1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
|
open Constrexpr
open Error
open GenericLib
open Pp
open Libnames
open UnifyQC
type rec_arg = dep_type list * dep_type (*arguments to a recursive call. Separate term is the shared parameter*)
type ctr_data =
(var * dep_type) list (*forall variables*)
* rec_arg list (*recursive calls*)
(* * (ty_ctr * dep_type list) list (*nonrecursive calls*) *)
* dep_type list (*nonrecursive calls*)
* rec_arg (*output parameters*)
(* Separate out the shared parameter from a list of parameters *)
let rec separate_shared (terms : 'a list) (param_pos : int) : 'a list * 'a =
match terms with
| term :: terms -> if param_pos = 0
then (terms, term)
else let (ts, t) = separate_shared terms (param_pos - 1) in
(term :: ts, t)
| [] -> failwith ("shouldn't get here: param_pos invalid in separate_shared. Param_pos is: " ^ (string_of_int param_pos))
(* The reverse of separate_shared. param_pos should be the position where shared will end up in
the resulting output list. *)
let rec replace_shared ((terms, shared) : 'a list * 'a) (param_pos : int) : 'a list =
if param_pos = 0
then shared :: terms
else match terms with (term :: terms) -> term :: replace_shared (terms, shared) (param_pos - 1)
let convertConstructor (me : ty_ctr) (ctr : dep_type) (param_pos : int) : ctr_data =
let rec convertConstructorAux (ctr : dep_type) (me : ty_ctr) vs rs os : ctr_data =
match ctr with
| DProd ((v, dt1), dt2) -> convertConstructorAux dt2 me ((v , dt1) :: vs) rs os
| DTyCtr (tc, dts) -> (vs , rs , os , separate_shared dts param_pos) (* The output of the constructor *)
| DArrow (DTyCtr (c , dts), dt2) -> if c = me then (* Parse an argument to constructor, which could be recursive *)
convertConstructorAux dt2 me vs (separate_shared dts param_pos :: rs) os (* recursive *)
else
convertConstructorAux dt2 me vs rs (DTyCtr (c , dts) :: os) (* nonrecursive *)
| DArrow (t, dt2) -> convertConstructorAux dt2 me vs rs (t :: os) (* Parse an argument of any form, definitely nonrecursive *)
| _ -> failwith ("in convertConstructor, constructor contains unsupported thing: " ^ dep_type_to_string ctr)
(* | DNot dt ->
| DTyParam tp ->
| DCtr (c, dts) ->
| DTyVar v ->
| DApp (dt, dts) ->
| DHole -> *)
in
convertConstructorAux ctr me [] [] []
let convertBack (me : ty_ctr) ((vs , rs , os , outs) : ctr_data) (param_pos : int) : dep_type =
let rec convertVars vs ty : dep_type =
match vs with
| [] -> ty
| (v :: vs) -> convertVars vs (DProd (v , ty))
in
let rec convertRecCalls rs ty : dep_type =
match rs with
| [] -> ty
| (r :: rs) -> convertRecCalls rs (DArrow ((DTyCtr (me , replace_shared r param_pos)), ty))
in
let rec convertOtherCalls os ty : dep_type =
match os with
| [] -> ty
| (t :: os) -> convertOtherCalls os (DArrow (t, ty))
in
convertVars vs (convertOtherCalls os (convertRecCalls rs (DTyCtr (me, replace_shared outs param_pos))))
(* Variable unification *)
module IdMap = Map.Make(UnknownOrd)
type sub = dep_type IdMap.t
let rec sub_term (s : sub) (t : dep_type) : dep_type =
match t with
| DTyCtr (tc, dts) -> DTyCtr (tc, List.map (sub_term s) dts)
| DArrow (dt1, dt2) -> DArrow (sub_term s dt1, sub_term s dt2)
| DProd ((v, dt1), dt2) -> DProd ((v , sub_term s dt1), sub_term s dt2)
| DCtr (c, dts) -> DCtr (c, List.map (sub_term s) dts)
| DTyVar v -> (match IdMap.find_opt v s with
