1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
(** * imp: a formalisation of the IMP programming language on top of KAT *)
(* We formalise the IMP language (whose programs are also known as
"while programs"). We give a big step semantics as an inductive
predicate, and using KAT, and we show that the two versions
actually coincide.
We then use the [kat] tactic to prove some simple program
equivalences, and to derive all rules of corresponding Hoare logic
for partial correctness. *)
From RelationAlgebra Require Import kat prop rel comparisons kat_tac.
Section s.
(** identifiers for memory locations *)
Variable loc: Set.
(** abstract state (or memory) *)
Variable state: Set.
(** updating the state *)
Variable update: loc -> nat -> state -> state.
(** * Definition of the languague *)
(** programs *)
Inductive prog :=
| skp
| aff (x: loc) (e: state -> nat)
| seq (p q: prog)
| ite (t: dset state) (p q: prog)
| whl (t: dset state) (p: prog).
(** notations *)
Declare Scope imp_scope.
Bind Scope imp_scope with prog.
Delimit Scope imp_scope with imp.
Notation "x <- y" := (aff x y) (at level 90): imp_scope.
Notation "p ;; q" := (seq p%imp q%imp) (left associativity, at level 101): imp_scope.
Arguments ite _%ra _%imp _%imp.
Arguments whl _%ra _%imp.
(** * Big step semantics *)
(** corresponding functional relation *)
Notation upd x e := (frel (fun s => update x (e s) s)).
(** ** using KAT expressions in the model of relations
the semantics can then be given by induction on the program, using
a simple fixpoint *)
Fixpoint bstep (p: prog): hrel state state :=
match p with
| skp => 1
| aff x e => upd x e
| seq p q => bstep p ⋅ bstep q
| ite b p q => [b] ⋅ bstep p + [!b] ⋅ bstep q
| whl b p => ([b] ⋅ bstep p)^* ⋅ [!b]
end.
(** ** using an inductive predicate, as in standard textbooks *)
Inductive bstep': prog -> hrel state state :=
| s_skp: forall s, bstep' skp s s
| s_aff: forall x e s, bstep' (x <- e) s (update x (e s) s)
| s_seq: forall p q s s' s'', bstep' p s s' -> bstep' q s' s'' -> bstep' (p ;; q) s s''
| s_ite_ff: forall (b: dset state) p q s s', b s = false -> bstep' q s s' -> bstep' (ite b p q) s s'
| s_ite_tt: forall (b: dset state) p q s s', b s = true -> bstep' p s s' -> bstep' (ite b p q) s s'
| s_whl_ff: forall (b: dset state) p s, b s = false -> bstep' (whl b p) s s
| s_whl_tt: forall (b: dset state) p s s', b s = true -> bstep' (p ;; whl b p) s s' -> bstep' (whl b p) s s'.
(** ** equivalence between the two definitions *)
Lemma bstep_eq p: bstep' p ≡ bstep p.
Proof.
apply antisym.
- intros s s'. induction 1.
reflexivity.
reflexivity.
eexists; eassumption.
right. eexists. split. reflexivity. simpl; now rewrite H. assumption.
left. eexists. split. reflexivity. assumption. assumption.
exists s. apply (str_refl ([b] ⋅ bstep p)). reflexivity.
simpl. unfold hrel_inj. simpl. now rewrite H.
destruct IHbstep' as [t ? [t' ? ?]]. exists t'. 2: assumption.
apply (str_cons ([b] ⋅ bstep p)). exists t. 2: assumption.
eexists; eauto. now split.
- induction p; unfold bstep; fold bstep.
intros ? ? <-. constructor.
intros ? ? ->. constructor.
intros ? ? [? H1 H2]. econstructor. apply IHp1, H1. apply IHp2, H2.
intros ? ? [[? [<- H] H']|[? [<- H] H']].
apply s_ite_tt. assumption. apply IHp1, H'.
apply s_ite_ff. now apply Bool.negb_true_iff. apply IHp2, H'.
apply str_ind_l'.
intros ? ? [<- H]. apply s_whl_ff. now apply Bool.negb_true_iff.
rewrite <-dotA. intros s s'' [? [<- H] [s' H' H'']]. apply s_whl_tt. assumption.
econstructor. apply IHp, H'. assumption.
Qed.
(** * Some program equivalences *)
(** two programs are said to be equivalent if they have the same semantics *)
Notation "p ~ q" := (bstep p ≡ bstep q) (at level 80).
(** ad-hoc simplification tactic *)
Ltac simp := unfold bstep; fold bstep.
(** ** denesting nested loops *)
Lemma two_loops b p:
whl b (whl b p) ~ whl b p.
Proof. simp. kat. Qed.
(** ** folding a loop *)
Lemma fold_loop b p:
whl b (p ;; ite b p skp) ~
whl b p.
Proof. simp. kat. Qed.
(** ** eliminating deadcode *)
Lemma dead_code b p q r:
(whl b p ;; ite b q r) ~
(whl b p ;; r).
Proof. simp. kat. Qed.
