1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
|
(** * lattice: from preorders to Boolean lattices *)
(** We define here all structures ranging from preorders to Boolean
lattice (e.g., sup-semilattices, inf-semilattices with bottom
element, bounded lattices, etc...). *)
Require Export common level.
Declare Scope ra_terms.
Delimit Scope ra_terms with ra.
Open Scope ra_scope.
Open Scope ra_terms.
(** * Lattice operations *)
(** The following class packages all operations that can possibly
come with a preorder: a supremum, a bottom element, a negation,
etc... We use dummy values when working in structures lacking some
operations.
We use a "Class" rather than a "Structure" just to make the first
argument of all the corresponding projections implicit. Instances
of this class will be declared as Canonical structures rather than
typeclasses instances, so that this first argument will actually be
inferred by unification. (except in the abstract and unconstrained
case, where typeclass resolution will be called since unification
will keep the hole unconstrained) *)
Universe L.
Class ops := mk_ops {
car: Type@{L}; (** carrier *)
leq: relation car; (** preorder *)
weq: relation car; (** underlying equality *)
cup: car -> car -> car; (** supremum *)
cap: car -> car -> car; (** infimum *)
neg: car -> car; (** Boolean negation *)
bot: car; (** bottom element *)
top: car (** top element *)
}.
Arguments car : clear implicits.
Coercion car: ops >-> Sortclass.
Bind Scope ra_terms with car.
(** Hints for simpl *)
Arguments weq {ops} (x y)%ra / : simpl nomatch.
Arguments leq {ops} (x y)%ra / : simpl nomatch.
Arguments cup {ops} (x y)%ra / : simpl nomatch.
Arguments cap {ops} (x y)%ra / : simpl nomatch.
Arguments neg {ops} (x)%ra / : simpl nomatch.
Arguments bot {ops} / : simpl nomatch.
Arguments top {ops} / : simpl nomatch.
(** Notations *)
(**
≦ : \leqq (company coq) or LESS THAN OVER EQUAL TO (was '<==')
≡ : \equiv (company coq) or IDENTIAL TO (was '==')
⊔ : \sqcup (company coq) or SQUARE CUP (was '\cup')
⊓ : \sqcap (company coq) or SQUARE CAP (was '\cap')
*)
Infix "≦" := leq (at level 79): ra_scope.
Infix "≡" := weq (at level 79): ra_scope.
Infix "⊔" := cup (left associativity, at level 50): ra_terms.
Infix "⊓" := cap (left associativity, at level 40): ra_terms.
Notation "! x" := (neg x) (right associativity, at level 20, format "! x"): ra_terms.
(** * Lattice laws (axioms) *)
(** [laws l X] provides the laws corresponding to the various
operations of [X], provided these operations belong to the level
[l]. For instance, the specification of the supremum ([cup]) is
available only if the level contains [CUP].
Note that [leq] is always require to be a preorder, and [weq] is
always required to be the kernel of that preorder.
Also note that some axioms ([leq_bx_], [leq_x_t_]) are present
unless some operations are present in [l]. They end with an
underscore, they are actually derivable from the other axioms when
the additional operations belong to [l]. They are reformulated
without the escaping disjunction below, under the same name but
without the ending underscore (see [leq_bx], [leq_x_t] below).
The field name [cupcap_] also ends with an underscore, this is
because it's statement is an inequality, for which the converse
inequality is derivable. It is thus later reformulated as an
equality (see lemma [cupcap] below).