| None -> DTyVar v
| Some t -> t)
| DTyParam v -> DTyParam v
| DApp (dt, dts) -> DApp (sub_term s dt, List.map (sub_term s) dts)
| DNot dt -> DNot (sub_term s dt)
| DHole -> DHole
let compose_sub (sub1 : sub) (sub2 : sub) : sub =
IdMap.union (fun _ _ _ -> failwith "shouldn't get here") (IdMap.map (sub_term sub1) sub2) sub1
let rec occurs (v : var) (t : dep_type) : bool =
match t with
| DTyCtr (tc, dts) -> List.exists (occurs v) dts
| DArrow (dt1, dt2) -> occurs v dt1 || occurs v dt2
| DProd ((_, dt1), dt2) -> occurs v dt1 || occurs v dt2
| DTyParam tp -> false
| DCtr (c, dts) -> List.exists (occurs v) dts
| DTyVar v' -> v = v'
| DApp (dt, dts) -> occurs v dt || (List.exists (occurs v) dts)
| DNot dt -> occurs v dt
| DHole -> false
(*merge_disjoint from stackoverflow:*)
let merge_disjoint m1 m2 =
IdMap.merge
(fun k x0 y0 ->
match x0, y0 with
None, None -> None
| None, Some v | Some v, None -> Some v
| _, _ -> invalid_arg "merge_disjoint: maps are not disjoint")
m1 m2
let rec unify (t1 : dep_type) (t2 : dep_type) : sub option =
match t1, t2 with
| DTyVar v, _ -> if t2 = DTyVar v then Some IdMap.empty else if occurs v t2 then None else Some (IdMap.singleton v t2)
| t, DTyVar v -> unify (DTyVar v) t
| DTyCtr (tc, dts), DTyCtr (tc', dts') -> if tc = tc' then unifys dts dts' else None
| DArrow (dt1, dt2), DArrow (dt1', dt2') ->
Option.bind (unify dt1 dt1') (fun sub1 ->
Option.bind (unify (sub_term sub1 dt2) (sub_term sub1 dt2')) (fun sub2 ->
Some (compose_sub sub1 sub2)))
| DProd ((v, dt1), dt2), DProd ((v', dt1'), dt2') ->
Option.bind (unify dt1 dt1') (fun sub1 ->
Option.bind (unify (sub_term sub1 dt2) (sub_term sub1 dt2')) (fun sub2 ->
Some (compose_sub sub1 sub2)))
| DTyParam tp, DTyParam tp' -> Some IdMap.empty
| DCtr (c, dts), DCtr (c', dts') -> if not (constructor_to_string c = constructor_to_string c') then None
else unifys dts dts'
| DApp (dt, dts), DApp (dt', dts') ->
Option.bind (unify dt dt') (fun sub1 ->
Option.bind (unifys (List.map (sub_term sub1) dts) (List.map (sub_term sub1) dts')) (fun sub2 ->
Some (compose_sub sub1 sub2)))
| DNot dt, DNot dt' -> unify dt dt'
| DHole, DHole -> Some IdMap.empty
| _, _ -> None
and unifys (t1s : dep_type list) (t2s : dep_type list) : sub option =
match t1s, t2s with
| [], [] -> Some IdMap.empty
| (t1 :: t1s), (t2 :: t2s) ->
Option.bind (unify t1 t2) (fun s ->
Option.bind (unifys (List.map (sub_term s) t1s) (List.map (sub_term s) t2s)) (fun s2 ->
Some (merge_disjoint s s2)))
| _, _ -> failwith "error, shouldn't get here!"
(* This function appends the string to the end of all parameter names in the term *)
let rec postfix_all_params (postfix : string) (t : dep_type) : dep_type =
let recurse = postfix_all_params postfix in
match t with
| DTyCtr (tc, dts) -> DTyCtr (tc, List.map recurse dts)
| DArrow (dt1, dt2) -> DArrow (recurse dt1, recurse dt2)
| DProd ((v, dt1), dt2) -> DProd ((v , recurse dt1), recurse dt2)
| DCtr (c, dts) -> DCtr (c, List.map recurse dts)
| DTyParam v -> DTyParam (inject_ty_param ((ty_param_to_string v) ^ postfix))
| DTyVar v -> DTyVar v
| DApp (dt, dts) -> DApp (recurse dt, List.map recurse dts)
| DNot dt -> DNot (recurse dt)
| DHole -> DHole
(* Param unification *)
module UnknownOrd2 = struct
type t = ty_param
let compare x y = compare (ty_param_to_string x) (ty_param_to_string y)
end
module IdMap_param = Map.Make(UnknownOrd2)
