1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
|
open Pp
open Util
open GenericLib
open Error
(* TODO : move to utils or smth *)
type name_provider = { next_name : unit -> string }
let mk_name_provider s =
let cnt = ref 0 in
{ next_name = fun () ->
let res = Printf.sprintf "%s_%d_" s !cnt in
incr cnt;
res
}
(* Ranges are undefined, unknowns or constructors applied to ranges *)
module Unknown = struct
type t = var
let to_string = var_to_string
let from_string x = fresh_name x
let from_var x = x
let from_id x = var_of_id x
let undefined = var_of_id (Names.Id.of_string_soft "I@reallywantundefinedherebutwedonthavelaziness")
end
module UnknownOrd = struct
type t = Unknown.t
let compare x y = compare (Unknown.to_string x) (Unknown.to_string y)
end
type unknown = Unknown.t
type range = Ctr of constructor * range list
| Unknown of unknown
| Undef of dep_type
| FixedInput
| Parameter of ty_param
| RangeHole
let is_parameter r =
match r with
| Parameter _ -> true
| _ -> false
let rec range_to_string = function
| Ctr (c, rs) -> constructor_to_string c ^ " " ^ str_lst_to_string " " (List.map range_to_string rs)
| Unknown u -> Unknown.to_string u
| Undef dt -> Printf.sprintf "Undef (%s)" (dep_type_to_string dt)
| FixedInput -> "FixedInput"
| RangeHole -> "_"
| Parameter p -> ty_param_to_string p
let ranges_to_string rs = String.concat " " (List.map range_to_string rs)
let rec matcher_pat_to_range m =
match m with
| MatchCtr (c,ms) -> Ctr (c, List.map matcher_pat_to_range ms)
| MatchU u -> Unknown u
| MatchParameter p -> Parameter p
module UM = Map.Make(UnknownOrd)
(* module US = Set.Make(UnknownOrd) *)
(* Maps unknowns to range *)
type umap = range UM.t
let umfind k m =
try UM.find k m
with Not_found ->
CErrors.user_err (str (Printf.sprintf "Can't find: %s" (Unknown.to_string k)) ++ fnl())
let lookup (k : unknown) (m : umap) = try Some (UM.find k m) with Not_found -> None
(* For equality handling: require ordered (String, String) *)
module OrdTSS = struct
type t = unknown * unknown
let compare x y = compare x y
end
module EqSet = Set.Make(OrdTSS)
let eq_set_add u1 u2 eqs =
let (u1', u2') = if u1 < u2 then (u1, u2) else (u2, u1) in
EqSet.add (u1', u2') eqs
module OrdTyp = struct
type t = dep_type
let compare = compare
end
module ArbSet = Set.Make(OrdTyp)
type unknown_provider = { next_unknown : unit -> Unknown.t }
let unk_provider =
let np = mk_name_provider "unkn" in
{ next_unknown = fun () -> Unknown.from_string (np.next_name ()) }
(* Match a constructor/ranges list to a fixed input *)
(* Range list is toplevel, so it's mostly unifications.
If any of the unknowns in rs is "FixedInput", then
we need to create a fresh unknown, bind it to the other unknown and
raise an equality check *)
let rec raiseMatch (k : umap) (c : constructor) (rs : range list) (eqs: EqSet.t)
: (umap * matcher_pat * EqSet.t) option =
(foldM (fun (k, l, eqs) r ->
match r with
| Ctr (c', rs') ->
raiseMatch k c' rs' eqs >>= fun (k', m, eqs') ->
Some (k', m::l, eqs')
| Unknown u ->
let rec go u =
lookup u k >>= fun r' ->
begin match r' with
| Undef _ -> (* The unknown should now be fixed *)
Some (UM.add u FixedInput k, (MatchU u)::l, eqs)
| FixedInput -> (* The unknown is already fixed, raise an eq check *)
let u' = unk_provider.next_unknown () in
Some (UM.add u' (Unknown u) k, (MatchU u')::l, eq_set_add u' u eqs)
| Ctr (c', rs') ->
raiseMatch k c' rs' eqs >>= fun (k', m, eqs') ->
Some (k', m :: l, eqs')
| Unknown u' -> go u'
| RangeHole -> failwith "Internal: RangeHoles should not appear past entry"
| Parameter _p -> failwith "QC Internal: Does this occur (Parameter in match)?"
end
in go u
| Parameter p -> Some (k, MatchParameter p :: l, eqs)
| _ -> failwith "Toplevel ranges should be Unknowns or constructors"
) (Some (k, [], eqs)) rs) >>= fun (k', l, eqs') ->
Some (k', MatchCtr (c, List.rev l), eqs')
(* Invariants:
-- Everything has a binding, even if just Undef
-- r1, r2 are never FixedInput, Undef (handled inline)
-- TopLevel ranges can be unknowns or constructors applied to toplevel ranges
-- Constructor bindings in umaps are also toplevel.
-- Only unknowns can be bound to Undef/FixedInput
*)
let rec unify (k : umap) (r1 : range) (r2 : range) (eqs : EqSet.t)
: (umap * range * EqSet.t * (unknown * matcher_pat) list) option =
msg_debug (str (Printf.sprintf "Calling unify with %s %s" (range_to_string r1) (range_to_string r2)) ++ fnl ());
match r1, r2 with
| Unknown u1, Unknown u2 ->
if u1 = u2 then Some (k, Unknown u1, eqs, []) else
lookup u1 k >>= fun r1 ->
lookup u2 k >>= fun r2 ->
msg_debug (str (Printf.sprintf "Unifying two unknowns with ranges: %s %s" (range_to_string r1) (range_to_string r2)) ++ fnl ());
begin match r1, r2 with
(* "Delay" cases - unknowns call unify again *)
(* TODO: rething return value *)
| Unknown u1', _ ->
unify k (Unknown u1') (Unknown u2) eqs >>= fun (k', _r', eqs', ms') ->
Some (k', Unknown u1, eqs', ms')
| _, Unknown u2' ->
unify k (Unknown u1) (Unknown u2') eqs >>= fun (k', _r', eqs', ms') ->
Some (k', Unknown u2, eqs', ms')
(* "Hard" case: both are fixed. Need to raise an equality check on the inputs *)
| FixedInput, FixedInput ->
let (u1', u2') = if u1 < u2 then (u1, u2) else (u2, u1) in
(* Need to insert an equality between u1 and u2 *)
let eqs' = EqSet.add (u1, u2) eqs in
(* Unify them in k *)
Some (UM.add u1' (Unknown u2') k, Unknown u1', eqs', [])
(* Easy cases: When at least one is undefined, it binds to the other *)
(* Can probably replace fixed input with _ *)
| Undef _ , Undef _ ->
let (u1', u2') = if u1 < u2 then (u1, u2) else (u2, u1) in
Some (UM.add u1' (Unknown u2') k, Unknown u1', eqs, [])
| _, Undef _ ->
Some (UM.add u2 (Unknown u1) k, Unknown u2, eqs, [])
| Undef _, _ ->
Some (UM.add u1 (Unknown u2) k, Unknown u1, eqs, [])
(* Constructor bindings *)
| Ctr (c1, rs1), Ctr (c2, rs2) ->
msg_debug (str (Printf.sprintf "Constructors: %s - %s\n"
(String.concat " " (List.map range_to_string rs1))
(String.concat " " (List.map range_to_string rs2)))
++ fnl ());
if c1 = c2 then
foldM (fun b a -> let (r1, r2) = a in
let (k, l, eqs, ms) = b in
unify k r1 r2 eqs >>= fun res ->
let (k', r', eqs', ms') = res in
Some (k', r'::l, eqs', ms @ ms')
) (Some (k, [], eqs, [])) (List.combine rs1 rs2) >>= fun (k', rs', eqs', ms) ->
Some (k', Ctr (c1, List.rev rs'), eqs', ms)
else None
(* Last hard cases: Constructors vs fixed *)
| FixedInput, Ctr (c, rs) ->
(* Raises a match and potential equalities *)
raiseMatch k c rs eqs >>= fun (k', m, eqs') ->
Some (UM.add u1 (Unknown u2) k', Unknown u1, eqs', [(u1, m)])
| Ctr (c, rs), FixedInput ->
(* Raises a match and potential equalities *)
raiseMatch k c rs eqs >>= fun (k', m, eqs') ->
Some (UM.add u2 (Unknown u1) k', Unknown u2, eqs', [(u2, m)])
| Parameter p, Parameter q ->
if p = q then Some (k, Parameter p, eqs, []) else None
| _ -> failwith "QC Internal: RangeHole/Parameter in unify"
end
| Ctr (c1, rs1), Ctr (c2, rs2) ->
msg_debug (str (Printf.sprintf "Constructors2: %s - %s\n"
(String.concat " " (List.map range_to_string rs1))
(String.concat " " (List.map range_to_string rs2)))
++ fnl ());
if c1 = c2 then
foldM (fun b a -> let (r1, r2) = a in
let (k, l, eqs, ms) = b in
unify k r1 r2 eqs >>= fun res ->
let (k', r', eqs', ms') = res in
Some (k', r'::l, eqs', ms @ ms')
) (Some (k, [], eqs, [])) (List.combine rs1 rs2) >>= fun (k', rs', eqs', ms) ->
Some (k', Ctr (c1, List.rev rs'), eqs', ms)
else None
| Unknown u, Ctr (c, rs)
| Ctr (c, rs), Unknown u ->
lookup u k >>= fun r ->
begin match r with
| FixedInput ->
(* Raises a match and potential equalities *)
raiseMatch k c rs eqs >>= fun (k', m, eqs') ->
Some (UM.add u (Ctr (c,rs)) k', Unknown u, eqs', [(u, m)])
| Undef _ -> Some (UM.add u (Ctr (c,rs)) k, Unknown u, eqs, [])
| Ctr (c', rs') ->
msg_debug (str (Printf.sprintf "Constructors3: %s \n"
(String.concat " " (List.map range_to_string rs')))
++ fnl ());
if c = c' then
foldM (fun b a -> let (r1, r2) = a in
let (k, l, eqs, ms) = b in
unify k r1 r2 eqs >>= fun res ->
let (k', r', eqs', ms') = res in
Some (k', r'::l, eqs', ms @ ms')
) (Some (k, [], eqs, [])) (List.combine rs rs') >>= fun (k', _rs', eqs', ms) ->
Some (k', Unknown u, eqs', ms)
else None
| Unknown u' ->
unify k (Ctr (c,rs)) (Unknown u') eqs >>= fun (k', _r', eqs', m') ->
Some (k', Unknown u, eqs', m')
| _ -> failwith "QC Internal: Range Hole in toplevel?"