Unlike for operations ([ops]), laws are actually inferred by
typeclass resolution. *)
Class laws (l: level) (X: ops) := {
leq_PreOrder:: PreOrder leq;
weq_spec : forall x y , x ≡ y <-> x ≦ y /\ y ≦ x;
cup_spec {Hl:CUP ≪ l}: forall x y z, x ⊔ y ≦ z <-> x ≦ z /\ y ≦ z;
cap_spec {Hl:CAP ≪ l}: forall x y z, z ≦ x ⊓ y <-> z ≦ x /\ z ≦ y;
leq_bx_ {Hl:BOT ≪ l}: NEG+CAP ≪ l \/ forall x, bot ≦ x;
leq_xt_ {Hl:TOP ≪ l}: NEG+CUP ≪ l \/ forall x, x ≦ top;
cupcap_ {Hl:DL ≪ l}: forall x y z, (x ⊔ y) ⊓ (x ⊔ z) ≦ x ⊔ (y ⊓ z);
capneg {Hl:NEG+CAP+BOT ≪ l}: forall x, x ⊓ !x ≡ bot;
cupneg {Hl:NEG+CUP+TOP ≪ l}: forall x, x ⊔ !x ≡ top
}.
(** * Properties of the preorder ([≦]) and it kernel ([≡]) *)
Lemma antisym `{laws}: forall x y, x ≦ y -> y ≦ x -> x ≡ y.
Proof. intros. apply weq_spec; split; assumption. Qed.
Lemma from_below `{laws}: forall x y, (forall z, z ≦ x <-> z ≦ y) -> x ≡ y.
Proof. intros x y E. apply antisym; apply E; reflexivity. Qed.
Lemma from_above `{laws}: forall x y, (forall z, x ≦ z <-> y ≦ z) -> x ≡ y.
Proof. intros x y E. apply antisym; apply E; reflexivity. Qed.
(** Trivial hints *)
#[export] Hint Extern 0 (_ ≦ _) => reflexivity : core.
#[export] Hint Extern 0 (_ ≡ _) => reflexivity : core.
(** Instances to be used by the setoid_rewrite machinery *)
#[export] Instance weq_Equivalence `{laws}: Equivalence weq.
Proof.
constructor.
intro. now rewrite weq_spec.
intros ? ?. rewrite 2weq_spec. tauto.
intros x y z. rewrite 3weq_spec. intuition; etransitivity; eassumption.
Qed.
#[export] Instance weq_rel {ops} : RewriteRelation (@weq ops) := {}.
#[export] Instance weq_leq `{laws}: subrelation weq leq.
Proof. intros x y E. apply weq_spec in E as [? ?]. assumption. Qed.
#[export] Instance weq_geq `{laws}: subrelation weq (flip leq).
Proof. intros x y E. apply weq_spec in E as [? ?]. assumption. Qed.
#[export] Instance leq_weq_iff `{laws}: Proper (weq ==> weq ==> iff) leq.
Proof.
intros x y E x' y' E'. split; intro L.
now rewrite <-E, <-E'.
now rewrite E, E'.
Qed.
(** Utility lemmas, to deduce that a function preserves [weq] once we
proved that it preserves [leq], these are extremely useful in
practice *)
Lemma op_leq_weq_1 {h k X Y} {HX: laws h X} {HY: laws k Y} {f: X -> Y}
{Hf: Proper (leq ==> leq) f}: Proper (weq ==> weq) f.
Proof. intros x y. rewrite 2weq_spec. intro E; split; apply Hf; apply E. Qed.
Lemma op_leq_weq_2 {h k l X Y Z} {HX: laws h X} {HY: laws k Y} {HZ: laws l Z} {f: X -> Y -> Z}
{Hf: Proper (leq ==> leq ==> leq) f}: Proper (weq ==> weq ==> weq) f.
Proof.
intros x y E x' y' E'. rewrite weq_spec in E. rewrite weq_spec in E'.
apply antisym; apply Hf; (apply E || apply E').
Qed.
(** Additional hints, to speedup typeclass resolution *)
#[export] Instance leq_Reflexive `{laws}: Reflexive leq |1.
Proof. eauto with typeclass_instances. Qed.
#[export] Instance leq_Transitive `{laws}: Transitive leq |1.
Proof. eauto with typeclass_instances. Qed.
#[export] Instance weq_Reflexive `{laws}: Reflexive weq |1.
Proof. eauto with typeclass_instances. Qed.