type sub_param = dep_type IdMap_param.t
let rec sub_term_param (s : sub_param) (t : dep_type) : dep_type =
match t with
| DTyCtr (tc, dts) -> DTyCtr (tc, List.map (sub_term_param s) dts)
| DArrow (dt1, dt2) -> DArrow (sub_term_param s dt1, sub_term_param s dt2)
| DProd ((v, dt1), dt2) -> DProd ((v , sub_term_param s dt1), sub_term_param s dt2)
| DCtr (c, dts) -> DCtr (c, List.map (sub_term_param s) dts)
| DTyParam v -> (match IdMap_param.find_opt v s with
| None -> DTyParam v
| Some t -> t)
| DTyVar v -> DTyVar v
| DApp (dt, dts) -> DApp (sub_term_param s dt, List.map (sub_term_param s) dts)
| DNot dt -> DNot (sub_term_param s dt)
| DHole -> DHole
let compose_sub_param (sub1 : sub_param) (sub2 : sub_param) : sub_param =
IdMap_param.union (fun _ _ _ -> failwith "shouldn't get here") (IdMap_param.map (sub_term_param sub1) sub2) sub1
let rec occurs_param (v : ty_param) (t : dep_type) : bool =
match t with
| DTyCtr (tc, dts) -> List.exists (occurs_param v) dts
| DArrow (dt1, dt2) -> occurs_param v dt1 || occurs_param v dt2
| DProd ((_, dt1), dt2) -> occurs_param v dt1 || occurs_param v dt2
| DTyParam tp -> tp == v
| DCtr (c, dts) -> List.exists (occurs_param v) dts
| DTyVar v -> false
| DApp (dt, dts) -> occurs_param v dt || (List.exists (occurs_param v) dts)
| DNot dt -> occurs_param v dt
| DHole -> false
(*merge_disjoint from stackoverflow:*)
let merge_disjoint_param m1 m2 =
IdMap_param.merge
(fun k x0 y0 ->
match x0, y0 with
None, None -> None
| None, Some v | Some v, None -> Some v
| _, _ -> invalid_arg "merge_disjoint_param: maps are not disjoint")
m1 m2
let rec unify_param (t1 : dep_type) (t2 : dep_type) : sub_param option =
match t1, t2 with
| DTyParam v, _ -> if t2 = DTyParam v then Some IdMap_param.empty else if occurs_param v t2 then None else Some (IdMap_param.singleton v t2)
| t, DTyParam v -> unify_param (DTyParam v) t
| DTyCtr (tc, dts), DTyCtr (tc', dts') -> if tc = tc' then unifys_param dts dts' else None
| DArrow (dt1, dt2), DArrow (dt1', dt2') ->
Option.bind (unify_param dt1 dt1') (fun sub1 ->
Option.bind (unify_param (sub_term_param sub1 dt2) (sub_term_param sub1 dt2')) (fun sub2 ->
Some (compose_sub_param sub1 sub2)))
| DProd ((v, dt1), dt2), DProd ((v', dt1'), dt2') ->
Option.bind (unify_param dt1 dt1') (fun sub1 ->
Option.bind (unify_param (sub_term_param sub1 dt2) (sub_term_param sub1 dt2')) (fun sub2 ->
Some (compose_sub_param sub1 sub2)))
| DTyVar tp, DTyVar tp' -> Some IdMap_param.empty
| DCtr (c, dts), DCtr (c', dts') -> if not (constructor_to_string c = constructor_to_string c') then None
else unifys_param dts dts'
| DApp (dt, dts), DApp (dt', dts') ->
Option.bind (unify_param dt dt') (fun sub1 ->
Option.bind (unifys_param (List.map (sub_term_param sub1) dts) (List.map (sub_term_param sub1) dts')) (fun sub2 ->
Some (compose_sub_param sub1 sub2)))
| DNot dt, DNot dt' -> unify_param dt dt'
| DHole, DHole -> Some IdMap_param.empty
| _, _ -> None
and unifys_param (t1s : dep_type list) (t2s : dep_type list) : sub_param option =
match t1s, t2s with
| [], [] -> Some IdMap_param.empty
| (t1 :: t1s), (t2 :: t2s) ->
Option.bind (unify_param t1 t2) (fun s ->
Option.bind (unifys_param (List.map (sub_term_param s) t1s) (List.map (sub_term_param s) t2s)) (fun s2 ->
Some (merge_disjoint_param s s2)))
| _, _ -> failwith "error, shouldn't get here!"