end
| Parameter p, Parameter q ->
if p = q then Some (k, Parameter p, eqs, []) else None
| _, _ -> failwith "QC Internal: TopLevel ranges should be Unknowns or Constructors"
let rec fixRange u r k =
match r with
| FixedInput -> k
| Undef _ -> UM.add u FixedInput k
| Unknown u' ->
begin
try fixRange u' (UM.find u' k) k
with Not_found -> UM.add u' FixedInput k
end
| Ctr (_, rs) -> List.fold_left (fun k r -> fixRange Unknown.undefined r k) k rs
| Parameter _p -> k
| RangeHole -> failwith "QC Internal: RangeHole in fixrange"
let fixVariable x k =
try fixRange x (UM.find x k) k
with Not_found -> UM.add x FixedInput k
(* Since this can fail - return an option *)
let rec convert_to_range dt =
match dt with
| DTyVar x -> Some (Unknown x)
| DCtr (c,dts) ->
option_map (fun dts' -> Ctr (c, dts')) (sequenceM convert_to_range dts)
| DTyCtr (c, dts) ->
option_map (fun dts' -> Ctr (ty_ctr_to_ctr c, dts')) (sequenceM convert_to_range dts)
| DTyParam param -> Some (Parameter param)
| DHole -> Some RangeHole
| _ -> None
let rec is_fixed_range k = function
| Undef _ -> false
| FixedInput -> true
| Unknown u' -> is_fixed_range k (umfind u' k)
| Ctr (_, rs) -> List.for_all (is_fixed_range k) rs
| RangeHole -> true (*TODO *)
| Parameter _ -> true (* TODO *)
let is_fixed k dt =
option_map (is_fixed_range k) (convert_to_range dt)
(* convert a range to a coq expression *)
let rec range_to_coq_expr k r =
match r with
| Ctr (c, rs) ->
gApp ~explicit:true (gCtr c) (List.map (range_to_coq_expr k) rs)
| Unknown u ->
begin match umfind u k with
| FixedInput -> gVar u
| Undef _ -> (msg_debug (str "It's stupid that this is called" ++ fnl ()); gVar u)
| Unknown u' -> range_to_coq_expr k (Unknown u')
| Ctr (c, rs) -> gApp (gCtr c) (List.map (range_to_coq_expr k) rs)
| Parameter p -> gTyParam p
| RangeHole -> hole
end
| RangeHole -> hole
| Parameter p -> gTyParam p
| _ -> failwith "QC Internal: TopLevel ranges should be Unknowns or Constructors"
let rec dt_to_coq_expr k dt =
match dt with
| DTyVar u ->
begin try
begin match umfind u k with
| FixedInput -> gVar u
| Undef _ -> (msg_debug (str "It's stupid that this is called" ++ fnl ()); gVar u)
| Unknown u' -> range_to_coq_expr k (Unknown u')
| Ctr (c, rs) -> gApp (gCtr c) (List.map (range_to_coq_expr k) rs)
| Parameter p -> gTyParam p
| RangeHole -> hole
end
with _ -> gVar u
end
| DCtr (c,dts) ->
gApp ~explicit:true (gCtr c) (List.map (dt_to_coq_expr k) dts)
| DTyCtr (c, dts) ->
gApp ~explicit:true (gCtr (ty_ctr_to_ctr c)) (List.map (dt_to_coq_expr k) dts)
| DApp (dt, dts) ->
gApp ~explicit:true (dt_to_coq_expr k dt) (List.map (dt_to_coq_expr k) dts)
| DHole -> hole
| _ -> failwith "QC Internal: dt_to_coq_expr"
let rec is_dep_type = function
| DArrow (dt1, dt2) -> is_dep_type dt1 || is_dep_type dt2
| DProd ((_, dt1), dt2) -> is_dep_type dt1 || is_dep_type dt2
| DTyParam _ -> false
| DTyVar _ -> true
| DCtr _ -> true
| DTyCtr (_, dts) -> List.exists is_dep_type dts
| DApp (dt, dts) -> List.exists is_dep_type (dt::dts)
| DNot dt -> is_dep_type dt
| DHole -> false
type check = (coq_expr -> coq_expr) * int
module CMap = Map.Make(OrdDepType)
type cmap = (check list) CMap.t
let lookup_checks k m = try Some (CMap.find k m) with Not_found -> None
(* TODO: When handling parameters, this might need to add additional arguments *)
(** Takes an equality map and two coq expressions [cleft] and [cright]. [cleft]
is returned if all of the equalities hold, otherwise [cright] is
returned. *)
let handle_equalities init_size eqs (check_expr : coq_expr -> 'a -> 'a -> 'a -> 'a)
(cleft : 'a) (cright : 'a) (cfuel : 'a) =
EqSet.fold (fun (u1,u2) c ->
let checker =
gApp ~explicit:true (gInject "decOpt")
[ gApp (gInject "Logic.eq") [gVar u1; gVar u2]
; hole
; init_size]
in
check_expr checker c cright cfuel
) eqs cleft
type mode = Recursive of (Unknown.t * dep_type) list
* (Unknown.t * dep_type) list
* range list
| NonRecursive of (Unknown.t * dep_type) list (* List of all unknowns that are still undefined *)
type range_mode =
| ModeFixed
| ModeUndefUnknown of (Unknown.t * dep_type)
| ModePartlyDef of ((Unknown.t * Unknown.t) list * (Unknown.t * dep_type) list * matcher_pat)
| ModeParameter
let range_mode_to_string = function
| ModeFixed -> "Fixed"
| ModeParameter -> "Param"
| ModeUndefUnknown (u,_) -> Printf.sprintf "Unknown %s" (Unknown.to_string u)
| ModePartlyDef (eqs, unks, pat) ->
Printf.sprintf "Partial (eqs = %s, unks = %s, pat = %s)"
(String.concat " " (List.map (fun (u1, u2) -> Printf.sprintf "%s = %s" (Unknown.to_string u1) (Unknown.to_string u2)) eqs))
(String.concat " " (List.map (fun (u,t) -> Unknown.to_string u) unks))
(matcher_pat_to_string pat)
type compatible = Compatible | Incompatible | PartCompatible | InstCompatible
exception Incompatible_mode
let mode_analysis init_ctr curr_ctr (init_ranges : range list) (init_map : range UM.t)
(curr_ranges : range list) (curr_map : range UM.t) =
msg_debug (str (Printf.sprintf "Look here!! init_ctr = %s, curr_ctr = %s" (ty_ctr_to_string init_ctr) (ty_ctr_to_string curr_ctr)) ++ fnl ());
ignore (find_typeclass_bindings "EnumSizedSuchThat" curr_ctr);
let unknowns_for_mode = ref [] in
let remaining_unknowns = ref [] in
let all_unknowns = ref [] in
let actual_inputs = ref [] in
(* Filter out parameters ranges -- hack! *)
let init_ranges = List.filter (fun r -> not (is_parameter r)) init_ranges in
let curr_ranges = List.filter (fun r -> not (is_parameter r)) curr_ranges in
(* Compare ranges takes two ranges (the initial range r1 and the current range r2)
as well as their parents, and returns:
- true, if we can convert the current range to the same
mode as the original range by instantiating a list of unknowns
- false, if we can not convert (i.e. some things are more instantiated
than they should be)
*)
let rec compare_ranges isTop p1 r1 p2 r2 =
match r1, r2 with
| Unknown u1, _ -> compare_ranges isTop u1 (UM.find u1 init_map) p2 r2
| _, Unknown u2 -> compare_ranges isTop p1 r1 u2 (UM.find u2 curr_map)
| FixedInput, FixedInput ->
if isTop then actual_inputs := Unknown p2 :: !actual_inputs;
true
| FixedInput, Undef dt ->
if isTop then actual_inputs := Unknown p2 :: !actual_inputs;
unknowns_for_mode := (p2, dt) :: !unknowns_for_mode;
all_unknowns := (p2, dt) :: !all_unknowns;
true
| FixedInput, Ctr (c, rs) ->
if isTop then actual_inputs := (Ctr (c,rs)) :: !actual_inputs;
(* iterate through all the rs against fixed inputs *)
List.for_all (fun b -> b) (List.map (compare_ranges false Unknown.undefined FixedInput Unknown.undefined) rs)
| Undef _, FixedInput ->
(* todo: something is wrong here *)
false
| Undef _, Undef dt ->
(* Add the second range's parent to the list of unknowns that are free,
but do not need to be instantiated for the mode to work *)
remaining_unknowns := (p2,dt) :: !remaining_unknowns;
all_unknowns := (p2, dt) :: !all_unknowns;
true
| Undef _, Ctr (_c, rs) ->
List.iter (fun r' -> ignore (compare_ranges false p1 r1 Unknown.undefined r')) rs; false
| _, _ -> qcfail (Printf.sprintf "Implement constructors for initial ranges: %s vs %s"
(range_to_string r1) (range_to_string r2))
in
if not (init_ctr = curr_ctr) then
let rec find_all_unknowns p r =
match r with
| Unknown u -> find_all_unknowns u (UM.find u curr_map)
| FixedInput -> ()
| Undef dt -> all_unknowns := (p, dt) :: !all_unknowns
| Ctr (_c, rs) -> List.iter (find_all_unknowns Unknown.undefined) rs
| RangeHole -> ()
| Parameter _ -> ()
in (List.iter (find_all_unknowns Unknown.undefined) curr_ranges;
msg_debug (str "Mismatched constructors in mode analysis" ++ fnl ());
NonRecursive !all_unknowns)
else if List.for_all (fun b -> b) (List.map2 (fun r1 r2 -> compare_ranges true Unknown.undefined r1 Unknown.undefined r2) init_ranges curr_ranges)
then Recursive (List.rev !unknowns_for_mode, List.rev !remaining_unknowns, List.rev !actual_inputs)
else NonRecursive !all_unknowns
let isTyParam = function
| DTyParam _ -> true
| _ -> false
let quickchick_cat =
#if COQ_VERSION >= (8, 18, 0)
CWarnings.create_category ~name:"quickchick" ()
#else
"quickchick"
#endif
let warn_uninstantiated_variables =
CWarnings.create ~name:"quickchick-uninstantiated-variables"
~category:quickchick_cat
~default:CWarnings.Enabled
(fun allUnknowns ->
str "After proccessing all constraints, there are still uninstantiated variables: "
++ prlist_with_sep (fun _ -> strbrk " , ") str (List.map var_to_string allUnknowns)
++ str ". Proceeding with caution..."