#[export] Instance weq_Transitive `{laws}: Transitive weq |1.
Proof. eauto with typeclass_instances. Qed.
#[export] Instance weq_Symmetric `{laws}: Symmetric weq |1.
Proof. eauto with typeclass_instances. Qed.
(** We declare most projections as Opaque for typeclass resolution:
this saves a lot of compilation time *)
(* NOTE: declaring [weq] as opaque for typeclasses also saves some time,
but this is problematic with the [Prop] instances, for which we often
need [weq=iff] to be used by typeclass resolution *)
#[export] Typeclasses Opaque (* weq *) leq cup cap neg bot top.
(** * Basic properties of [⊔], [⊓], [bot], and [top] *)
Lemma leq_cupx `{laws} `{CUP ≪ l}: forall x y z, x ≦ z -> y ≦ z -> x ⊔ y ≦ z.
Proof. intros. apply cup_spec. split; assumption. Qed.
Lemma leq_xcup `{laws} `{CUP ≪ l}: forall x y z, z ≦ x \/ z ≦ y -> z ≦ x ⊔ y.
Proof.
intros x y z. assert (C:= cup_spec x y (x ⊔ y)).
intros [E|E]; rewrite E; apply C; reflexivity.
Qed.
Lemma leq_xcap `{laws} `{CAP ≪ l}: forall x y z, z ≦ x -> z ≦ y -> z ≦ x ⊓ y.
Proof. intros. apply cap_spec. split; assumption. Qed.
Lemma leq_capx `{laws} `{CAP ≪ l}: forall x y z, x ≦ z \/ y ≦ z -> x ⊓ y ≦ z.
Proof.
intros x y z. assert (C:= cap_spec x y (x ⊓ y)).
intros [E|E]; rewrite <- E; apply C; reflexivity.
Qed.
Lemma leq_bx `{L: laws} {Hl:BOT ≪ l}: forall x, bot ≦ x.
Proof.
destruct leq_bx_ as [Hl'|H]. 2: apply H.
intro x. rewrite <-(capneg x). apply leq_capx. left. reflexivity.
Qed.
Lemma leq_xb_iff `{L: laws} {Hl:BOT ≪ l}: forall x, x ≦ bot <-> x ≡ bot.
Proof.
split; intro. apply antisym. assumption. apply leq_bx.
now apply weq_leq.
Qed.
Lemma leq_xt `{L: laws} {Hl:TOP ≪ l}: forall x, x ≦ top.
Proof.
destruct leq_xt_ as [Hl'|H]. 2: apply H.
intro x. rewrite <-(cupneg x). apply leq_xcup. left. reflexivity.
Qed.
Lemma leq_tx_iff `{L: laws} {Hl:TOP ≪ l}: forall x, top ≦ x <-> x ≡ top.
Proof.
split; intro. apply antisym. apply leq_xt. assumption.
now apply weq_leq.
Qed.
(** * Subtyping / weakening *)
(** laws that hold at any level [h] hold for all level [k ≪ h] *)
Lemma lower_lattice_laws {h k} {X} {H: laws h X} {le: k ≪ h}: laws k X.
Proof.
constructor; try solve [ apply H | intro; apply H; eauto using lower_trans ].
intro. right. eapply @leq_bx. apply H. eauto using lower_trans.
intro. right. eapply @leq_xt. apply H. eauto using lower_trans.
Qed.
(** * Solving (in)equations in non distributive lattices *)
(** simple tactic to solve lattice (in)equations,
using a basic focused proof search algorithm *)
Ltac lattice :=
let rec async := (* idtac "async"; *) solve
[ apply leq_cupx; async
| apply leq_xcap; async
| apply leq_bx
| apply leq_xt
| sync_l false || sync_r false ]
with sync_l b := (* idtac "sync_l"; *) solve
[ reflexivity
| assumption
| apply leq_capx; ((left; sync_l true) || (right; sync_l true))
| match b with true => async end ]
with sync_r b := (* idtac "sync_r"; *) solve
[ reflexivity
| assumption
| apply leq_xcup; ((left; sync_r true) || (right; sync_r true))
| match b with true => async end ]
in
(try apply antisym); async || fail "not a lattice theorem".
