string (qualid_basename ctr) = "eq" then ()
else if isApp app then (
msg_debug (str "Entering checker app" ++ fnl ());
let (cln, clargs) = Constr.destApp app in
(* TODO: Search for Mutual inductives properly *)
let ((mind,_),_) = Constr.destInd cln in
let mind_id = Label.to_id (MutInd.label mind) in
let ctr_id = qualid_basename ctr in
msg_debug (str "In checker/app for: " ++ Id.print ctr_id ++ str " " ++ Id.print mind_id ++ fnl ());
if Id.equal mind_id ctr_id then (
msg_debug (str "Checker Match Found: " ++ Id.print ctr_id ++ fnl ());
let standard = ref true in
(* Calculate mode as list of booleans: *)
(* For checking, mode is alsways false *)
let res = List.map (fun arg ->
if Constr.isMeta arg then
false (* Check not equal id name *)
else if Constr.isRef arg then
false
else if Constr.isRel arg then
false
else if Constr.isApp arg then
begin standard := false; true end
else failwith "New FTB/0"
) (Array.to_list clargs) in
if !standard then begin
List.iter (fun b -> msg_debug (bool b ++ str " ")) res;
msg_debug (fnl ());
result := res :: !result
end
else msg_debug (str "not standard/checker" ++ fnl ())
)
else
msg_debug (str "not equal/checker/isApp" ++ fnl ());
)
else msg_debug (str "not isApp 0" ++ fnl ())
in
let handle_hint_repr b h =
let typ = type_of_hint h in
let (typ_cl, typ_args) = Constr.destApp (find_concl typ) in
msg_debug (str "Conclusion of current hint is: " ++ fnl ());
msg_debug (Constr.debug_print (find_concl typ));
try
if b then
(* For producer, check the second argument (the first is the type of the lambda) *)
handle_producer_hint typ_args.(1)
else
(* For checker, check the first argument. *)
handle_checker_hint typ_args.(0)
with _ -> msg_debug (str "exception?" ++ fnl ())
in
let handle_hint b hint =
msg_debug (str "Processing... (" ++ str typeclass_name ++ str ")" ++ Hints.FullHint.print env evd hint ++ fnl ());
begin match Hints.FullHint.repr hint with
| Hints.Res_pf h ->
handle_hint_repr b h
| Hints.Give_exact h ->
handle_hint_repr b h
(* TODO: Replicate pattern-based behavior from below in constr form *)
| Hints.Extern (Some (PApp (PRef g, args)), _) ->
(* begin match Hints.FullHint.pattern hint with
| Some (PApp (PRef g, args)) -> *)
begin
let arg_index = if b then 1 else 0 in
(* msg_debug (str ("Hint for :" ^ (string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty g))) ++ fnl ());
msg_debug (str (Printf.sprintf "Arg Length: %d. Arg index: %d\n" (Array.length args) arg_index) ++ fnl ());*)
match args.(arg_index) with
| PLambda (name, t, PApp (PRef gctr, res_args)) ->
let gctr_qualid = Nametab.shortest_qualid_of_global Id.Set.empty gctr in
if qualid_eq gctr_qualid ctr then begin
msg_debug (str "Found a match!" ++ fnl ());
msg_debug (str ("Conclusion is Application of:" ^
(string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty gctr)))
++ fnl ());
let standard = ref true in
let res = List.map (fun p ->
match p with
| PMeta (Some id) ->
if not (Name.equal (Name id) name)
then false
else failwith "FTB/How is this true"
| PRef _ -> false
| PRel _ -> true
| PApp _ -> standard := false; true
| _ -> debug_pattern "FTB/0" p
) (Array.to_list res_args) in
if !standard then
result := res :: !result
else ()
end
else ()
| PApp (PRef gctr, res_args) ->
let gctr_qualid = Nametab.shortest_qualid_of_global Id.Set.empty gctr in
if qualid_eq gctr_qualid ctr then begin
msg_debug (str "Found a match!" ++ fnl ());
msg_debug (str ("Conclusion is Application of:" ^
(string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty gctr)))
++ fnl ());
let standard = ref true in
let res = List.map (fun p ->
match p with
| PMeta (Some id) -> false
| PRef _ -> false
| PRel _ -> true
| PApp _ -> standard := false; true
| _ -> debug_pattern "FTB/00" p
) (Array.to_list res_args) in
if !standard then
result := res :: !result
else ()
end
else ()
| PLambda (name, t, PCase (_, arr, _, [n, ns, PApp (PRef gctr, res_args)])) ->
let gctr_qualid = Nametab.shortest_qualid_of_global Id.Set.empty gctr in
if qualid_eq gctr_qualid ctr then begin
msg_debug (str "Found a match!" ++ fnl ());
msg_debug (str ("Conclusion is Application of:" ^
(string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty gctr)))
++ fnl ());
let standard = ref true in
let res = List.map (fun p ->
match p with
| PMeta (Some id) -> false
(* if not (Name.equal (Name id) name)
then false
else failwith "FTB/How is this true" *)
| PRef _ -> false
| PRel _ -> true
| PApp _ -> standard := false; true
| _ -> debug_pattern "FTB/0" p
) (Array.to_list res_args) in
if !standard then
result := res :: !result
else ()
end
else ()
| PMeta (Some id) -> () (* failwith (Id.to_string id) *)
| PProd _ -> ()
| _ -> debug_pattern "FTB/1" args.(arg_index)
end
| Hints.Extern _ -> failwith "FTB/Apply"
| Hints.ERes_pf _ -> failwith "FTB/EApply"
| Hints.Res_pf_THEN_trivial_fail _ -> failwith "FTB/Imm"
| Hints.Unfold_nth _ -> failwith "FTB/Unf"
end in
Hints.Hint_db.iter (fun go hm hints ->
begin match go with
| Some (GlobRef.IndRef i) when prod_check i ->
List.iter (handle_hint true ) hints
| Some (GlobRef.IndRef i) when dec_check i ->
if Id.to_string (qualid_basename ctr) = "eq" then result := [[false; false; false]]
else List.iter (handle_hint false) hints
| _ -> ()
end
) db;
!result
|