++ fnl ())
let handle_branch
(* (type a) (type b) (* I've started to love ocaml again because of this *) *)
(prod_class_names : string list)
(_dep_type : dep_type)
(init_size : coq_expr)
(fail_exp : coq_expr)
(not_enough_fuel_exp : coq_expr)
(ret_exp : coq_expr -> coq_expr)
(instantiate_existential_method : coq_expr)
(instantiate_existential_methodST : int -> coq_expr (* pred *) -> coq_expr)
(ex_bind : bool (* opt *) -> coq_expr -> string -> (var -> coq_expr) -> coq_expr)
(rec_method : int -> unknown list option -> coq_expr list -> coq_expr)
(rec_bind : bool (* opt *) -> coq_expr -> string -> (var -> coq_expr) -> coq_expr)
(stMaybe : bool (* opt *) -> coq_expr -> string -> ((coq_expr -> coq_expr) * int) list -> coq_expr)
(check_expr : int -> coq_expr -> coq_expr -> coq_expr -> coq_expr -> coq_expr)
(match_inp : var -> matcher_pat -> coq_expr -> coq_expr -> coq_expr)
(let_in_expr : string -> coq_expr -> (var -> coq_expr) -> coq_expr)
(let_tuple_in_expr : var -> var list -> coq_expr -> coq_expr)
(gen_ctr : ty_ctr)
(init_umap : range UM.t)
(init_tmap : dep_type UM.t)
(input_ranges : range list)
(result : Unknown.t)
(c : dep_ctr)
: (coq_expr * bool) =
(* ************************ *)
(* Step 0 : Initializations *)
(* ************************ *)
let (ctr, typ) = c in
(* Local reference : is this constructor recursive or not? *)
let is_base = ref true in
(* Local references to handle map updates. Keep init_umap intact for mode analysis. *)
let umap = ref init_umap in
let tmap = ref init_tmap in
(* Check map - registers necessary checks for variable instantiation *)
let cmap = ref CMap.empty in
(* Add all universally quantified unknowns in the u/t environments. *)
let rec register_unknowns = function
| DArrow (_dt1, dt2) -> register_unknowns dt2
| DProd ((x, dt1), dt2) ->
umap := UM.add x (Undef dt1) !umap;
tmap := UM.add x dt1 !tmap;
register_unknowns dt2
| _ -> ()
in
register_unknowns typ;
msg_debug (str "Debug branch" ++ fnl ());
msg_debug (str ("Calculating ranges: " ^ dep_type_to_string (dep_result_type typ)) ++ fnl ());
(* !! Possibility of failure:
The conclusion of each constructor must not contain function calls.
Possible solution:
Automatically transform such constructors to include an additional equality with
a fresh unknown?
*)
let result_ranges =
match dep_result_type typ with
| DTyCtr (_, dts) as res ->
begin match sequenceM convert_to_range (List.filter (fun dt -> not (isTyParam dt)) dts) with
| Some ranges -> ranges
| None ->
qcfail (Printf.sprintf "Arguments to result of constructor %s can only be variables or constructors applied to variables: %s" (constructor_to_string ctr) (dep_type_to_string res))
end
| res ->
qcfail (Printf.sprintf "Result type of constructor %s is not a type constructor applied to arguments: %s" (constructor_to_string ctr) (dep_type_to_string res))
in
(* Debugging init map *)
msg_debug (str ("Handling branch: " ^ dep_type_to_string typ) ++ fnl ());
UM.iter (fun x r -> msg_debug (str ("Bound: " ^ (var_to_string x) ^ " to Range: " ^ (range_to_string r)) ++ fnl ())) !umap;
dep_fold_ty (fun _ dt1 -> msg_debug (str (Printf.sprintf "%s : %b\n" (dep_type_to_string dt1) (is_dep_type dt1)) ++ fnl()))
(fun _ _ dt1 -> msg_debug (str (Printf.sprintf "%s : %b\n" (dep_type_to_string dt1) (is_dep_type dt1)) ++ fnl()))
(fun _ -> ()) (fun _ -> ()) (fun _ -> ()) (fun _ -> ()) typ;
(* End debugging *)
(* ********************************************* *)
(* Step 1: Unify result ranges with input ranges *)
(* ********************************************* *)
(* Set of equality checks necessary *)
let eq_set = ref EqSet.empty in
(* List of necessary pattern matches *)
let matches = ref [] in
(* Function to handle a single argument *)
let unify_single_pair r_in r_res =
match unify !umap r_in r_res !eq_set with
| Some (umap', _range, eq_set', extra_matches) ->
(* Unification succeeded; update info *)
umap := umap';
eq_set := eq_set';
matches := extra_matches @ !matches
| None ->
(* Unification failed. *)
qcfail "Matching result type error" (* TODO: Better error message here? *)
in
List.iter2 unify_single_pair input_ranges result_ranges;
msg_debug (str "Unification complete" ++ fnl ());
(* ********************************************************* *)
(* Interlude: Helper functions to instantiate a single range *)
(* ********************************************************* *)
(* Note: These functions should theoretically live outside of this block, but they rely
on the parameterized arguments. Move to the front? *)
(* Note - Existential handling: *)
(* There is a mismatch between the monads in generation and checking.
In generation, the main bind is G, the bind opt is G . option.
In checking, the main function is of type option bool. For instantiating something
(enumerable?) we need a list-monad bind. Which is to be used whenever we do
instantiations.
My solution would be to either:
(a) lift the entire option monad (in the let fix declaration) to a list monad
and convert back to an option at the end
(b) decouple the instantiation bind from the call bind.
Not sure what works better - to be discussed.
*)
(* Opt = list, not opt = opt *)
(* When instantiating a single unknown, see if it must satisfy any additional predicates. *)
(* Old comment: Process check map. XXX generator specific *)
let process_checks bind x opt g (cont : var -> coq_expr) : coq_expr =
msg_debug (str ("Processing checks for variable: " ^ (Unknown.to_string x)) ++ fnl ());
match lookup_checks (DTyVar x) !cmap with
| Some checks ->
(* Remove checks from cmap *)
msg_debug (str "Actual checks needed" ++ fnl ());
cmap := CMap.remove (DTyVar x) !cmap;
umap := fixVariable x !umap;
bind true
(stMaybe opt g (var_to_string x) checks)
(var_to_string x)
(fun x -> cont x)
| None ->
umap := fixVariable x !umap;
bind opt g (var_to_string x) (fun x -> cont x)
in
(* Two mutually recursive functions follow for instantiating ranges. *)
(* Function to instantiate a single range; uses the input check-map for additional checks.
Takes a continuation that receives the (instantiated) range to produce a result. *)
let rec instantiate_range_cont (parent : unknown) r (cont : range -> coq_expr) =
msg_debug (str ("Calling instantiate_range_cont with : " ^ range_to_string r) ++ fnl ());
match r with
| Ctr (c,rs) ->
(* We need to recursively instantiate all the ranges rs, using the function below *)
instantiate_toplevel_ranges_cont rs []
(fun rs' -> cont (Ctr (c, rs')))
| Undef _dt ->
(* For undefined, we need to instantiate the parent by processing its checks. *)
process_checks ex_bind parent false instantiate_existential_method
(fun x -> cont (Unknown x))
| Unknown u ->
(* Unknowns just propagate one step further *)
instantiate_range_cont u (umfind u !umap) cont
| FixedInput ->
(* Just call the continuation on the parent. *)
cont (Unknown parent)
| Parameter p -> cont (Parameter p)
| RangeHole -> cont RangeHole
(* Function that operates on multiple top-level ranges at once, mapping the above over a list *)
and instantiate_toplevel_ranges_cont (rs : range list) (acc : range list)
(cont : range list -> coq_expr) : coq_expr =
match rs with
| r ::rs' ->
(* For each range r, we need to recursively call instantiate_range with the
current umap and cmap, and no defined parent. *)
instantiate_range_cont Unknown.undefined r
(* The continuation receives an updated umap', cmap' and a new range res,
representing the (potentially instantiated) range.