(** extension of the above tactic so that it also tries to exploit
hypotheses in a more agressive way *)
Ltac hlattice :=
repeat
match goal with
| H: _ ≡ _ |- _ => apply weq_spec in H as [? ?]
| H: _ ⊔ _ ≦ _ |- _ => apply cup_spec in H as [? ?]
| H: _ ≦ _ ⊓ _ |- _ => apply cap_spec in H as [? ?]
end; lattice.
(** * Reasoning by duality *)
(** dual lattice operations: we reverse the preorder, and swap cup
with cap, and resp bot with top) *)
Definition dual (X: ops) := {|
leq := flip leq;
weq := weq;
cup := cap;
cap := cup;
neg := neg;
bot := top;
top := bot |}.
Lemma capcup_ `{laws} `{DL ≪ l}: forall x y z, x ⊓ (y ⊔ z) ≦ (x ⊓ y) ⊔ (x ⊓ z).
Proof.
intros. rewrite <- cupcap_. apply leq_xcap. lattice.
transitivity (z ⊔ x ⊓ y). 2: lattice.
rewrite <- cupcap_. lattice.
Qed.
Ltac inverse_lower l Hl :=
revert Hl; clear; destruct l; unfold lower, merge; simpl; rewrite ?landb_spec; tauto.
(** laws on a given set of operations can be transferred to the dual set of operations *)
Lemma dual_laws l (X: ops): laws (level.dual l) X -> laws l (dual X).
Proof.
intro H. constructor; try (destruct l; apply H).
constructor. apply H. intros x y z H1 H2. revert H2 H1. simpl. apply H.
intros x y. simpl. rewrite weq_spec. tauto.
intro. simpl. eapply @capcup_. apply H. inverse_lower l Hl.
intro. simpl. eapply @cupneg. apply H. inverse_lower l Hl.
intro. simpl. eapply @capneg. apply H. inverse_lower l Hl.
Qed.
(** this gives us a tactic to prove properties by lattice duality *)
Lemma dualize {h} {P: ops -> Prop} (L: forall l X, laws l X -> h ≪ l -> P X)
{l X} {H: laws l X} {Hl:level.dual h ≪ l}: P (dual X).
Proof.
apply L with (level.dual l). apply dual_laws.
destruct l; apply H.
revert Hl. rewrite 2lower_spec. destruct l; destruct h; simpl. tauto.
Qed.
Ltac dual x := apply (dualize x).
(** * [(⊔,bot)] forms a commutative, idempotent monoid *)
Lemma cupA `{laws} `{CUP ≪ l}: forall x y z, x ⊔ (y ⊔ z) ≡ (x ⊔ y) ⊔ z.
Proof. intros. lattice. Qed.
Lemma cupC `{laws} `{CUP ≪ l}: forall x y, x ⊔ y ≡ y ⊔ x.
Proof. intros. lattice. Qed.
Lemma cupI `{laws} `{CUP ≪ l}: forall x, x ⊔ x ≡ x.
Proof. intros. lattice. Qed.
Lemma cupbx `{laws} `{CUP+BOT ≪ l}: forall x, bot ⊔ x ≡ x.
Proof. intros. lattice. Qed.
Lemma cupxb `{laws} `{CUP+BOT ≪ l}: forall x, x ⊔ bot ≡ x.
Proof. intros. lattice. Qed.
Lemma cuptx `{laws} `{CUP+TOP ≪ l}: forall x, top ⊔ x ≡ top.
Proof. intros. lattice. Qed.
Lemma cupxt `{laws} `{CUP+TOP ≪ l}: forall x, x ⊔ top ≡ top.
Proof. intros. lattice. Qed.