(* TODO: move the type to be used in def of ctr_data *)
(* If a is in l, returns l with a removed *)
let rec remove (l : rec_arg list) (shared_param_match : dep_type) : (rec_arg * rec_arg list) option =
match l with
| [] -> None
| ((params, shared_param) :: xs) -> if shared_param = shared_param_match
then Some ((params, shared_param) , xs)
else Option.bind (remove xs shared_param_match) (fun (arg, l) -> Some (arg, ((params, shared_param) :: l)))
(* Inputs two sets of recursive arguments, and outputs three lists of arguments:
combined arguments, arguments from 1 which were unmatched, and arguments from
2 which were unmatched respectively.*)
let merge_recs (rs1 : rec_arg list) (rs2 : rec_arg list)
: (rec_arg list * rec_arg list * rec_arg list) =
List.fold_left (fun (both, just1, rs2) (params1, shared_1) ->
match remove rs2 shared_1 with
| None -> (both, (params1, shared_1) :: just1, rs2)
| Some ((params2, _), rs2') -> ((params1 @ params2, shared_1) :: both, just1, rs2')
)
([],[], rs2) rs1
(*returns a renaming for variables in vs2 which maps to names distinct from names in vs1*)
let generate_distinct_names (vs1 : (var * dep_type) list) (vs2 : (var * dep_type) list)
: var IdMap.t =
let names = List.map (fun (v, _) -> var_to_string v) vs1 in
let rec name_starting_with (s : string) : string =
if List.mem s names then name_starting_with (s ^ "'") else s
in
(* List.map (fun (v, ty) -> (inject_var (name_starting_with (var_to_string v)), ty)) vs2 *)
let pairs = List.map (fun (v, ty) -> (v, inject_var (name_starting_with (var_to_string v)))) vs2 in
IdMap.of_seq (List.to_seq pairs)
let merge_ctrs (name1 : ty_ctr) (name2 : ty_ctr) (vs1, rs1, os1, (as1, t1) : ctr_data)
(vs2, rs2, os2, (as2, t2) : ctr_data)
(param_pos1 : int) (param_pos2 : int)
(params1 : dep_type list) (params2 : dep_type list)
: ctr_data option =
(* Get a renaming for variables in vs2. vs1 and vs2 should already be unique within themselves, but we can't
have names clash between them. *)
let var_renaming = generate_distinct_names vs1 vs2 in
let ren = fun v -> IdMap.find v var_renaming in
let var_sub = IdMap.map (fun t -> DTyVar t) var_renaming in
(* apply variable renaming to everything from second relation *)
let vs2 = List.map (fun (v, t) -> (ren v, t)) vs2 in
let rs2 = List.map (fun (params, shared_param) -> (List.map (sub_term var_sub) params, sub_term var_sub shared_param)) rs2 in
let os2 = List.map (sub_term var_sub) os2 in
let as2 = List.map (sub_term var_sub) as2 in
let t2 = sub_term var_sub t2 in
(* split output parameters into shared value and others *)
(* Check if shared parameter of both constructors unify *)
Option.bind (unify t1 t2) (fun sub ->
(* In the case where they do unify, apply the resulting substitution to everything: *)
let s = sub_term sub in
let rs1' = List.map (fun (params, sh_param) -> (List.map s params, s sh_param)) rs1 in
let rs2' = List.map (fun (params, sh_param) -> (List.map s params, s sh_param)) rs2 in
let os1' = List.map s os1 in
let os2' = List.map s os2 in
(* Build the pieces of the resulting constructor by combining pieces from the two input constructors: *)
let t = s t1 in (*this should be equal to s t2*)
let as_ = List.append (List.map s as1) (List.map s as2) in
(* Any recursive arguments which match up should be combined, and other should be left as is: *)
let (rs, more_os1, more_os2) = merge_recs rs1' rs2' in
(* Collect the other non-recursive arguments: *)
let os = os1' @ os2' @
(List.map (fun args -> DTyCtr (name1, params1 @ (replace_shared args param_pos1))) more_os1)
@ (List.map (fun args -> DTyCtr (name2, params2 @ (replace_shared args param_pos2))) more_os2) in
(* Collect new list of forall bound variables, which is the union of the lists of the inputs except with variables
which got substituted during unification removed *)
let was_subbed = fun v -> not (IdMap.mem v sub) in
let vs = List.filter (fun (v, _) -> was_subbed v) vs1 @ List.filter (fun (v, _) -> was_subbed v) vs2 in
Some (vs, rs, os, (as_, t))
)
(*Note: I need to deal with if two constructors happen to have a forall bound variable
of the same name.*)
let rec convert_type (ty : dep_type) : dep_type list =
match ty with
| DArrow (a, b) -> a :: convert_type b
| out -> []
let rec convert_type_back (params : dep_type list) : dep_type =
match params with
| [] -> DTyCtr (gInjectTyCtr "Prop", [])
| param :: params -> DArrow (param, convert_type_back params)
(* an inductive relation, but with the parameters free *)
type relation'
= ty_ctr (* The name of the relation *)
* dep_ctr list (* A list of constructors. Each constructor is a pair (name, type) *)
* dep_type (* The type of the relation *)
let map_over_relation' ((ty_ctr, ctrs, typ) : relation') (f : dep_type -> dep_type) : relation' =
(
ty_ctr
, List.map (fun (n, t) -> (n, f t)) ctrs,
f typ
)
let range (n : int) : int list =
let rec range_aux (n : int) (so_far : int list) : int list =
if n = 0 then so_far else range_aux (n - 1) (n :: so_far)
in range_aux n []
(* inputs constructors from one type, and two parameters which tell it how to position the parameters in the output
type: other_type_num_params is how many parameters the other type to be merged with has, and left_or_right
is false if this type's params go on the left, or true if they go on the right.