We then add res to an accumulator list and continue the traversal. *)
(fun res -> instantiate_toplevel_ranges_cont rs' (res::acc) cont)
| [] ->
(* When we are done traversing the rs, we reverse the accumulator and call the continuation *)
cont (List.rev acc)
in
(* Another helper function that ensures no function calls are left in the representation.
Traverses the representation of each datatype and whenever it encounters a
function call, it evaluates it after potentially instantiating its arguments,
binds the result to a fresh unknown, and creates a new dep_type.
Assumes:
The input datatypes are range-convertible apart from any function calls.
*)
(* For your sanity, ask someone to explain this function before tweaking anything. *)
let rec instantiate_function_calls_cont dts (acc : dep_type list) (cont : dep_type list -> coq_expr) : coq_expr =
match dts with
| [] -> cont (List.rev acc)
| dt::dts' ->
begin match dt with
| DCtr (c, inner_dts) ->
(* Call the instantiate function to first instantiate the inner datatypes *)
instantiate_function_calls_cont inner_dts []
(fun inner_dts' ->
(* Call the instantiate function as its continuation after repacking DCtr *)
instantiate_function_calls_cont dts' (DCtr (c, inner_dts') :: acc) cont)
| DTyVar x ->
(* Just continue along instantiating the rest of the function calls *)
instantiate_function_calls_cont dts' (DTyVar x :: acc) cont
| DApp (DTyVar f, argdts) ->
(* Again, instantiate the inner dts' function calls if necessary first *)
instantiate_function_calls_cont argdts []
(fun argdts' ->
(* Convert the datatypes to ranges *)
let ranges =
match sequenceM convert_to_range argdts' with
(* TODO Message *)
| None -> qcfail "Could not convert datatypes to ranges in function call"
| Some ranges -> ranges
in
(* Then actually instantiate the ranges *)
instantiate_toplevel_ranges_cont ranges []
(fun ranges' ->
(* Create a fresh unknown u *)
let u = unk_provider.next_unknown () in
(* Convert the ranges to coq_exprs *)
let coq_expr_args = List.map (range_to_coq_expr !umap) ranges' in
(* Bind the result of the application f args to u *)
let_in_expr (Unknown.to_string u)
(gApp ~explicit:true (gVar f) coq_expr_args)
(fun uvar ->
umap := UM.add uvar FixedInput !umap;
(* Given the variable representation of u, proceed to instantiate
the rest of the dts' *)
instantiate_function_calls_cont dts' (DTyVar uvar :: acc) cont)))
| DTyCtr (_c,_dts) ->
instantiate_function_calls_cont dts' (dt :: acc) cont
| DTyParam p ->
(* Just continue along instantiating the rest of the function calls *)
instantiate_function_calls_cont dts' (DTyParam p :: acc) cont
| DHole ->
(* Just continue along instantiating the rest of the function calls *)
instantiate_function_calls_cont dts' (DHole :: acc) cont
| _ -> failwith ("Not a type! " ^ (dep_type_to_string dt))
end
in
(* *********************************************************** *)
(* Actual computations - multiple mutually recursive functions *)
(* *********************************************************** *)
(* Main Function - handle_TyCtr :
Handles a single constraint of the form (C e1 e2 ...)
Inputs:
- ctr_index : The index of the handled constraint. For example, if the constructor we are
currently processing is : forall x y, A e -> C e1 e2 -> D e3 e4 -> P e5 e6 and we are
handling (C e1 e2), then m = 2).
- is_pos : A boolean flag that signifies if we are processing (C e1 e2 ..) or ~ (C e1 e2 ...)
- c : The constraint type constructor C
- dts : The arguments to the type constructor (e1 e2 ...)
- dt' : The remainder constraints that are left to be processed.
Notes:
*)
let rec handle_TyCtr (ctr_index : int) (is_pos : bool) (c : ty_ctr)
(dts : dep_type list) (dt' : dep_type) =
(* First instantiate the function calls in the dep_type list *)
instantiate_function_calls_cont dts [] (fun dts' ->
(* Convert the modified dep_types to ranges *)
let ranges = match sequenceM convert_to_range dts' with
| Some ranges -> ranges
| None -> qcfail "Internal: After instantiating function calls, datatypes should be convertible to ranges."
in
(* Rewrite: Actually look at available instances. *)
(* Inv: r has to be a toplevel range. *)
let mode_analyze r umap =
if is_parameter r then ModeParameter else
if is_fixed_range umap r then ModeFixed
else
let handle_partial r umap =
let eqs = ref [] in
let unks = ref [] in
let rec convert_to_pat parent r =
match r with
| Parameter x -> MatchParameter x
| Ctr (ctr, rs) -> MatchCtr (ctr, List.map (convert_to_pat Unknown.undefined) rs)
| Unknown u -> convert_to_pat u (UM.find u umap)
| FixedInput ->
(* introduce fresh unknown, match that, yield equality *)
let u = make_up_name () in
eqs := (u, parent) :: !eqs;
MatchU u
| Undef dt ->
(* register as unknown to be generated from pattern *)
if List.exists (fun ut -> (fst ut) = parent) !unks then
begin
(* Already fixed from another pattern. Test equality *)
let u = make_up_name () in
(* Add it in the map temporarily - will be fixed soon. *)
eqs := (u, parent) :: !eqs;
MatchU u
end
else
begin
unks := (parent, dt) :: !unks;
MatchU parent
end
in ModePartlyDef (!eqs, !unks, convert_to_pat Unknown.undefined r)
in
(* At this point, it can only be an unknown or a constructor. *)
match r with
| Unknown u ->
let rec unknown_chain u =
match UM.find u umap with
| Undef dt -> ModeUndefUnknown (u,dt) (* TODO which u? *)
| Unknown u' -> unknown_chain u'
| _ -> handle_partial r umap in
unknown_chain u
| Ctr _ -> handle_partial r umap
| _ -> failwith "Not U/C MA"
in
(* r: range
b: boolean
false = input, true = output.
m: Mode *)
let compatible b m =
match m, b with
| ModeFixed, false -> Compatible
| ModeUndefUnknown _, false -> InstCompatible
| ModePartlyDef (eqs, unks, pat), false -> InstCompatible
| ModeFixed, true -> Incompatible
| ModeUndefUnknown _ , true -> Compatible
| ModePartlyDef _, true -> PartCompatible
in
let mode_score bs ms filter_bs =
let rec walk_scores ms bs =
match ms, bs with
| ModeParameter::ms', _::bs' when filter_bs-> walk_scores ms' bs'
| ModeParameter::ms', bs when not filter_bs-> walk_scores ms' bs
| m::ms', b::bs' -> compatible b m :: walk_scores ms' bs'
| _, _ -> []
in
let cs = walk_scores ms bs in
(* let cs = List.map2 compatible bs ms in *)
((List.filter (fun c -> c == Compatible) cs),
(List.filter (fun c -> c == InstCompatible) cs),
(List.filter (fun c -> c == Incompatible) cs),
(List.filter (fun c -> c == PartCompatible) cs))
in
(* LOGIC:
- Filter out incompatible
- Prioritize production
+ Prioritize Modes that don't have PartCompatible
+ Default to PartCompatible with the shallowest pattern (TODO)
- Fallback to checker
- If none exist, fail with a more useful error message
+ Alternative: Call a let-bound generator to show the instance to the user
*)
(* Quick-and-dirty sorting based on logic above.
Most of the time there will only be one producer, and the
effect will be filtering for (in)compatibility.
*)
msg_debug (str (Printf.sprintf "Look here v2!! %s %s" (ty_ctr_to_string gen_ctr) (ty_ctr_to_string c)) ++ fnl ());
let producer_classes =
List.concat (List.map (fun n -> find_typeclass_bindings n c) prod_class_names) in
let checker_classes =
List.concat (List.map (fun n -> find_typeclass_bindings n c) ["DecOpt"; "Dec"]) in
let curr_modes = List.map (fun r -> mode_analyze r !umap) ranges in
msg_debug (str (Printf.sprintf "Current Ranges: %s" (ranges_to_string ranges)) ++ fnl ());
msg_debug (str (Printf.sprintf "Current Modes: %s\n" (String.concat " " (List.map range_mode_to_string curr_modes))) ++ fnl ());
msg_debug (str "Producer classes: " ++ fnl ());
List.iter (fun bs -> msg_debug (str (String.concat " " (List.map (fun b -> Printf.sprintf "%b" b) bs)) ++ fnl ())) producer_classes;
msg_debug (str "Checker classes: " ++ fnl ());
List.iter (fun bs -> msg_debug (str (String.concat " " (List.map (fun b -> Printf.sprintf "%b" b) bs)) ++ fnl ())) checker_classes;
let ranked_producers =
List.sort (fun ((c1,i1,_,p1),_) ((c2,i2,_,p2),_) ->
compare (List.length p1, List.length i1)
(List.length p2, List.length i2))
(List.filter (fun ((_,_,inc,_),_) -> List.length inc == 0)
(List.map (fun bs -> (mode_score bs curr_modes true, bs)) producer_classes)) in
msg_debug (str (Printf.sprintf "Look here v2!! %s %s" (ty_ctr_to_string gen_ctr) (ty_ctr_to_string c)) ++ fnl ());
List.iter (fun ((c,i,inc,p), bs) ->
msg_debug (str (Printf.sprintf "%d-%d-%d-%d" (List.length c) (List.length i) (List.length inc) (List.length p)) ++ fnl ());
msg_debug (str (String.concat " " (List.map (Printf.sprintf "%b") bs)) ++ fnl ());
) ranked_producers;
(* Invariant: filter out params in recursive mode *)
let compute_for_mode (ms : range_mode list) (bs : bool list) (is_rec : bool) =
msg_debug (str "Computing for Mode: " ++
str (String.concat " " (List.map range_mode_to_string ms)) ++
str (String.concat " " (List.map (Printf.sprintf "%b") bs)) ++
fnl ());
let uts = ref UM.empty in
let need_filtering = ref None in
let unknown_gen = ref [] in
let add_to_map u dt =
try
if UM.find u !uts = dt then ()
else failwith "Trying to add unknown in two different types?"
