File: imp.v

package info (click to toggle)
coq-relation-algebra 1.7.11-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 912 kB
  • sloc: ml: 1,452; makefile: 53; sh: 20
file content (278 lines) | stat: -rw-r--r-- 8,415 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
(** * imp: a formalisation of the IMP programming language on top of KAT *)

(* We formalise the IMP language (whose programs are also known as
   "while programs"). We give a big step semantics as an inductive
   predicate, and using KAT, and we show that the two versions
   actually coincide.
   
   We then use the [kat] tactic to prove some simple program
   equivalences, and to derive all rules of corresponding Hoare logic
   for partial correctness. *)

From RelationAlgebra Require Import kat prop rel comparisons kat_tac.

Section s.
(** identifiers for memory locations  *)
Variable loc: Set.
(** abstract state (or memory) *)
Variable state: Set.
(** updating the state *)
Variable update: loc -> nat -> state -> state.

(** * Definition of the languague *)

(** programs *)

Inductive prog :=
| skp
| aff (x: loc) (e: state -> nat)
| seq (p q: prog)
| ite (t: dset state) (p q: prog)
| whl (t: dset state) (p: prog).

(** notations *)
Declare Scope imp_scope.
Bind Scope imp_scope with prog.
Delimit Scope imp_scope with imp.
Notation "x  <- y" := (aff x y) (at level 90): imp_scope.
Notation "p  ;; q" := (seq p%imp q%imp) (left associativity, at level 101): imp_scope.
Arguments ite _%ra _%imp _%imp.
Arguments whl _%ra _%imp.


(** * Big step semantics *)

(** corresponding functional relation *)
Notation upd x e := (frel (fun s => update x (e s) s)).


(** ** using KAT expressions in the model of relations

   the semantics can then be given by induction on the program, using
   a simple fixpoint *)

Fixpoint bstep (p: prog): hrel state state :=
  match p with
    | skp => 1
    | aff x e => upd x e
    | seq p q => bstep p ⋅ bstep q
    | ite b p q => [b] ⋅ bstep p + [!b] ⋅ bstep q
    | whl b p => ([b] ⋅ bstep p)^*  ⋅  [!b]
  end.

(** ** using an inductive predicate, as in standard textbooks *)

Inductive bstep': prog -> hrel state state :=
| s_skp: forall s, bstep' skp s s
| s_aff: forall x e s, bstep' (x <- e) s (update x (e s) s)
| s_seq: forall p q s s' s'', bstep' p s s' -> bstep' q s' s'' -> bstep' (p ;; q) s s''
| s_ite_ff: forall (b: dset state) p q s s', b s = false -> bstep' q s s' -> bstep' (ite b p q) s s'
| s_ite_tt: forall (b: dset state) p q s s', b s = true -> bstep' p s s' -> bstep' (ite b p q) s s'
| s_whl_ff: forall (b: dset state) p s, b s = false -> bstep' (whl b p) s s
| s_whl_tt: forall (b: dset state) p s s', b s = true -> bstep' (p ;; whl b p) s s' -> bstep' (whl b p) s s'.

(** ** equivalence between the two definitions *)

Lemma bstep_eq p: bstep' p ≡ bstep p.
Proof.
  apply antisym. 
  - intros s s'. induction 1. 
     reflexivity. 
     reflexivity. 
     eexists; eassumption. 
     right. eexists. split. reflexivity. simpl; now rewrite H. assumption.
     left. eexists. split. reflexivity. assumption. assumption. 
     exists s. apply (str_refl ([b] ⋅ bstep p)). reflexivity.
      simpl. unfold hrel_inj. simpl. now rewrite H.
     destruct IHbstep' as [t ? [t' ? ?]]. exists t'. 2: assumption. 
     apply (str_cons ([b] ⋅ bstep p)). exists t. 2: assumption.
     eexists; eauto. now split. 
  - induction p; unfold bstep; fold bstep.
     intros ? ? <-. constructor. 
     intros ? ? ->. constructor. 
     intros ? ? [? H1 H2]. econstructor. apply IHp1, H1. apply IHp2, H2.
     intros ? ? [[? [<- H] H']|[? [<- H] H']]. 
      apply s_ite_tt. assumption. apply IHp1, H'. 
      apply s_ite_ff. now apply Bool.negb_true_iff. apply IHp2, H'. 
     apply str_ind_l'.
      intros ? ? [<- H]. apply s_whl_ff. now apply Bool.negb_true_iff.
      rewrite <-dotA. intros s s'' [? [<- H] [s' H' H'']]. apply s_whl_tt. assumption.
      econstructor. apply IHp, H'. assumption.
Qed. 


(** * Some program equivalences *)

(** two programs are said to be equivalent if they have the same semantics *)
Notation "p ~ q" := (bstep p ≡ bstep q) (at level 80). 

(** ad-hoc simplification tactic *)
Ltac simp := unfold bstep; fold bstep.


(** ** denesting nested loops *)
Lemma two_loops b p: 
  whl b (whl b p)  ~  whl b p.
Proof. simp. kat. Qed.

(** ** folding a loop *)
Lemma fold_loop b p: 
  whl b (p ;; ite b p skp)  ~  
  whl b p.
Proof. simp. kat. Qed.

(** ** eliminating deadcode *)
Lemma dead_code b p q r: 
  (whl b p ;; ite b q r)  ~  
  (whl b p ;; r).
Proof. simp. kat. Qed.