Outputs (unchanged constructors, irrelevant constructors adjusted for output type)*)
let rec irrelevant_constructor_pass
(name_postfix : string)
(ctrs : (GenericLib.constructor * ctr_data) list) (other_type_params : dep_type list) (left_or_right : bool)
: ((GenericLib.constructor * ctr_data) list * (GenericLib.constructor * ctr_data) list) =
let ctr_irrelevant_try ((vs, rs, os, (params_out, shared_out)) : ctr_data) : ctr_data option =
if List.length rs = 1
then let (r_params, r_shared) = List.nth rs 0 in
if r_shared = shared_out
then let new_vars = List.map (fun s -> inject_var ("x_generated_" ^ string_of_int s))
(range (List.length other_type_params)) in
let new_vars_terms = List.map (fun v -> DTyVar v) new_vars in
let new_r_params = if left_or_right then new_vars_terms @ r_params else r_params @ new_vars_terms in
let new_params_out = if left_or_right then new_vars_terms @ params_out else params_out @ new_vars_terms in
Some (vs @ (List.combine new_vars other_type_params),
[ new_r_params, r_shared ],
os,
(new_params_out, shared_out))
else None
else None
in
match ctrs with
| [] -> ([], [])
| ((name, ctr) :: rest) ->
let (normal, irrelevant) = irrelevant_constructor_pass name_postfix rest other_type_params left_or_right in
match ctr_irrelevant_try ctr with
| None -> ((name, ctr) :: normal, irrelevant)
| Some out_ctr -> (normal, (injectCtr ((constructor_to_string name) ^ name_postfix), out_ctr) :: irrelevant)
(* Merges the two relations *)
let merge_relations ((tyctr1, ctrs1, ty1) : relation')
(param_pos1 : int)
((tyctr2, ctrs2, ty2) : relation')
(param_pos2 : int)
tyctr
(params1 : ty_param list) (params2 : ty_param list)
: relation' * sub_param =
(* Separate out the shared parameter to be merged *)
let converted_ty1 = separate_shared (convert_type ty1) param_pos1 in
let converted_ty2 = separate_shared (convert_type ty2) param_pos2 in
let ty = (convert_type_back ((fst converted_ty1) @ (fst converted_ty2) @ [ snd converted_ty1 ])) in
(* Unify the shared types *)
let param_sub = match unify_param (snd converted_ty1) (snd converted_ty2) with
| None -> failwith "Shared parameters don't unify"
| Some sub -> sub
in
msg_debug (str "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO");
IdMap_param.iter (fun param t -> msg_debug (str ("in param_sub, params " ^ (ty_param_to_string param) ^ " subbed for " ^ (dep_type_to_string t)))) param_sub;
(* Apply the parameter substitution to everything *)
let s = sub_term_param param_sub in
let converted_ty1 = (List.map s (fst converted_ty1), s (snd converted_ty1)) in
let converted_ty2 = (List.map s (fst converted_ty2), s (snd converted_ty2)) in
let ctrs1 = List.map (fun (n, t) -> (n, s t)) ctrs1 in
let ctrs2 = List.map (fun (n, t) -> (n, s t)) ctrs2 in
let ty = s ty in
let params1 = List.map (fun p -> s (DTyParam p)) params1 in
let params2 = List.map (fun p -> s (DTyParam p)) params2 in
(* First identify the constructors which don't change the parameter, for the irrelevant constructor pass *)
let (ctrs1_regular, ctrs1_irrelevant) = irrelevant_constructor_pass ("'1" ^ ty_ctr_to_string tyctr1 ^ ty_ctr_to_string tyctr2)
(List.map (fun (name, ctr) -> (name, convertConstructor tyctr1 ctr param_pos1)) ctrs1)
(fst converted_ty2) false in
let (ctrs2_regular, ctrs2_irrelevant) = irrelevant_constructor_pass ("'2" ^ ty_ctr_to_string tyctr2 ^ ty_ctr_to_string tyctr2)
(List.map (fun (name, ctr) -> (name, convertConstructor tyctr2 ctr param_pos2)) ctrs2)
