1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
|
(** * paterson: Equivalence of two flowchart schemes, due to Paterson
cf. "Mathematical theory of computation", Manna, 1974
cf. "Kleene algebra with tests and program schematology", A. Angus and D. Kozen, 2001
*)
From RelationAlgebra Require Import kat normalisation rewriting move kat_tac comparisons rel.
Set Implicit Arguments.
(** * Memory model *)
(** we need only five memory locations: the [y_i] are temporary
variables and [io] is used for input and output *)
Inductive loc := y1 | y2 | y3 | y4 | io.
Record state := { v1: nat; v2: nat; v3: nat; v4: nat; vio: nat }.
(** getting the content of a memory cell *)
Definition get x := match x with y1 => v1 | y2 => v2 | y3 => v3 | y4 => v4 | io => vio end.
(** setting the content of a memory cell *)
Definition set x n m :=
match x with
| y1 => {| v1:=n; v2:=v2 m; v3:=v3 m; v4:=v4 m; vio:=vio m |}
| y2 => {| v1:=v1 m; v2:=n; v3:=v3 m; v4:=v4 m; vio:=vio m |}
| y3 => {| v1:=v1 m; v2:=v2 m; v3:=n; v4:=v4 m; vio:=vio m |}
| y4 => {| v1:=v1 m; v2:=v2 m; v3:=v3 m; v4:=n; vio:=vio m |}
| io => {| v1:=v1 m; v2:=v2 m; v3:=v3 m; v4:=v4 m; vio:=n |}
end.
(** basic properties of [get] and [set] *)
Lemma get_set x v m: get x (set x v m) = v.
Proof. now destruct x. Qed.
Lemma get_set' x y v m: x<>y -> get x (set y v m) = get x m.
Proof. destruct y; destruct x; simpl; trivial; congruence. Qed.
Lemma set_set x v v' m: set x v (set x v' m) = set x v m.
Proof. now destruct x. Qed.
Lemma set_set' x y v v' m: x<>y -> set x v (set y v' m) = set y v' (set x v m).
Proof. destruct y; destruct x; simpl; trivial; congruence. Qed.
(** comparing locations *)
Definition eqb x y :=
match x,y with
| y1,y1 | y2,y2 | y3,y3 | y4,y4 | io,io => true
| _,_ => false
end.
Lemma eqb_spec: forall x y, reflect (x=y) (eqb x y).
Proof. destruct x; destruct y; simpl; try constructor; congruence. Qed.
Lemma eqb_false x y: x<>y -> eqb x y = false.
Proof. case eqb_spec; congruence. Qed.
Lemma neqb_spec x y: negb (eqb x y) <-> x<>y.
Proof. case eqb_spec; intuition easy. Qed.
(** * Arithmetic and Boolean expressions *)
Section s.
(** we assume arbitrary functions to interpret symbols [f], [g], and [p] *)
Variable ff: nat -> nat.
Variable gg: nat -> nat -> nat.
Variable pp: nat -> bool.
(** we use a single inductive to represent Arithmetic and Boolean
expressions: this allows us to share code about evaluation, free
variables and so on, through polymorphism *)
Inductive expr: Set -> Set :=
| e_var: loc -> expr nat
| O: expr nat
| f': expr nat -> expr nat
| g': expr nat -> expr nat -> expr nat
| p': expr nat -> expr bool
| e_cap: expr bool -> expr bool -> expr bool
| e_cup: expr bool -> expr bool -> expr bool
| e_neg: expr bool -> expr bool
| e_bot: expr bool
| e_top: expr bool.
Coercion e_var: loc >-> expr.
(** ** evaluation of expressions *)
Fixpoint eval A (e: expr A) (m: state): A :=
match e with
| e_var x => get x m
| O => 0%nat
| f' e => ff (eval e m)
| g' e f => gg (eval e m) (eval f m)
| p' e => pp (eval e m)
| e_cap e f => eval e m &&& eval f m
| e_cup e f => eval e m ||| eval f m
| e_neg e => negb (eval e m)
| e_bot => false
| e_top => true
end.
(** ** Free variables *)
Fixpoint free y A (e: expr A): bool :=
match e with
| e_var x => negb (eqb x y)
| f' e | p' e | e_neg e => free y e
| g' e f | e_cap e f | e_cup e f => free y e &&& free y f
| _ => true
end.