with
Not_found -> uts := UM.add u dt !uts in
let process_mb_pair i m b =
match m, b with
| ModeFixed, false -> ()
| ModeUndefUnknown (u,dt), false -> add_to_map u dt
| ModePartlyDef (_, unks, _), false ->
List.iter (fun (u,dt) -> add_to_map u dt) unks
| ModeFixed, true -> raise Incompatible_mode
| ModeUndefUnknown (u,dt), true ->
unknown_gen := (u, dt, i) :: !unknown_gen
| ModePartlyDef (eqs,unks,pat), true ->
need_filtering := Some (eqs, unks, pat, i)
| _, _ -> ()
in
let rec walk_mbs i ms bs =
match ms, bs with
| ModeParameter::ms',_ when is_rec -> walk_mbs i ms' bs
| ModeParameter::ms',false::bs' when not is_rec -> walk_mbs i ms' bs'
| m::ms', b::bs' ->
process_mb_pair i m b;
walk_mbs (i+1) ms' bs'
| _, _ -> ()
in
walk_mbs 0 ms bs;
(!uts, !need_filtering, !unknown_gen)
in
if not (gen_ctr = c) then
begin
msg_debug (str "Non-recursive constructor" ++ fnl ());
begin match ranked_producers with
| (_,bs) :: _ when is_pos ->
msg_debug (str ("Found Producer! " ^ String.concat "," (List.map (Printf.sprintf "%b") bs)) ++ fnl ());
(* Begin producer stuff. *)
(* Step 1: Figure out which unknowns need to be instantiated for mode to work out *)
(* Invariant: These are not Incompatible *)
let (uts, need_filtering, unknown_gen) = compute_for_mode curr_modes bs false in
let unknowns_for_mode = UM.bindings uts in
msg_debug (str "Unknowns for mode: " ++ str (String.concat " " (List.map (fun (u,_) -> Unknown.to_string u) unknowns_for_mode)) ++ fnl ());
(* Instantiate any unknowns that need to be for the mode to work. *)
instantiate_toplevel_ranges_cont (List.map (fun (x,_t) -> Unknown x) unknowns_for_mode) [] (fun _ranges ->
(* TODO: Need filtering. *)
let (unknown_to_generate_for, letbinds) =
match need_filtering, unknown_gen with
| None, [(u, dt, i)] -> (u, [])
| Some (eqs, unks, pat, i), [] -> (unk_provider.next_unknown (), [])
| None, udtis -> (unk_provider.next_unknown (),
List.rev (List.map (fun (u,_,_) -> u) udtis))
| _, _ -> failwith "Simultaneous Some/None/1"
in
let ranges_for_pred =
let rs = List.map (range_to_coq_expr !umap) ranges in
match need_filtering with
| Some (_,_,_,i) -> List.mapi (fun j x -> if i = j then gVar unknown_to_generate_for else x) rs
| _ -> rs
in
let pred_result = gApp ~explicit:true (gTyCtr c) ranges_for_pred in
let pred = (* predicate we are generating for *)
match letbinds with
| [] -> gFun [var_to_string unknown_to_generate_for] (fun _ -> pred_result)
| _ ->
(* TODO: Type Params: What happens to gType below? *)
let unknown_type = dtTupleType (List.map (fun (_,dt,_) -> dt) unknown_gen) in
gFunTyped [(var_to_string unknown_to_generate_for, gType [] unknown_type)]
(fun _ -> gLetTupleIn (unknown_to_generate_for) letbinds pred_result)
in
(* Need to add the unknown in the map. The type as it will be fixed soon. *)
let unknown_range =
match letbinds with
| [] -> Undef DHole
| _ -> listToPairAux
(fun (acc, x) -> Ctr (injectCtr "Coq.Init.Datatypes.pair", [acc; x]))
(List.map (fun u -> Unknown u) letbinds)
in
umap := UM.add unknown_to_generate_for unknown_range !umap;
process_checks ex_bind unknown_to_generate_for true (instantiate_existential_methodST ctr_index pred)
(fun _x' ->
let cont () = recurse_type (ctr_index + 1) dt' in
let rec construct_eqs = function
| [] -> cont ()
| (u1,u2)::eqs' ->
msg_debug (str (Printf.sprintf "Handling eq: %s = %s" (Unknown.to_string u1) (Unknown.to_string u2)) ++ fnl ());
msg_debug (str "Before fixing..." ++ fnl ());
UM.iter (fun x r -> msg_debug (str ("Bound: " ^ (var_to_string x) ^ " to Range: " ^ (range_to_string r)) ++ fnl ())) !umap;
(* umap := fixVariable u1 !umap; *)
msg_debug (str "After fixing..." ++ fnl ());
UM.iter (fun x r -> msg_debug (str ("Bound: " ^ (var_to_string x) ^ " to Range: " ^ (range_to_string r)) ++ fnl ())) !umap;
let checker =
gApp ~explicit:true (gInject "decOpt")
[ gApp (gInject "Logic.eq") [gVar u1; gVar u2]
; hole
; init_size]
in
check_expr ctr_index checker (construct_eqs eqs') fail_exp not_enough_fuel_exp
in
let finalizer () =
match need_filtering with
| None -> cont ()
| Some (eqs, unks, pat, i) ->
msg_debug (str (Printf.sprintf "0/Before matching %s with %s..." (Unknown.to_string unknown_to_generate_for) (matcher_pat_to_string pat)) ++ fnl ());
msg_debug (str (Printf.sprintf "About to fix: %s" (String.concat " " (List.map (fun (x,_) -> Unknown.to_string x) unks))) ++ fnl ());
UM.iter (fun x r -> msg_debug (str ("Bound: " ^ (var_to_string x) ^ " to Range: " ^ (range_to_string r)) ++ fnl ())) !umap;
List.iter (fun (u,_) -> umap := fixVariable u !umap) unks;
List.iter (fun (u,_) -> umap := fixVariable u !umap) eqs;
umap := UM.add unknown_to_generate_for (matcher_pat_to_range pat) !umap;
msg_debug (str "After matching..." ++ fnl ());
UM.iter (fun x r -> msg_debug (str ("Bound: " ^ (var_to_string x) ^ " to Range: " ^ (range_to_string r)) ++ fnl ())) !umap;
match_inp unknown_to_generate_for pat (construct_eqs eqs) fail_exp
in
match letbinds with
| [] -> finalizer ()
| _ ->
begin
List.iter (fun u -> umap := fixVariable u !umap) letbinds;
gLetTupleIn (unknown_to_generate_for) letbinds (finalizer ())
end
)
)
| _ ->
begin match checker_classes with
| bs :: _ ->
msg_debug (str ("Found Checker ! " ^ String.concat "," (List.map (Printf.sprintf "%b") bs)) ++ fnl ());
(* Begin checker stuff. *)
(* Then just make the checker call. *)
let (uts, need_filtering, unknown_gen) = compute_for_mode curr_modes bs false in
let unknowns_for_mode = UM.bindings uts in
(* Instantiate any unknowns that need to be for the mode to work. *)
instantiate_toplevel_ranges_cont (List.map (fun (x,_t) -> Unknown x) unknowns_for_mode) [] (fun _ranges ->
(* Generate a fresh boolean unknown *)
(*
let unknown_to_generate_for = unk_provider.next_unknown () in
umap := UM.add unknown_to_generate_for (Undef (DCtr (injectCtr "Coq.Init.Datatypes.bool", []))) !umap;
*)
let inputs_for_pred =
List.map (range_to_coq_expr !umap) ranges (* (List.filter (fun r -> not (is_parameter r)) ranges) *)
in
let pred = gApp ~explicit:true (gTyCtr c) inputs_for_pred in
let body_cont = recurse_type (ctr_index + 1) dt' in
let body_fail = fail_exp in
(* Construct the checker for the current type constructor *)
let checker =
gApp ~explicit:true (gInject "decOpt")
(* P : Prop := c dts*)
[ pred
(* Instance *)
; hole
(* Size. TODO: what do we do about this size? *)
; init_size
]
in
if is_pos then
check_expr ctr_index
checker body_cont body_fail not_enough_fuel_exp
else
check_expr ctr_index
checker body_fail body_cont not_enough_fuel_exp
)
| _ -> failwith ("No Checkers or Producers for relation: " ^ (ty_ctr_to_string c))
end
end
end
else begin
msg_debug (str (Printf.sprintf "Recursive:\nInput ranges: %s\nMode Ranges: %s\n" (ranges_to_string input_ranges) (ranges_to_string ranges)) ++ fnl ());
let rec_ms = List.map (fun r -> mode_analyze r init_umap) input_ranges in
msg_debug (str (Printf.sprintf "Current Modes: %s\nRec Modes: %s\n" (String.concat " " (List.map range_mode_to_string curr_modes)) (String.concat " " (List.map range_mode_to_string rec_ms))) ++ fnl ());
let mode_to_b = function
| ModeFixed -> false
| ModeUndefUnknown _ -> true
| _ -> failwith "Partial toplevel input?"