(fst converted_ty1) true in
let param_pos = (List.length (convert_type ty) - 1) in
(* Merge each pair of remaining constructors *)
let ctrs_regular = List.fold_left (fun acc (name1, ctr1) -> (List.fold_left (fun acc (name2, ctr2) ->
match merge_ctrs tyctr1 tyctr2 ctr1 ctr2 param_pos1 param_pos2 params1 params2 with
| Some ctr -> let new_ctr = convertBack tyctr ctr param_pos in (*TODO: think here later*)
let new_name = (injectCtr (constructor_to_string name1 ^ constructor_to_string name2)) in
(new_name, new_ctr) :: acc
| None -> acc
) acc ctrs2_regular)) [] ctrs1_regular in
let ctrs = (List.map (fun (name, ctr) -> (name, convertBack tyctr ctr param_pos)) ctrs1_irrelevant)
@ (List.map (fun (name, ctr) -> (name, convertBack tyctr ctr param_pos)) ctrs2_irrelevant)
@ ctrs_regular in
((tyctr, ctrs, ty) , param_sub)
(* This represents an inductive relation in coq, e.g. "Inductive IsSorted (t : Type) : list t -> Prop := ...".
This tuple is the representation returned by leo's wrapper around the coq internals, in genericLib. *)
type relation
= ty_ctr (* The name of the relation (e.g. IsSorted) *)
* ty_param list (* The list of type parameters (e.g. "t" in IsSorted) *)
* dep_ctr list (* A list of constructors. Each constructor is a pair (name, type) *)
* dep_type (* The type of the overall relation (e.g. "list t -> Prop") *)
(* let print_relation ((ty_ctr, ) : relation) =
msg_debug (str "printing a relation -------------------------------------------" ++ fnl ()) ;
List.iter (fun param -> msg_debug (str (ty_param_to_string param) ++ fnl ())) ty_params;
msg_debug (str "constr_of_type: " ++ str (dep_type_to_string typ) ++ fnl ());
(* msg_debug (str "me_arity ty_ctr: " ++ str (string_of_qualid ty_ctr) ++ fnl ()); *)
List.iter (fun (c, t) -> msg_debug (str "ctr: " ++ str (dep_ctr_to_string (c,t)) ++ fnl ())) ctrs;
() *)
let extract_relation ind : relation * int =
match ind with
#if COQ_VERSION >= (8, 20, 0)
| { CAst.v = CLambdaN ([CLocalAssum ([{ CAst.v = Names.Name id1; CAst.loc = _loc2 }], _, _kind, _type)], body1); _ } ->
#else
| { CAst.v = CLambdaN ([CLocalAssum ([{ CAst.v = Names.Name id1; CAst.loc = _loc2 }], _kind, _type)], body1); _ } ->
#endif
(* Extract (x1,x2,...) if any, P and arguments *)
let (p1, args1) =
match body1 with
| { CAst.v = CApp (p, args); _ } -> (p, args)
| _ -> qcfail "Merge/Not App"
in
let rec find f lst = (*from stackoverflow*)
match lst with
| [] -> raise (failwith "Parameter bound parameter not in argument list")
| h :: t -> if f h then 0 else 1 + find f t in
(* Find position of id1 in args1 to get parameter position *)
let param_pos = find (function | ({CAst.v = CRef (id,_) ; _} , _) -> qualid_basename id = id1) args1 in
match coerce_reference_to_dep_dt p1 with
| Some dt -> msg_debug (str (dep_dt_to_string dt) ++ fnl());
(* let num_named_params = match dt with (_ , params , _ , _) -> List.length params in *)
dt , param_pos (* - num_named_params *)
| None -> failwith "Not supported type"
let extract_tyctr ind : ty_ctr =
match ind with
| { CAst.v = CRef (r,_) ; _ } -> gInjectTyCtr (string_of_qualid r)
(*
The following six functions provide an extra step that separates type parameters from a relation to
make the relation (and the parameters) easier to work with.
In case I come back and am confused by this code later, a type parameter is e.g. "t" in
Inductive list (t : Type) : Type := ...