(** ** Substitution *)
Fixpoint subst x v A (f: expr A): expr A :=
match f with
| e_var y => if eqb x y then v else e_var y
| O => O
| f' e => f' (subst x v e)
| p' e => p' (subst x v e)
| g' e f => g' (subst x v e) (subst x v f)
| e_cup e f => e_cup (subst x v e) (subst x v f)
| e_cap e f => e_cap (subst x v e) (subst x v f)
| e_neg e => e_neg (subst x v e)
| e_bot => e_bot
| e_top => e_top
end.
Lemma subst_free x v A (e: expr A): free x e -> subst x v e = e.
Proof.
induction e; simpl; trivial.
rewrite neqb_spec. case eqb_spec; congruence.
intro. now rewrite IHe.
rewrite landb_spec. intros [? ?]. now rewrite IHe1, IHe2.
intro. now rewrite IHe.
rewrite landb_spec. intros [? ?]. now rewrite IHe1, IHe2.
rewrite landb_spec. intros [? ?]. now rewrite IHe1, IHe2.
intro. now rewrite IHe.
Qed.
Lemma free_subst x e A (f: expr A): free x e -> free x (subst x e f).
Proof.
intro. induction f; simpl; rewrite ?IHf1; auto.
case eqb_spec; trivial. simpl. rewrite neqb_spec. congruence.
Qed.
(** * Programs *)
(** We just use KAT expressions, since any gflowchat scheme can be encoded as such an expression *)
Inductive prog :=
| p_tst(t: expr bool)
| p_aff(x: loc)(e: expr nat)
| p_str(p: prog)
| p_dot(p q: prog)
| p_pls(p q: prog).
(** * Bigstep semantics *)
(** updating the memory, according to the assignment [x<-e] *)
Definition update x e m := set x (eval e m) m.
(** relational counterpart of this function *)
Notation upd x e := (frel (update x e)).
(** Bigstep semantics, as a fixpoint *)
Fixpoint bstep (p: prog): hrel state state :=
match p with
| p_tst p => [eval p: dset state]
| p_aff x e => upd x e
| p_str p => (bstep p)^*
| p_dot p q => bstep p ⋅ bstep q
| p_pls p q => bstep p + bstep q
end.
(** auxiliary lemma relating the evaluation of expressions, the
assignments to the memory, and subsitution of expressions *)
Lemma eval_update x v A (e: expr A) m: eval e (update x v m) = eval (subst x v e) m.
Proof.
induction e; simpl; try congruence.
unfold update. case eqb_spec. intros <-. apply get_set.
intro. apply get_set'. congruence.
now rewrite IHe1, IHe2.
now rewrite IHe1, IHe2.
Qed.
(** Now we make the set of programs a Kleene algebra with tests: we
declare canonical structures for Boolean expressions (tests),
programs (Kleene elements), and the natural injection of the former
into the latter *)
Canonical Structure expr_lattice_ops: lattice.ops := {|
car := expr bool;
leq := fun x y => eval x ≦ eval y;
weq := fun x y => eval x ≡ eval y;
cup := e_cup;
cap := e_cap;
bot := e_bot;
top := e_top;
neg := e_neg
|}.
Canonical Structure prog_lattice_ops: lattice.ops := {|
car := prog;
leq := fun x y => bstep x ≦ bstep y;
weq := fun x y => bstep x ≡ bstep y;
cup := p_pls;
cap := assert_false p_pls;
bot := p_tst e_bot;
top := assert_false (p_tst e_bot);
neg := assert_false id
|}.
Canonical Structure prog_monoid_ops: monoid.ops := {|
ob := unit;
mor n m := prog_lattice_ops;
dot n m p := p_dot;
one n := p_tst e_top;
itr n := (fun x => p_dot x (p_str x));
str n := p_str;
cnv n m := assert_false id;
ldv n m p := assert_false (fun _ => id);
rdv n m p := assert_false (fun _ => id)
|}.
Canonical Structure prog_kat_ops: kat.ops := {|
kar := prog_monoid_ops;
tst n := expr_lattice_ops;
inj n := p_tst
|}.
Notation prog' := (prog_kat_ops tt tt).
Notation test := (@tst prog_kat_ops tt).
(** proving that the laws of KAT are satisfied is almost trivial,
since the model faithfully embeds in the relational model *)
Instance expr_lattice_laws: lattice.laws BL expr_lattice_ops.