in
let rec_bs = List.map mode_to_b rec_ms in
let can_use_recursive =
msg_debug (str "Trying compute..." ++ fnl ());
try begin
ignore (compute_for_mode curr_modes rec_bs true);
msg_debug (str "Reaching here somehow?" ++ fnl ());
true
end
with Incompatible_mode -> false in
msg_debug (str (Printf.sprintf "Is it? %b" can_use_recursive) ++ fnl ());
(* If the recursive case is a producer... *)
if List.exists (fun b -> b) rec_bs && can_use_recursive then begin
msg_debug (str "Entering recursive producer handler" ++ fnl ());
is_base := false;
(* Then just make the recursive call. *)
let (uts, need_filtering, unknown_gen) = compute_for_mode curr_modes rec_bs true in
let unknowns_for_mode = UM.bindings uts in
(* Instantiate any unknowns that need to be for the mode to work. *)
instantiate_toplevel_ranges_cont (List.map (fun (x,_t) -> Unknown x) unknowns_for_mode) [] (fun _ranges ->
let (unknown_to_generate_for, letbinds) =
match need_filtering, unknown_gen with
| None, [(u, dt, i)] -> (u, [])
| Some (eqs, unks, pat, i), [] -> (unk_provider.next_unknown (), [])
| None, udtis -> (unk_provider.next_unknown (),
List.rev (List.map (fun (u,_,_) -> u) udtis))
| _, _ -> failwith "Simultaneous Some/None/2"
in
(* Need to add the unknown in the map. The type as it will be fixed soon. *)
let unknown_range =
match letbinds with
| [] -> Undef DHole
| _ -> listToPairAux
(fun (acc, x) -> Ctr (injectCtr "Coq.Init.Datatypes.pair", [acc; x]))
(List.map (fun u -> Unknown u) letbinds)
in
umap := UM.add unknown_to_generate_for unknown_range !umap;
msg_debug (str (Printf.sprintf "Unknown to generate for: %s\n" (Unknown.to_string (unknown_to_generate_for))) ++ fnl ());
let inputs_for_rec_method =
let rs = List.map (range_to_coq_expr !umap) (List.filter (fun r -> not (is_parameter r)) ranges) in
List.map fst (List.filter (fun (r,b) -> not b) (List.combine rs rec_bs))
in
(* TODO: refactor, letbinds not used by recmethod *)
process_checks rec_bind unknown_to_generate_for true
(rec_method ctr_index (Some letbinds) inputs_for_rec_method)
(fun _shouldletthis ->
let cont (_ : unit) = recurse_type (ctr_index + 1) dt' in
let rec construct_eqs = function
| [] -> cont ()
| (u1,u2)::eqs' ->
(* umap := fixVariable u1 !umap; *)
let checker =
gApp ~explicit:true (gInject "decOpt")
[ gApp (gInject "Logic.eq") [gVar u1; gVar u2]
; hole
; init_size]
in
check_expr ctr_index checker (construct_eqs eqs') fail_exp not_enough_fuel_exp
in
let finalizer (_ : unit) =
match need_filtering with
| None -> cont ()
| Some (eqs, unks, pat, i) ->
msg_debug (str (Printf.sprintf "1/Before matching %s with %s..." (Unknown.to_string unknown_to_generate_for) (matcher_pat_to_string pat)) ++ fnl ());
msg_debug (str (Printf.sprintf "About to fix: %s" (String.concat " " (List.map (fun (x,_) -> Unknown.to_string x) unks))) ++ fnl ());
UM.iter (fun x r -> msg_debug (str ("Bound: " ^ (var_to_string x) ^ " to Range: " ^ (range_to_string r)) ++ fnl ())) !umap;
List.iter (fun (u,_) -> umap := fixVariable u !umap) eqs;
List.iter (fun (u,_) -> umap := fixVariable u !umap) unks;
umap := UM.add unknown_to_generate_for (matcher_pat_to_range pat) !umap;
msg_debug (str "After matching..." ++ fnl ());
UM.iter (fun x r -> msg_debug (str ("Bound: " ^ (var_to_string x) ^ " to Range: " ^ (range_to_string r)) ++ fnl ())) !umap;
match_inp unknown_to_generate_for pat (construct_eqs eqs) fail_exp
in
match letbinds with
| [] -> finalizer ()
| _ ->
begin
List.iter (fun u -> umap := fixVariable u !umap) letbinds;
gLetTupleIn (unknown_to_generate_for) letbinds (finalizer ())
end
)
)
end
else if List.exists (fun b -> b) rec_bs && not can_use_recursive then begin
msg_debug (str "Can't use recursive producer - checker must exist." ++ fnl ());
begin match checker_classes with
| bs :: _ ->
msg_debug (str ("Found Checker ! " ^ String.concat "," (List.map (Printf.sprintf "%b") bs)) ++ fnl ());
(* Begin checker stuff. *)
(* Then just make the checker call. *)
let (uts, need_filtering, unknown_gen) = compute_for_mode curr_modes bs false in
let unknowns_for_mode = UM.bindings uts in
(* Instantiate any unknowns that need to be for the mode to work. *)
instantiate_toplevel_ranges_cont (List.map (fun (x,_t) -> Unknown x) unknowns_for_mode) [] (fun _ranges ->
(* Generate a fresh boolean unknown *)
(*
let unknown_to_generate_for = unk_provider.next_unknown () in
umap : = UM.add unknown_to_generate_for (Undef (DCtr (injectCtr "Coq.Init.Datatypes.bool", []))) !umap;
*)
let inputs_for_pred =
List.map (range_to_coq_expr !umap) ranges (* (List.filter (fun r -> not (is_parameter r)) ranges) *)
in
let pred = gApp ~explicit:true (gTyCtr c) inputs_for_pred in
let body_cont = recurse_type (ctr_index + 1) dt' in
let body_fail = fail_exp in
(* Construct the checker for the current type constructor *)
let checker =
gApp ~explicit:true (gInject "decOpt")
(* P : Prop := c dts*)
[ pred
(* Instance *)
; hole
(* Size. TODO: what do we do about this size? *)
; init_size
]
in
if is_pos then
check_expr ctr_index
checker body_cont body_fail not_enough_fuel_exp
else
check_expr ctr_index
checker body_fail body_cont not_enough_fuel_exp
)
| _ -> failwith "TODO: ERR MSG. No Classes found."
end
end
else begin
(* The recursive case is not a producer - check if there is an enumerator that works better! *)
msg_debug (str "Entering non-recursive handler" ++ fnl ());
match ranked_producers with
| (_,bs) :: _ ->
msg_debug (str ("Found producer instead of recursive checker! " ^ String.concat "," (List.map (Printf.sprintf "%b") bs)) ++ fnl ());
(* Begin producer stuff. *)
(* Step 1: Figure out which unknowns need to be instantiated for mode to work out *)
(* Invariant: These are not Incompatible *)
let (uts, need_filtering, unknown_gen) = compute_for_mode curr_modes bs false in
let unknowns_for_mode = UM.bindings uts in
(* Instantiate any unknowns that need to be for the mode to work. *)
instantiate_toplevel_ranges_cont (List.map (fun (x,_t) -> Unknown x) unknowns_for_mode) [] (fun _ranges ->
(* TODO: Need filtering. *)
let unknown_to_generate_for =
match need_filtering, unknown_gen with
| None, [(u, dt, i)] -> u
| Some (eqs, unks, pat, i), [] -> unk_provider.next_unknown ()
| _, _ -> failwith "Simultaneous Some/None/3"
in
let ranges_for_pred =
let rs = List.map (range_to_coq_expr !umap) ranges in (* (List.filter (fun r -> not (is_parameter r)) ranges) in*)
match need_filtering with
| Some (_,_,_,i) -> List.mapi (fun j x -> if i = j then gVar unknown_to_generate_for else x) rs
| _ -> rs
in
let pred_result = gApp ~explicit:true (gTyCtr c) ranges_for_pred in
let pred = (* predicate we are generating for *)
gFun [var_to_string unknown_to_generate_for] (fun _ -> pred_result)
in
(* Need to add the unknown in the map. The type as it will be fixed soon. *)
umap := UM.add unknown_to_generate_for (Undef DHole) !umap;
(* TODO: Filtering. *)
process_checks ex_bind unknown_to_generate_for true (instantiate_existential_methodST ctr_index pred)
(fun _x' ->
let cont () = recurse_type (ctr_index + 1) dt' in
let rec construct_eqs = function
| [] -> cont ()
| (u1,u2)::eqs' ->
(* umap := fixVariable u1 !umap;*)
let checker =
gApp ~explicit:true (gInject "decOpt")
[ gApp (gInject "Logic.eq") [gVar u1; gVar u2]
; hole
; init_size]
in
check_expr ctr_index checker (construct_eqs eqs') fail_exp not_enough_fuel_exp
in
match need_filtering with
| None -> cont ()
| Some (eqs, unks, pat, i) ->
msg_debug (str (Printf.sprintf "2/Before matching %s with %s..." (Unknown.to_string unknown_to_generate_for) (matcher_pat_to_string pat)) ++ fnl ());
msg_debug (str (Printf.sprintf "About to fix: %s" (String.concat " " (List.map (fun (x,_) -> Unknown.to_string x) unks))) ++ fnl ());
UM.iter (fun x r -> msg_debug (str ("Bound: " ^ (var_to_string x) ^ " to Range: " ^ (range_to_string r)) ++ fnl ())) !umap;
List.iter (fun (u,_) -> umap := fixVariable u !umap) unks;
List.iter (fun (u,_) -> umap := fixVariable u !umap) eqs;
umap := UM.add unknown_to_generate_for (matcher_pat_to_range pat) !umap;
msg_debug (str "After matching..." ++ fnl ());
UM.iter (fun x r -> msg_debug (str ("Bound: " ^ (var_to_string x) ^ " to Range: " ^ (range_to_string r)) ++ fnl ())) !umap;