*)
(*
let rec removeOuterForalls (ty : dep_type) (numToRemove : int) : dep_type =
if numToRemove = 0
then ty
else
match ty with
| DProd ((v, dt1), dt2) -> removeOuterForalls dt2 (numToRemove - 1)
| _ -> failwith "if this is printed its a bug 1"
*)
let rec removeFirstArgsOfVar (var : ty_ctr) (num : int) (term : dep_type) =
let rec drop n l = if n = 0 then l else (drop (n - 1) (List.tl l)) in
let recurse = removeFirstArgsOfVar var num in
match term with
| DArrow (d1, d2) -> DArrow (recurse d1, recurse d2)
| DProd ((x,d1), d2) -> DProd ((x, recurse d1), recurse d2)
| DTyCtr (ty_ctr, ds) ->
if ty_ctr = var then DTyCtr (ty_ctr, drop num ds) else DTyCtr (ty_ctr, ds)
| DCtr (ctr, ds) -> DCtr (ctr, List.map recurse ds)
| DTyParam tp -> DTyParam tp
| DTyVar tv -> DTyVar tv
| DApp (d, ds) -> DApp (recurse d, List.map recurse ds)
| DNot d -> DNot (recurse d)
| DHole -> DHole
(* Inputs a dependent relation as outputted by genericLib, and removes the type parameters from all parts of
the relation, so that they can be worked with as merely free variables. Specifically, this
1) removes foralls from the front of ty
2) removes foralls from the front of each constructor in ctrs
3) removes the parameter arguments in each recursive reference to the relation in the constructors *)
let removeTypeParameters ((ty_ctr, params, ctrs, ty) : relation) : relation' * ty_param list =
let num_params = List.length params in
((ty_ctr
, List.map
(fun (name, ty) ->
(* (name, removeFirstArgsOfVar ty_ctr num_params (removeOuterForalls ty num_params))) *)
(* (name, removeOuterForalls ty num_params)) *)
(* (name, ty)) *)
(name, removeFirstArgsOfVar ty_ctr num_params ty))
ctrs
(* , removeOuterForalls ty num_params) *)
, ty)
, params)
(*
let rec replaceOuterForalls (ty : dep_type) (names : ty_param list) =
match names with
| [] -> ty
| name :: names -> DProd (((inject_var (ty_param_to_string name))
,(DTyCtr (gInjectTyCtr "Type", []))), replaceOuterForalls ty names)
*)
(* DTyCtr (injectCtr "Prop", []) *)
let rec replaceFirstArgsOfVar (var : ty_ctr) (names : ty_param list) (term : dep_type) =
let recurse = replaceFirstArgsOfVar var names in
let names_as_vars = List.map (fun name -> DTyVar (inject_var (ty_param_to_string name))) names in
match term with
| DArrow (d1, d2) -> DArrow (recurse d1, recurse d2)
| DProd ((x,d1), d2) -> DProd ((x, recurse d1), recurse d2)
| DTyCtr (ty_ctr, ds) ->
if ty_ctr = var then DTyCtr (ty_ctr, names_as_vars @ ds) else DTyCtr (ty_ctr, ds)
| DCtr (ctr, ds) -> DCtr (ctr, List.map recurse ds)
| DTyParam tp -> DTyParam tp
| DTyVar tv -> DTyVar tv
| DApp (d, ds) -> DApp (recurse d, List.map recurse ds)
| DNot d -> DNot (recurse d)
| DHole -> DHole
(* This function does the reverse of removeTypeParameters. It adds the foralls back onto the
constructors and the type, as well as adding the parameters back as arguments to each recursive reference. *)
let insertTypeParameters ((ty_ctr, ctrs, ty) : relation') (params : ty_param list) : relation =
(ty_ctr
, params
(* , [] *)
, List.map
(fun (name, ty) ->
(* (name, replaceOuterForalls (replaceFirstArgsOfVar ty_ctr params ty) params)) *)
(name, replaceFirstArgsOfVar ty_ctr params ty))
ctrs
(* , replaceOuterForalls ty params) *)
, ty)
(* , ty) *)
(*
let rec applyVarToTerms (var : ty_ctr) (terms : dep_type list) (term : dep_type) =
let recurse = applyVarToTerms var terms in
match term with
| DArrow (d1, d2) -> DArrow (recurse d1, recurse d2)
| DProd ((x,d1), d2) -> DProd ((x, recurse d1), recurse d2)
| DTyCtr (ty_ctr, ds) ->
if ty_ctr = var then DTyCtr (ty_ctr, terms @ ds) else DTyCtr (ty_ctr, ds)
| DCtr (ctr, ds) -> DCtr (ctr, List.map recurse ds)
| DTyParam tp -> DTyParam tp
| DTyVar tv -> DTyVar tv
| DApp (d, ds) -> DApp (recurse d, List.map recurse ds)
| DNot d -> DNot (recurse d)
| DHole -> DHole