Proof.
apply laws_of_injective_morphism with (@eval bool: expr bool -> dset state); trivial.
split; simpl; tauto.
Qed.
Instance prog_monoid_laws: monoid.laws BKA prog_monoid_ops.
Proof.
apply laws_of_faithful_functor with (fun _ => state) (fun _ _: unit => bstep); trivial.
split; simpl; try discriminate; try tauto. 2: firstorder.
split; simpl; try discriminate; try tauto. firstorder auto with bool.
Qed.
Instance prog_lattice_laws: lattice.laws BKA prog_lattice_ops := lattice_laws tt tt.
Instance prog_kat_laws: kat.laws prog_kat_ops.
Proof.
constructor; simpl; eauto with typeclass_instances. 2: tauto.
split; try discriminate; try (simpl; tauto).
intros x y H. apply inj_leq. intro m. apply H.
intros x y H. apply inj_weq. intro m. apply H.
intros _ x y. apply (inj_cup (X:=hrel_kat_ops)).
intros _ x y. apply (inj_cap (X:=hrel_kat_ops)).
Qed.
(** ** variables read by a program *)
(** [dont_read y p] holds if [p] never reads [y] *)
Fixpoint dont_read y (p: prog'): bool :=
match p with
| p_str p => dont_read y p
| p_dot p q | p_pls p q => dont_read y p &&& dont_read y q
| p_aff x e => free y e
| p_tst t => free y t
end.
(** ** Additional notation *)
Infix " ;" := (dot _ _ _) (left associativity, at level 40): ra_terms.
Definition aff x e: prog' := p_aff x e.
Notation "x <- e" := (aff x e) (at level 30).
Notation del y := (y<-O).
(** * Laws of schematic KAT *)
Arguments hrel_monoid_ops : simpl never.
Arguments hrel_lattice_ops : simpl never.
(** (the numbering corresponds to Angus and Kozen's paper) *)
Lemma eq_6 (x y: loc) (s t: expr nat):
negb (eqb x y) &&& free y s -> x<-s;y<-t ≡ y<-subst x s t; x<-s.
Proof.
rewrite landb_spec, neqb_spec. intros [D H]. cbn.
rewrite 2frel_comp. apply frel_weq. intro m.
unfold update at 1 2 3. rewrite set_set' by congruence. f_equal.
now rewrite eval_update, subst_free.
unfold update. now rewrite <-eval_update.
Qed.
Lemma eq_7 (x y: loc) (s t: expr nat):
negb (eqb x y) &&& free x s -> x<-s;y<-t ≡ x<-s;y<-subst x s t.
Proof.
rewrite landb_spec, neqb_spec. intros [D H]. cbn.
rewrite 2frel_comp. apply frel_weq. intro m.
unfold update at 1 3. f_equal.
rewrite 2eval_update. symmetry. rewrite subst_free. reflexivity.
now apply free_subst.
Qed.
Lemma eq_8 (x: loc) (s t: expr nat): x<-s;x<-t ≡ x<-subst x s t.
Proof.
cbn. rewrite frel_comp. apply frel_weq. intro m.
unfold update. rewrite set_set. f_equal. apply eval_update.
Qed.
Lemma eq_9 (x: loc) (t: expr nat) (phi: test): [subst x t phi: test];x<-t ≡ x<-t;[phi].
Proof.
Transparent hrel_lattice_ops. intros m m'. split. Opaque hrel_lattice_ops.
intros [m0 [<- H] ->]. eexists. reflexivity. split; trivial. now rewrite eval_update.
intros [m0 -> [<- H]]. eexists. 2: reflexivity. split; trivial. now rewrite <-eval_update.
Qed.
Lemma eq_6' (x y: loc) (s t: expr nat): free x t &&& negb (eqb x y) &&& free y s ->
x<-s;y<-t ≡ y<-t; x<-s.
Proof. rewrite landb_spec. intros [? ?]. now rewrite eq_6, subst_free. Qed.
Lemma eq_9' (x: loc) (t: expr nat) (phi: test): free x phi -> [phi];x<-t ≡ x<-t;[phi].
Proof. intro. now rewrite <-eq_9, subst_free. Qed.
Transparent hrel_lattice_ops.
Arguments hrel_lattice_ops : simpl never.
Lemma same_value (f: state -> state) (p: prog') (a b: test):
bstep p ≡ frel f -> (forall m, eval a (f m) = eval b (f m)) ->
p;[a ⊓ !b ⊔ !a ⊓ b] ≦ 0.