Lemma dead_code' a b p q r:
(whl (a ⊔ b) p ;; ite b q r) ~
(whl (a ⊔ b) p ;; r).
Proof. simp. kat. Qed.
(** * Reasoning about assignations *)
(** (higher-order style) substitution in formulas and expressions *)
Definition subst x v (A: dset state): dset state :=
fun s => A (update x (v s) s).
Definition esubst x v (e: state -> nat): state -> nat :=
fun s => e (update x (v s) s).
(** is [x] fresh in the expression e *)
Definition fresh x (e: state -> nat) := forall v s, e (update x v s) = e s.
Hypothesis update_twice: forall x i j s, update x j (update x i s) = update x j s.
Hypothesis update_comm: forall x y i j s, x<>y -> update x i (update y j s) = update y j (update x i s).
(** ** stacking assignations *)
Lemma aff_stack x e f:
(x <- e ;; x <- f) ~
(x <- esubst x e f).
Proof.
simp. rewrite frel_comp.
apply frel_weq; intro s.
apply update_twice.
Qed.
(** ** removing duplicates *)
Lemma aff_idem x e: fresh x e -> (x <- e ;; x <- e) ~ (x <- e).
Proof.
intro. rewrite aff_stack.
intros s s'. cbv. rewrite (H (e s)). tauto.
Qed.
(** ** commuting assignations *)
Lemma aff_comm x y e f: x<>y -> fresh y e ->
(x <- e ;; y <- f) ~ (y <- esubst x e f ;; x <- e).
Proof.
intros Hx Hy. simp. rewrite 2frel_comp. apply frel_weq; intro s.
rewrite update_comm by congruence.
now rewrite (Hy _).
Qed.
(** ** delaying choices *)
(** in the above example, we cannot exploit KAT since this is just
about assignations. In the following example, we show how to
perform a mixed proof: once we assert that the test [t] somehow
commutes with the assignation [x<-e], [hkat] can make use of this
assumption to close the goal *)
Lemma aff_ite x e t p q:
(x <- e ;; ite t p q)
~
(ite (subst x e t) (x <- e ;; p) (x <- e ;; q)).
Proof.
simp.
assert (H: upd x e ⋅ [t] ≡ [subst x e t] ⋅ upd x e)
by (cbv; firstorder; subst; eauto).
hkat.
Qed.
(** * Embedding Hoare logic for partial correctness *)
(** Hoare triples for partial correctness can be expressed really
easily using KAT: *)
Notation Hoare A p B := ([A] ⋅ bstep p ⋅ [!B] ≦ 0).
(** ** correspondence w.r.t. the standard interpretation of Hoare triples *)
Lemma Hoare_eq A p B:
Hoare A p B <->
forall s s', A s -> bstep p s s' -> B s'.
Proof.
split.
- intros H s s' HA Hp. case_eq (B s'). reflexivity. intro HB.
destruct (H s s'). exists s'. exists s.
now split. assumption. split. reflexivity. simpl. now rewrite HB.
- intros H s s' [? [? [<- HA] Hp] [-> HB]]. simpl in HB.
rewrite (H _ _ HA Hp) in HB. discriminate.
Qed.
(** ** deriving Hoare logic rules using the [hkat] tactic *)
(** Hoare triples are encoded as propositions of the shape [x ≦ 0] ;
therefore, they can always be eliminated by [hkat], so that all
rules of Hoare logic can be proved automatically (except for the
assignation rule, of course)
This idea come from the following paper:
Dexter Kozen. On Hoare logic and Kleene algebra with tests.
Trans. Computational Logic, 1(1):60-76, July 2000.
The fact that we have an automatic tactic makes it trivial to
formalise it. *)
Lemma weakening (A A' B B': dset state) p:
A' ≦ A -> Hoare A p B -> B ≦ B' -> Hoare A' p B'.
Proof. hkat. Qed.
Lemma rule_skp A: Hoare A skp A.
Proof. simp. kat. Qed.
Lemma rule_seq A B C p q:
Hoare A p B ->
Hoare B q C ->
Hoare A (p;;q) C.
Proof. simp. hkat. Qed.
Lemma rule_ite A B t p q:
Hoare (A ⊓ t) p B ->
Hoare (A ⊓ !t) q B ->
Hoare A (ite t p q) B.
Proof. simp. hkat. Qed.
Lemma rule_whl A t p:
Hoare (A ⊓ t) p A ->
Hoare A (whl t p) (A ⊓ neg t).
Proof. simp. hkat. Qed.
Lemma rule_aff x v (A: dset state): Hoare (subst x v A) (x <- v) A.
Proof.
rewrite Hoare_eq. intros s s' HA H.
now inversion_clear H.
Qed.
Lemma wrong_rule_whl A t p:
Hoare (A ⊓ !t) p A ->
Hoare A (whl t p) (A ⊓ !t).
Proof. simp. Fail hkat. Abort.
Lemma rule_whl' (I A: dset state) t p:
Hoare (I ⊓ t) p I ->
I ⊓ !t ≦ A ->
Hoare I (whl t p) A.
Proof. eauto 3 using weakening, rule_whl. Qed.
End s.
|