let applyFunToRelation ((ty_ctr, params, ctrs, ty) : relation) (f : dep_type -> dep_type) : relation =
(ty_ctr
, params
, List.map
(fun (name, ty) ->
(name, f ty))
ctrs
, f ty)
let name_of_rel ((name, _, _, _) : relation) : ty_ctr = name
*)
let merge ind1 ind2 ind =
let rel1, param_pos1 = extract_relation ind1 in
msg_debug (str "------------ First relation inputted: --------------------");
msg_debug (str (dep_dt_to_string rel1));
msg_debug (str "--------------------------------");
let rel2, param_pos2 = extract_relation ind2 in
let rel1', params1 = removeTypeParameters rel1 in
let rel2', params2 = removeTypeParameters rel2 in
(* Do renanmings of parameters to avoid name collisions *)
let postfix1 = "_generated1_" in
let postfix2 = "_generated2_" in
let params1 = List.map (fun s -> inject_ty_param ((ty_param_to_string s) ^ postfix1)) params1 in
let params2 = List.map (fun s -> inject_ty_param ((ty_param_to_string s) ^ postfix2)) params2 in
let rel1' = map_over_relation' rel1' (postfix_all_params postfix1) in
let rel2' = map_over_relation' rel2' (postfix_all_params postfix2) in
(* Perform the merge *)
let rel, param_sub = merge_relations rel1' param_pos1 rel2' param_pos2 (extract_tyctr ind) params1 params2 in
(* Get rid of substituted parameters *)
let params = List.filter (fun param -> not (IdMap_param.mem param param_sub)) (params1 @ params2) in
(* Re-insert the parameters *)
(*
let params1subbed = List.map (fun param -> sub_term_param param_sub (DTyParam param)) params1 in
let params2subbed = List.map (fun param -> sub_term_param param_sub (DTyParam param)) params2 in
*)
let rel = insertTypeParameters rel params in
(* let rel = applyFunToRelation rel (applyVarToTerms (name_of_rel rel1) params1subbed) in *)
(* let rel = applyFunToRelation rel (applyVarToTerms (name_of_rel rel2) params2subbed) in *)
(* BUG TO STILL FIX: if P = Q, then they have the same name. Instead, I should probably keep
the parameters in from the beggining and let them get subbed with everything else??? *)
msg_debug (str "------------ Relation to be outputted: --------------------");
msg_debug (str (dep_dt_to_string rel));
msg_debug (str "--------------------------------");
define_new_inductive rel
(* P : c1 es | .... => P_ : c1_ es* .... *)
let renamer (ty_ctr, ty_params, ctrs, typ) : dep_dt =
let ty_ctr' = gInjectTyCtr ((ty_ctr_to_string ty_ctr) ^ "_") in
let rec rename_dt = function
| DTyCtr (tc, dts) ->
if tc = ty_ctr then
DTyCtr (ty_ctr', List.map rename_dt dts)
else
DTyCtr (tc, List.map rename_dt dts)
| DArrow (dt1, dt2) ->
DArrow (rename_dt dt1, rename_dt dt2)
| DProd ((v, dt1), dt2) ->
DProd ((v, rename_dt dt1), rename_dt dt2)
| DTyParam tp -> DTyParam tp
| DCtr (c, dts) ->
DCtr (c, List.map rename_dt dts)
| DTyVar v -> DTyVar v
| DApp (dt, dts) ->
DApp (rename_dt dt, List.map rename_dt dts)
| DNot dt -> DNot (rename_dt dt)
| DHole -> DHole
in
let rename_dep_ctr (c, dt) : dep_ctr =
let c' = injectCtr (constructor_to_string c ^ "_") in
(c', rename_dt dt)
in
let ctrs' = List.map rename_dep_ctr ctrs in
let typ' = rename_dt typ in
(ty_ctr', ty_params, ctrs', typ')
let merge_test ind =
let rel, param = extract_relation ind in
define_new_inductive (renamer rel)
(*
TODO still:
4) Generate the mappings back and forth P as x /\ Q bs x <-> PQ as bs x
8) Add error checks with useful error messages for
- shared parameter types are different
- number of arguments is not same as number that the type family actually takes
*)
(*
The plan:
- Inductive type
- Inductive type with free vars instead of type parameters
function removeTypeParameters -
- removes first n foralls from contructors
- removes first n arguments from any recursive call
function insertTypeParameters -
- insert n foralls with correct names on each constructor
- insert n args on each recursive call
*)
|