Proof.
intros Hp H. cbn. rewrite Hp.
intros m m' [? -> [<- E]].
exfalso. rewrite lorb_spec, 2landb_spec, 2negb_spec, H in E. intuition congruence.
Qed.
(** * Garbage-collecting assignments to unread variables *)
(** (i.e., Lemma 4.5 in Angus and Kozen's paper) *)
Fixpoint gc y (p: prog'): prog' :=
match p with
| p_str p => (gc y p)^*
| p_tst _ => p
| p_aff x e => if eqb x y then 1 else x<-e
| p_dot p q => gc y p ; gc y q
| p_pls p q => gc y p + gc y q
end.
Arguments prog_monoid_ops : simpl never.
Arguments prog_lattice_ops : simpl never.
Arguments prog_kat_ops : simpl never.
Lemma gc_correct y p: dont_read y p -> gc y p; del y ≡ p; del y.
Proof.
intro H. transitivity (del y; gc y p).
induction p; cbn.
now apply eq_9'.
case eqb_spec. ra. intro. apply eq_6'. now rewrite eqb_false.
symmetry. apply str_move. symmetry. now auto.
apply landb_spec in H as [? ?]. mrewrite IHp2. 2: assumption. now mrewrite IHp1.
apply landb_spec in H as [? ?]. ra_normalise. now apply cup_weq; auto.
symmetry. induction p; cbn.
now apply eq_9'.
case eqb_spec. intros <-. rewrite eq_8. ra. intro D. apply eq_6'. now rewrite eqb_false.
symmetry. apply str_move. symmetry. now auto.
apply landb_spec in H as [? ?]. mrewrite IHp2. 2: assumption. now mrewrite IHp1.
apply landb_spec in H as [? ?]. ra_normalise. now apply cup_weq; auto.
Qed.
Ltac solve_rmov ::=
first
[ eassumption
| symmetry; eassumption
| eapply rmov_x_dot
| apply rmov_x_pls
| apply rmov_x_str
| apply rmov_x_itr
| apply rmov_x_cap
| apply rmov_x_cup
| apply rmov_x_neg
| apply rmov_inj
| apply rmov_x_1
| apply rmov_x_0 ];
match goal with |- ?x ≡ ?y => solve_rmov end.
(** * Paterson's equivalence *)
Theorem Paterson:
let a1 := p' y1: test in
let a2 := p' y2: test in
let a3 := p' y3: test in
let a4 := p' y4: test in
let clr := del y1; del y2; del y3; del y4 in
let x1 := y1<-io in
let s1 := y1<-f' io in
let s2 := y2<-f' io in
let z1 := io<-y1; clr in
let z2 := io<-y2; clr in
let p11 := y1<-f' y1 in
let p13 := y1<-f' y3 in
let p22 := y2<-f' y2 in
let p41 := y4<-f' y1 in
let q222 := y2<-g' y2 y2 in
let q214 := y2<-g' y1 y4 in
let q211 := y2<-g' y1 y1 in
let q311 := y3<-g' y1 y1 in
let r11 := y1<-f' (f' y1) in
let r12 := y1<-f' (f' y2) in
let r13 := y1<-f' (f' y3) in
let r22 := y2<-f' (f' y2) in
let rhs := s2;[a2];q222;([!a2];r22;[a2];q222)^*;[a2];z2 in
x1;p41;p11;q214;q311;([!a1];p11;q214;q311)^*;[a1];p13;
(([!a4]+[a4];([!a2];p22)^*;[a2 ⊓ !a3];p41;p11);q214;q311;([!a1];p11;q214;q311)^*;[a1];p13)^*;
[a4];([!a2];p22)^*;[a2 ⊓ a3];z2 ≡ rhs.
Proof.
intros.