match_inp unknown_to_generate_for pat (construct_eqs eqs) fail_exp
)
)
| _ ->
(* There is no good producer, just instantiate everything and make a recursive call. *)
msg_debug (str "Entering recursive checker call" ++ fnl ());
is_base := false;
(* Then just make the recursive call. *)
let (uts, need_filtering, unknown_gen) = compute_for_mode curr_modes rec_bs true in
let unknowns_for_mode = UM.bindings uts in
(* Instantiate any unknowns that need to be for the mode to work. *)
instantiate_toplevel_ranges_cont (List.map (fun (x,_t) -> Unknown x) unknowns_for_mode) [] (fun _ranges ->
(* Generate a fresh boolean unknown *)
let unknown_to_generate_for = unk_provider.next_unknown () in
umap := UM.add unknown_to_generate_for (Undef (DCtr (injectCtr "Coq.Init.Datatypes.bool", []))) !umap;
let inputs_for_rec_method =
List.map (range_to_coq_expr !umap) (List.filter (fun r -> not (is_parameter r)) ranges)
in
let letbinds = None in
process_checks rec_bind unknown_to_generate_for true
(rec_method ctr_index letbinds inputs_for_rec_method)
(fun _shouldletthis -> recurse_type (ctr_index+1) dt')
)
end
end
)
(*
(* TODO: positive/negative context *)
(* Then do mode analysis on the new dts *)
match mode_analysis gen_ctr c input_ranges init_umap ranges !umap with
| Recursive (unknowns_for_mode, remaining_unknowns, actual_inputs) ->
msg_debug (str "Mode analysis: Recursive." ++ fnl ());
let ums = String.concat " " (List.map (fun (u,t) -> Unknown.to_string u ^ " : " ^ dep_type_to_string t) unknowns_for_mode) in
let rus = String.concat " " (List.map (fun (u,t) -> Unknown.to_string u ^ " : " ^ dep_type_to_string t) remaining_unknowns) in
let ais = String.concat " " (List.map range_to_string actual_inputs) in
msg_debug (str (ums ^ " - " ^ rus ^ " - " ^ ais) ++ fnl ());
(* Mark recursiveness of branch *)
is_base := false;
(* Instantiate all the unknowns needed for the mode to work out *)
instantiate_toplevel_ranges_cont (List.map (fun (x,_t) -> Unknown x) unknowns_for_mode) [] (fun _ranges ->
(* We will instantiate an unknown. First create a fresh one *)
let fresh_unknown =
match remaining_unknowns with
| [(x,_)] -> x
| _ -> unk_provider.next_unknown ()
in
let unknown_type =
match remaining_unknowns with
| [] -> DCtr (injectCtr "Coq.Init.Datatypes.bool", [])
| _ -> dtTupleType (List.map snd remaining_unknowns)
in
let unknown_range =
match remaining_unknowns with
| [] -> Undef unknown_type
| [(_x,_)] -> Undef unknown_type
| _ -> listToPairAux (fun (acc, x) -> Ctr (injectCtr "Coq.Init.Datatypes.pair", [acc; x]))
(List.map (fun (x,_) -> Unknown x) remaining_unknowns)
in
umap := UM.add fresh_unknown unknown_range !umap;
let letbinds =
match remaining_unknowns with
| [] -> None
| [_] -> None
| _ -> Some (List.map fst remaining_unknowns)
in
let args = List.map (range_to_coq_expr !umap) actual_inputs in
(* TODO: Gather all checks, and add them to the check map *)
process_checks rec_bind fresh_unknown true
(rec_method ctr_index letbinds args)
(fun _shouldletthis ->
(* If letbinds exist, need to actually bind them *)
match letbinds with
| Some binds ->
msg_debug (str "In let binds in process checks" ++ fnl ());
let_tuple_in_expr fresh_unknown binds
(recurse_type (ctr_index+1) dt')
| None ->
recurse_type (ctr_index+1) dt'
)
)
| NonRecursive [] ->
msg_debug (str "Mode analysis: NonRecursive/Checker." ++ fnl ());
(* Checker *)
let body_cont = recurse_type (ctr_index + 1) dt' in
let body_fail = fail_exp in
(* Construct the checker for the current type constructor *)
let checker args =
gApp ~explicit:true (gInject "decOpt")
(* P : Prop := c dts*)
[ gApp ~explicit:true (gTyCtr c) args
(* Instance *)
; hole
(* Size. TODO: what do we do about this size? *)
; init_size
]
in
(* Calculate arguments *)
let args =
msg_debug (str ("Calculating arguments with: " ^ (String.concat " " (List.map dep_type_to_string dts))) ++ fnl ());
List.map (dt_to_coq_expr !umap) dts
(* match sequenceM (dt_to_coq_expr !umap) dts with
| Some rs -> rs
| None -> qcfail "Uninstantiated function calls after instantiation?"*)
in
if is_pos then
check_expr ctr_index
(checker args) body_cont body_fail not_enough_fuel_exp
else
check_expr ctr_index
(checker args) body_fail body_cont not_enough_fuel_exp
| NonRecursive all_unknowns ->
msg_debug (str "Mode analysis: NonRecursive/Unknowns." ++ fnl ());
let ais = String.concat " " (List.map var_to_string (List.map fst all_unknowns)) in
msg_debug (str ais ++ fnl ());
(* Call to arbitrarySizedST *)
(* @arbitrarySizeST {A} (P : A -> Prop) {Instance} (size : nat) -> G (option A) *)
(* We will instantiate an unknown. First create a fresh one *)
let fresh_unknown =
match all_unknowns with
| [(x,_)] -> x
| _ -> unk_provider.next_unknown ()
in
let unknown_type = dtTupleType (List.map snd all_unknowns) in
let unknown_range =
match all_unknowns with
| [] -> failwith "IMPOSSIBLE"
| [(_x,_)] -> Undef unknown_type
| _ -> listToPairAux (fun (acc, x) -> Ctr (injectCtr "Coq.Init.Datatypes.pair", [acc; x]))
(List.map (fun (x,_) -> Unknown x) all_unknowns)
in
umap := UM.add fresh_unknown unknown_range !umap;
let letbinds =
match all_unknowns with
| [] -> None
| [_] -> None
| _ -> Some (List.map fst all_unknowns)
in
(* LEO: LOOK AT THIS *)
let _args = List.map (range_to_coq_expr !umap) ranges in
let pred_result = gApp ~explicit:true (gTyCtr c) (List.map (range_to_coq_expr !umap) ranges) in
let pred = (* predicate we are generating for *)
gFun [var_to_string fresh_unknown]
(fun _ ->
match letbinds with
| Some binds -> gLetTupleIn fresh_unknown binds pred_result
| None -> pred_result
)
in
process_checks ex_bind fresh_unknown true (instantiate_existential_methodST ctr_index pred)
(fun _x' -> recurse_type (ctr_index + 1) dt')
)
*)
(*
let finalizer k cmap numbered_dts =
match List.filter (fun (i, dt) -> not (is_fixed k dt)) numbered_dts with
| [] -> (* Every argument to the constructor is fixed - perform a check *)
(* Check if we are handling the current constructor. If yes, mark the need for decidability of current constructor *)
(* need_dec is a ref in scope *)
if c = gen_ctr then (need_dec := true; b := false) else ();
(* Continuation handling dt2 : recurse one dt2 / None based on positivity *)
let body_cont = recurse_type (m + 1) k cmap dt2 in
let body_fail = fail_exp in
if pos then check_expr m (checker (List.map (fun dt -> dt_to_coq_expr k dt) dts)) body_cont body_fail
else check_expr m (checker (List.map (fun dt -> dt_to_coq_expr k dt) dts)) body_fail body_cont
| [(i, DTyVar x)] -> begin (* Single variable to be generated for *)
msg_debug (str (Printf.sprintf "%d %d %s %s %b \n" i n (ty_ctr_to_string c) (ty_ctr_to_string gen_ctr) pos) ++ fnl ());
if i = n && c = gen_ctr && pos then begin (* Recursive call *)
b := false;
let args = List.map snd (List.filter (fun (i, _) -> not (i = n)) (List.mapi (fun i dt -> (i+1, dt_to_coq_expr k dt)) dts)) in
process_checks k cmap x
(* Generate using recursive function *)
true
(rec_method ctr_index args)
(fun k' cmap' x -> recurse_type (ctr_index + 1) k' cmap' dt2)
end
else if pos then begin (* Generate using "arbitrarySizeST" and annotations for type *)
if c = gen_ctr then b := false;
(* @arbitrarySizeST {A} (P : A -> Prop) {Instance} (size : nat) -> G (option A) *)
let pred = (* predicate we are generating for *)
gFun [var_to_string x]
(fun [x] ->
gApp ~explicit:true (gTyCtr c) (List.map (fun (j, dt) ->
(* Replace the i-th variable with x - we're creating fun x => c dt_1 dt_2 ... x dt_{i+1} ... *)
if i = j then gVar x else dt_to_coq_expr k dt
) numbered_dts))
in
process_checks k cmap x true (class_methodST m pred)
(fun k' cmap' x' -> recurse_type (m + 1) k' cmap' dt2)
end
else (* Negation. Since we expect the *positive* versions to be sparse, we can use suchThatMaybe for negative *)
(* TODO: something about size for backtracking? *)
let new_check = fun x -> checker (List.map (fun (j,dt) -> if i = j then x else dt_to_coq_expr k dt) numbered_dts) in
let cmap' = match lookup_checks (DTyVar x) cmap with
| Some checks -> CMap.add (DTyVar x) ((new_check, m) :: checks) cmap
| _ -> CMap.add (DTyVar x) [(new_check, m)] cmap in
recurse_type (m + 1) k cmap' dt2
end
| [(i, dt) ] -> failwith ("Internal error: not a variable to be generated for" ^ (dep_type_to_string dt))