Lemma dead_code' a b p q r: 
  (whl (a ⊔ b) p ;; ite b q r)  ~ 
  (whl (a ⊔ b) p ;; r).
Proof. simp. kat. Qed.


(** * Reasoning about assignations *)

(** (higher-order style) substitution in formulas and expressions *)
Definition subst x v (A: dset state): dset state := 
  fun s => A (update x (v s) s).
Definition esubst x v (e: state -> nat): state -> nat := 
  fun s => e (update x (v s) s).

(** is [x] fresh in the expression e *)
Definition fresh x (e: state -> nat) := forall v s, e (update x v s) = e s.

Hypothesis update_twice: forall x i j s, update x j (update x i s) = update x j s.
Hypothesis update_comm: forall x y i j s, x<>y -> update x i (update y j s) = update y j (update x i s).


(** ** stacking assignations *)

Lemma aff_stack x e f:
  (x <- e ;; x <- f)  ~  
  (x <- esubst x e f).
Proof.
  simp. rewrite frel_comp.
  apply frel_weq; intro s. 
  apply update_twice.
Qed.


(** ** removing duplicates *)

Lemma aff_idem x e: fresh x e -> (x <- e ;; x <- e)  ~  (x <- e). 
Proof. 
  intro. rewrite aff_stack. 
  intros s s'. cbv. rewrite (H (e s)). tauto.
Qed.

(** ** commuting assignations *)

Lemma aff_comm x y e f: x<>y  -> fresh y e ->  
  (x <- e ;; y <- f)  ~ (y <- esubst x e f ;; x <- e).
Proof.
  intros Hx Hy. simp. rewrite 2frel_comp. apply frel_weq; intro s.
  rewrite update_comm by congruence. 
  now rewrite (Hy _). 
Qed.

(** ** delaying choices *)

(** in the above example, we cannot exploit KAT since this is just
   about assignations. In the following example, we show how to
   perform a mixed proof: once we assert that the test [t] somehow
   commutes with the assignation [x<-e], [hkat] can make use of this
   assumption to close the goal *)

Lemma aff_ite x e t p q: 
  (x <- e ;; ite t p q)  
  ~ 
  (ite (subst x e t) (x <- e ;; p) (x <- e ;; q)).
Proof.
  simp. 
  assert (H: upd x e ⋅ [t] ≡ [subst x e t] ⋅ upd x e)
   by (cbv; firstorder; subst; eauto). 
  hkat.
Qed.



(** * Embedding Hoare logic for partial correctness *)

(** Hoare triples for partial correctness can be expressed really
   easily using KAT: *)
Notation Hoare A p B := ([A] ⋅ bstep p ⋅ [!B] ≦ 0).

(** ** correspondence w.r.t. the standard interpretation of Hoare triples  *)
Lemma Hoare_eq A p B: 
  Hoare A p B <-> 
  forall s s', A s -> bstep p s s' -> B s'.
Proof.
  split. 
  - intros H s s' HA Hp. case_eq (B s'). reflexivity. intro HB. 
    destruct (H s s'). exists s'. exists s. 
    now split. assumption. split. reflexivity. simpl. now rewrite HB. 
  - intros H s s' [? [? [<- HA] Hp] [-> HB]]. simpl in HB. 
    rewrite (H _ _ HA Hp) in HB. discriminate. 
Qed.



(** ** deriving Hoare logic rules using the [hkat] tactic *)

(** Hoare triples are encoded as propositions of the shape [x ≦ 0] ;
   therefore, they can always be eliminated by [hkat], so that all
   rules of Hoare logic can be proved automatically (except for the
   assignation rule, of course) 

   This idea come from the following paper:
   Dexter Kozen. On Hoare logic and Kleene algebra with tests. 
   Trans. Computational Logic, 1(1):60-76, July 2000.
   
   The fact that we have an automatic tactic makes it trivial to
   formalise it. *)

Lemma weakening (A A' B B': dset state) p: 
  A' ≦ A -> Hoare A p B -> B ≦ B' -> Hoare A' p B'.
Proof. hkat. Qed.

Lemma rule_skp A: Hoare A skp A.
Proof. simp. kat. Qed.

Lemma rule_seq A B C p q: 
  Hoare A p B -> 
  Hoare B q C -> 
  Hoare A (p;;q) C.
Proof. simp. hkat. Qed.

Lemma rule_ite A B t p q: 
  Hoare (A ⊓ t) p B -> 
  Hoare (A ⊓ !t) q B -> 
  Hoare A (ite t p q) B.
Proof. simp. hkat. Qed.

Lemma rule_whl A t p: 
  Hoare (A ⊓ t) p A -> 
  Hoare A (whl t p) (A ⊓ neg t).
Proof. simp. hkat. Qed.

Lemma rule_aff x v (A: dset state): Hoare (subst x v A) (x <- v) A.
Proof. 
  rewrite Hoare_eq. intros s s' HA H. 
  now inversion_clear H.
Qed.

Lemma wrong_rule_whl A t p: 
  Hoare (A ⊓ !t) p A -> 
  Hoare A (whl t p) (A ⊓ !t).
Proof. simp. Fail hkat. Abort.

Lemma rule_whl' (I A: dset state) t p: 
  Hoare (I ⊓ t) p I -> 
  I ⊓ !t ≦ A -> 
  Hoare I (whl t p) A.
Proof. eauto 3 using weakening, rule_whl. Qed.

End s.