(** simple commutation hypotheses, to be exploited by [hkat] *)
assert (a1p22: [a1];p22 ≡ p22;[a1]) by now apply eq_9'.
assert (a1q214: [a1];q214 ≡ q214;[a1]) by now apply eq_9'.
assert (a1q211: [a1];q211 ≡ q211;[a1]) by now apply eq_9'.
assert (a1q311: [a1];q311 ≡ q311;[a1]) by now apply eq_9'.
assert (a2p13: [a2];p13 ≡ p13;[a2]) by now apply eq_9'.
assert (a2r12: [a2];r12 ≡ r12;[a2]) by now apply eq_9'.
assert (a2r13: [a2];r13 ≡ r13;[a2]) by now apply eq_9'.
assert (a3p13: [a3];p13 ≡ p13;[a3]) by now apply eq_9'.
assert (a3p22: [a3];p22 ≡ p22;[a3]) by now apply eq_9'.
assert (a3r12: [a3];r12 ≡ r12;[a3]) by now apply eq_9'.
assert (a3r13: [a3];r13 ≡ r13;[a3]) by now apply eq_9'.
assert (a4p13: [a4];p13 ≡ p13;[a4]) by now apply eq_9'.
assert (a4p11: [a4];p11 ≡ p11;[a4]) by now apply eq_9'.
assert (a4p22: [a4];p22 ≡ p22;[a4]) by now apply eq_9'.
assert (a4q214: [a4];q214 ≡ q214;[a4]) by now apply eq_9'.
assert (a4q211: [a4];q211 ≡ q211;[a4]) by now apply eq_9'.
assert (a4q311: [a4];q311 ≡ q311;[a4]) by now apply eq_9'.
assert (p41p11: p41;p11;[a1 ⊓ !a4 ⊔ !a1 ⊓ a4] ≦ 0).
eapply same_value. apply frel_comp. reflexivity.
assert (q211q311: q211;q311;[a2 ⊓ !a3 ⊔ !a2 ⊓ a3] ≦ 0).
eapply same_value. apply frel_comp. reflexivity.
assert (r12p22: r12;p22;p22;[a1 ⊓ !a2 ⊔ !a1 ⊓ a2] ≦ 0).
eapply same_value. simpl bstep. rewrite 2frel_comp. reflexivity. reflexivity.
(** this one cannot be used by [hkat], it's used by [rmov1] *)
assert (p13p22: p13;p22 ≡ p22;p13) by now apply eq_6'.
(** here starts the proof; the numbers in the comments refer to the
equation numbers in Angus and Kozen's paper proof *)
(** (19) *)
transitivity (
x1;p41;p11;q214;q311;
([!a1 ⊓ !a4];p11;q214;q311 +
[!a1 ⊓ a4];p11;q214;q311 +
[ a1 ⊓ !a4];p13;[!a4];q214;q311 +
[a1 ⊓ a4];p13;([!a2];p22)^*;[a2 ⊓ !a3];p41;p11;q214;q311)^*;
[a1];p13;([!a2];p22)^*;[a2 ⊓ a3 ⊓ a4];z2).
clear -a4p13 a4p22. hkat.
do 2 rmov1 p13.
(** (23+) *)
transitivity (
x1;p41;p11;q214;q311;
([!a1 ⊓ !a4];p11;q214;q311 +
[!a1 ⊓ a4];p11;q214;q311 +
[ a1 ⊓ !a4];p13;[!a4];q214;q311 +
[a1 ⊓ a4];p13;([!a2];p22)^*;[a2 ⊓ !a3];p41;p11;q214;q311)^*;
([!a2];p22)^*;[a1 ⊓ a2 ⊓ a3 ⊓ a4];(p13;z2)).
clear -a1p22; hkat.
setoid_replace (p13;z2) with z2
by (unfold z2, clr; mrewrite <-(gc_correct y1); [ simpl gc; kat | reflexivity ]).
(** (24) *)
transitivity (x1;p41;p11;q214;q311;
([a1 ⊓ a4];p13;([!a2];p22)^*;[a2 ⊓ !a3];p41;p11;q214;q311)^*;
([!a2];p22)^*;[a1 ⊓ a2 ⊓ a3 ⊓ a4];z2).
clear -p41p11 a1p22 a1q214 a1q311 a4p11 a4p13 a4p22 a4q214 a4q311; hkat.
(** big simplification w.r.t the paper proof here... *)
(** (27) *)
assert (p41p11q214: p41;p11;q214 ≡ p41;p11;q211).
change (upd y4 (f' y1) ; upd y1 (f' y1) ; upd y2 (g' y1 y4) ≡ upd y4 (f' y1) ; upd y1 (f' y1) ; upd y2 (g' y1 y1)).
now rewrite 3frel_comp.
do 2 mrewrite p41p11q214. clear p41p11q214.