(* Multiple arguments to be generated for. Generalized arbitrarySizeST? *)
| filtered -> if pos then begin
(* For now, check if n is in the filtered list *)
if c = gen_ctr then begin
match List.filter (fun (i,dt) -> i = n) filtered with
| [(_, DTyVar x)] -> begin
b := false;
(* Every other variable generated using "arbitrary" *)
let rec build_arbs k cmap acc = function
| [] ->
(* base case - recursive call *)
if pos then
let generator = rec_method m (List.rev acc) in
process_checks k cmap x true generator
(fun k' cmap' x' -> recurse_type (m + 1) k' cmap' dt2)
else failwith "Negation / build_arbs"
| (i,dt)::rest ->
if i = n then build_arbs k cmap acc rest (* Recursive argument - handle at the end *)
else if is_fixed k dt then (* Fixed argument - do nothing *)
build_arbs k cmap (dt_to_coq_expr k dt :: acc) rest
else (* Call arbitrary and bind it to a new name *)
let rdt = convert_to_range dt in
instantiate_range_cont k cmap Unknown.undefined
(fun k cmap c -> (* Continuation: call build_arbs on the rest *)
build_arbs k cmap (c :: acc) rest
) rdt
in build_arbs k cmap [] numbered_dts
end
| _ -> failwith "non-recursive call with multiple arguments"
end
else
(* TODO: factor out *)
let rec build_arbs k cmap acc = function
(* TODO: Hacky: should try and find out which one is a variable *)
| [(i,DTyVar x)] ->
(* base case - recursive call *)
if pos then begin
(* @arbitrarySizeST {A} (P : A -> Prop) {Instance} (size : nat) -> G (option A) *)
let pred = (* predicate we are generating for *)
gFun [var_to_string x]
(fun [x] ->
gApp ~explicit:true (gTyCtr c) (List.map (fun (j, dt) ->
(* Replace the i-th variable with x - we're creating fun x => c dt_1 dt_2 ... x dt_{i+1} ... *)
if i = j then gVar x else dt_to_coq_expr k dt
) numbered_dts))
in
process_checks k cmap x true (class_methodST m pred)
(fun k' cmap' x' -> recurse_type (m + 1) k' cmap' dt2)
end
else failwith "Negation / build_arbs"
| (i,dt)::rest ->
if is_fixed k dt then (* Fixed argument - do nothing *)
build_arbs k cmap (dt_to_coq_expr k dt :: acc) rest
else (* Call arbitrary and bind it to a new name *)
let rdt = convert_to_range dt in
instantiate_range_cont k cmap Unknown.undefined
(fun k cmap c -> (* Continuation: call build_arbs on the rest *)
build_arbs k cmap (c :: acc) rest
) rdt
in build_arbs k cmap [] numbered_dts
(* TODO: Special handling for equality? *)
(* | _ -> failwith (Printf.sprintf "Mode failure: %s\n" (String.concat " " (List.map (fun (i,d) -> Printf.sprintf "(%d, %s)" i (dep_type_to_string d)) filtered))) *)
end
else failwith "TODO: Negation with many things to be generated"
in
let rec instantiate_function_calls_cont k cmap dts acc =
match dts with
| [] -> finalizer k cmap (List.rev acc)
| (i,dt)::dts ->
begin match dt with
| DApp (DTyVar f, argdts) ->
(* TODO: Nested recursive calls *)
let rec traverse_dts k cmap acc_args = function
| [] ->
let u = unk_provider.next_unknown () in
let_in_expr (Unknown.to_string u)
(gApp (gVar f) (List.rev acc_args))
(fun x ->
instantiate_function_calls_cont (UM.add x FixedInput k) cmap dts
((i,DTyVar x)::acc)
)
| arg::argdts' ->
(* traverse_dts k cmap (arg :: acc_args) argdts' *)
(* WARNING: ARG HERE COULD ALSO BE A FUNCTION *)
instantiate_range_cont k cmap Unknown.undefined
(fun k' c' e' ->
traverse_dts k' c' (e' :: acc_args) argdts'
)
(convert_to_range arg)
in traverse_dts k cmap [] argdts
| _ -> instantiate_function_calls_cont k cmap dts ((i,dt)::acc)
end
in
instantiate_function_calls_cont k cmap numbered_dts []
*)
(*
and handle_app m (pos : bool) (f : dep_type) (xs : dep_type list)
(k : umap) (cmap : cmap) (dt2 : dep_type) =
(* Construct the checker for the current application *)
let checker args =
gApp ~explicit:true (gInject "dec")
(* P : Prop := c dts*)
[ gApp ~explicit:true (gType [] f) args
(* Instance *)
; hole
]
in
UM.iter (fun x r -> msg_debug (str ("Bound: " ^ var_to_string x ^ " to Range: " ^ (range_to_string r)) ++ fnl ())) k;
let numbered_dts = List.mapi (fun i dt -> (i+1, dt)) xs in (* +1 because of nth being 1-indexed *)
match List.filter (fun (i, dt) -> not (is_fixed k dt)) numbered_dts with
| [] -> failwith "Check/app"
| [x] -> failwith "Gen/1"
| filtered ->
if pos then begin
let rec build_arbs k cmap acc = function
(* TODO: Hacky: should try and find out which one is a variable *)
| [(i,DTyVar x)] ->
(* base case - recursive call *)
if pos then begin
(* @arbitrarySizeST {A} (P : A -> Prop) {Instance} (size : nat) -> G (option A) *)
let pred = (* predicate we are generating for *)
gFun [var_to_string x]
(fun [x] ->
gApp ~explicit:true (gType [] f) (List.map (fun (j, dt) ->
(* Replace the i-th variable with x - we're creating fun x => c dt_1 dt_2 ... x dt_{i+1} ... *)
if i = j then gVar x else dt_to_coq_expr k dt
) numbered_dts))
in
process_checks k cmap x true (class_methodST m pred)
(fun k' cmap' x' -> recurse_type (m + 1) k' cmap' dt2)
end
else failwith "Negation / build_arbs / application "
| (i,dt)::rest ->
if is_fixed k dt then (* Fixed argument - do nothing *)
build_arbs k cmap (dt_to_coq_expr k dt :: acc) rest
else (* Call arbitrary and bind it to a new name *)
let rdt = convert_to_range dt in
instantiate_range_cont k cmap Unknown.undefined
(fun k cmap c -> (* Continuation: call build_arbs on the rest *)
build_arbs k cmap (c :: acc) rest
) rdt
in build_arbs k cmap [] numbered_dts
end
else failwith "Negation / application"
*)
(* Dispatcher for constraints *)
and handle_dt (n : int) pos dt1 dt2 : coq_expr =
match dt1 with
| DTyCtr (c,dts) ->
handle_TyCtr n pos c dts dt2
| DNot dt ->
handle_dt n (not pos) dt dt2
(*
| DApp (dt, dts) ->
handle_app n pos dt dts umap cmap dt2
*)
| _ -> failwith "Constraints should be type constructors/negations"
(* Iterate through constraints *)
and recurse_type (n : int) dt : coq_expr =
msg_debug (str ("Recursing on type: " ^ dep_type_to_string dt) ++ fnl ());
match dt with
| DProd (_, dt) -> (* Only introduces variables, doesn't constrain them *)
recurse_type n dt
| DArrow (dt1, dt2) ->
msg_debug (str ("Darrowing: " ^ ((dep_type_to_string dt1))) ++ fnl ());
handle_dt n true dt1 dt2
| DTyCtr _ -> (* result *)
(* Instantiate result *)
msg_debug (str ("Instantiating result: " ^ (Unknown.to_string result)) ++ fnl ());
UM.iter (fun x r -> msg_debug (str ("Bound: " ^ (var_to_string x) ^ " to Range: " ^ (range_to_string r)) ++ fnl ())) !umap;
instantiate_range_cont Unknown.undefined (Unknown result) (fun res_range ->
msg_debug (str ("Continuation of inst range in result") ++ fnl ());
(* Search if there is anything that is not fixed that requires instantiation *)
let allUnknowns = List.map fst (UM.bindings !umap) in
match List.filter (fun u -> match is_fixed !umap (DTyVar u) with
| Some b -> not b
| _ -> qcfail "Internal - filter") allUnknowns with
| [] ->
msg_debug (str "Final ret_exp call" ++ fnl ());
ret_exp (range_to_coq_expr !umap res_range)
| us -> begin
warn_uninstantiated_variables allUnknowns;
instantiate_toplevel_ranges_cont (List.map (fun u -> Unknown u) us) []
(fun _unused_ranges ->
ret_exp (range_to_coq_expr !umap res_range)
)
end
)
| _ -> failwith "Wrong type" in
let branch_gen =
msg_debug (str "Creating branch gen" ++ fnl ());
let rec walk_matches = function
| [] ->
msg_debug (str "Match output complete" ++ fnl ());
handle_equalities init_size !eq_set (check_expr (-1)) (recurse_type 0 typ) (fail_exp) not_enough_fuel_exp
| (u,m)::ms -> begin
msg_debug (str (Printf.sprintf "Processing Match: %s @ %s" (Unknown.to_string u) (matcher_pat_to_string m)) ++ fnl ());
match_inp u m (walk_matches ms) fail_exp
end in
(* matches are the matches returned by unification with the result type *)
walk_matches !matches
in
(* Debugging resulting match *)
(* UM.iter (fun x r -> msg_debug (str ("Bound: " ^ var_to_string x ^ " to Range: " ^ (range_to_string r)) ++ fnl ())) map; *)
(* EqSet.iter (fun (u,u') -> msg_debug (str (Printf.sprintf "Eq: %s = %s\n" (Unknown.to_string u) (Unknown.to_string u')) ++ fnl())) eqs; *)
(* List.iter (fun (u,m) -> msg_debug (str ((Unknown.to_string u) ^ (matcher_pat_to_string m)) ++ fnl ())) matches; *)
msg_debug (str "Generated..." ++ fnl ());
(* debug_coq_expr branch_gen; *)
(* End debugging *)
(branch_gen ,!is_base)
|