(** (29) *)
transitivity (x1;(p41;(p11;q211;q311;[a1];p13;([!a2];p22)^*;[a2 ⊓ !a3]))^*;
p41;p11;q211;q311;([!a2];p22)^*;[a1 ⊓ a2 ⊓ a3];z2).
clear -p41p11 a1p22 a1q211 a1q311 a4p22 a4q211 a4q311; hkat.
(** (31) *)
transitivity (x1;(p11;q211;q311;[a1];p13;([!a2];p22)^*;[a2 ⊓ !a3])^*;
p11;q211;q311;([!a2];p22)^*;[a1 ⊓ a2 ⊓ a3];z2).
unfold z2, clr. mrewrite <-(gc_correct y4). 2: reflexivity. simpl gc. kat.
(** (32) *)
rmov1 p13.
transitivity ((x1;p11);(q211;q311;([!a2];p22)^*;[a1 ⊓ a2 ⊓ !a3];(p13;p11))^*;
q211;q311;([!a2];p22)^*;[a1 ⊓ a2 ⊓ a3];z2).
clear -a1p22 a2p13 a3p13; hkat.
(** big simplification w.r.t the paper proof here... *)
(** (33) *)
setoid_replace (x1;p11) with s1 by apply eq_8.
setoid_replace (p13;p11) with r13 by apply eq_8.
(** (34) *)
transitivity (s1;(q211;q311;(([!a2];p22)^*;([a1];r13));[a2 ⊓ !a3])^*;
q211;q311;([!a2];p22)^*;[a1 ⊓ a2 ⊓ a3];z2).
clear -a2r13 a3r13; hkat.
setoid_replace (([!a2];p22)^*;([a1];r13)) with ([a1];r13;([!a2];p22)^*)
by (assert (r13;p22 ≡ p22;r13) by (now apply eq_6'); rmov1 r13; clear -a1p22; hkat).
transitivity (s1;([a1];(q211;q311;r13);([!a2];p22)^*;[a2 ⊓ !a3])^*;
q211;q311;([!a2];p22)^*;[a1 ⊓ a2 ⊓ a3];z2).
clear -a1q311 a1q211; hkat.
(** (35) *)
setoid_replace (q211;q311;r13) with (q211;q311;r12).
2: change (upd y2 (g' y1 y1) ; upd y3 (g' y1 y1) ; upd y1 (f' (f' y3)) ≡ upd y2 (g' y1 y1) ; upd y3 (g' y1 y1) ; upd y1 (f' (f' y2))); now rewrite 3frel_comp.
(** (36) *)
transitivity (s1;([a1];(q211;q311);[!a2];r12;([!a2];p22)^*;[a2])^*;
(q211;q311);[a2];([!a2];p22)^*;[a1 ⊓ a2];z2).
clear -a3p22 a3r12 q211q311. hkat.
(** (37) *)
transitivity (s1;([a1];q211;[!a2];r12;([!a2];p22)^*;[a2])^*;
q211;[a2];([!a2];p22)^*;[a1 ⊓ a2];z2).
unfold z2, clr. mrewrite <-(gc_correct y3). 2: reflexivity. simpl gc. kat.
(** (38) *)
transitivity (s1;[a1];q211;([!a2];r12;[a1];p22;[a2];q211 +
[!a2];r12;[a1];p22;[!a2];(p22;q211))^*;[a2];z2).
clear -a1p22 a1q211 a2r12 r12p22 a1p22. hkat.
(** big simplification w.r.t the paper proof here... *)
(** (43) *)
assert (p22q211: p22;q211 ≡ q211) by apply eq_8. rewrite p22q211.
transitivity (s1;[a1];q211;([!a2];r12;[a1];(p22;q211))^*;[a2];z2). kat.
rewrite p22q211. clear p22q211.
(** (44) *)
unfold s1, a1, q211, r12, a2. rewrite <-eq_9. mrewrite eq_7. 2: reflexivity.
mrewrite <-eq_9. mrewrite (eq_7 y1 y2 (f' (f' y2))). 2: reflexivity.
unfold z2, clr. mrewrite <-(gc_correct y1). 2: reflexivity.
unfold rhs, z2, clr, s2, a2. rewrite <-eq_9.
unfold q222. mrewrite eq_7. 2: reflexivity.
unfold r22. mrewrite <-eq_9. do 2 mrewrite eq_8.
simpl gc. kat.
(** (47) *)
Qed.
End s.
|