Lemma leq_cup_l `{laws} `{CUP ≪ l} x y: x ≦ x ⊔ y.
Proof. lattice. Qed.
Lemma leq_cup_r `{laws} `{CUP ≪ l} x y: y ≦ x ⊔ y.
Proof. lattice. Qed.
#[export] Instance cup_leq `{laws} `{CUP ≪ l}: Proper (leq ==> leq ==> leq) cup.
Proof. intros x x' Hx y y' Hy. lattice. Qed.
#[export] Instance cup_weq `{laws} `{CUP ≪ l}: Proper (weq ==> weq ==> weq) cup.
Proof. apply op_leq_weq_2. Qed.
(** distribution of [⊔] over [⊓] *)
Lemma cupcap `{laws} `{DL ≪ l}: forall x y z, x ⊔ (y ⊓ z) ≡ (x ⊔ y) ⊓ (x ⊔ z).
Proof. intros. apply antisym. lattice. apply cupcap_. Qed.
(** characterisation of the preorder by the semilattice operations *)
Lemma leq_iff_cup `{laws} `{CUP ≪ l} (x y: X): x ≦ y <-> x ⊔ y ≡ y.
Proof. split. intro. hlattice. intro E. rewrite <- E. lattice. Qed.
(* this lemma is used twice... *)
Lemma comm4 `{laws} `{CUP ≪ l} (a b c d: X): a ⊔ b ⊔ c ⊔ d ≡ (a ⊔ c) ⊔ (b ⊔ d).
Proof. lattice. Qed.
(** * [(⊓,top)] forms a commutative, idempotent monoid (by duality) *)
Lemma capA `{laws} `{CAP ≪ l}: forall x y z, x ⊓ (y ⊓ z) ≡ (x ⊓ y) ⊓ z.
Proof. dual @cupA. Qed.
Lemma capC `{laws} `{CAP ≪ l}: forall x y, x ⊓ y ≡ y ⊓ x.
Proof. dual @cupC. Qed.
Lemma capI `{laws} `{CAP ≪ l}: forall x, x ⊓ x ≡ x.
Proof. dual @cupI. Qed.
Lemma captx `{laws} `{CAP+TOP ≪ l}: forall x, top ⊓ x ≡ x.
Proof. dual @cupbx. Qed.
Lemma capxt `{laws} `{CAP+TOP ≪ l}: forall x, x ⊓ top ≡ x.
Proof. dual @cupxb. Qed.
Lemma capbx `{laws} `{CAP+BOT ≪ l}: forall x, bot ⊓ x ≡ bot.
Proof. dual @cuptx. Qed.
Lemma capxb `{laws} `{CAP+BOT ≪ l}: forall x, x ⊓ bot ≡ bot.
Proof. dual @cupxt. Qed.
Lemma leq_cap_l `{laws} `{CAP ≪ l} x y: x ⊓ y ≦ x.
Proof. lattice. Qed.
Lemma leq_cap_r `{laws} `{CAP ≪ l} x y: x ⊓ y ≦ y.
Proof. lattice. Qed.
#[export] Instance cap_leq `{laws} `{CAP ≪ l}: Proper (leq ==> leq ==> leq) cap.
Proof. intros x x' Hx y y' Hy. lattice. Qed.
#[export] Instance cap_weq `{laws} `{CAP ≪ l}: Proper (weq ==> weq ==> weq) cap.
Proof. apply op_leq_weq_2. Qed.
Lemma leq_iff_cap `{laws} `{CAP ≪ l} (x y: X): x ≦ y <-> x ⊓ y ≡ x.
Proof. split. intro. hlattice. intro E. rewrite <- E. lattice. Qed.
Lemma capcup `{laws} `{DL ≪ l}: forall x y z, x ⊓ (y ⊔ z) ≡ (x ⊓ y) ⊔ (x ⊓ z).
Proof. dual @cupcap. Qed.
Lemma cupcap' `{laws} `{DL ≪ l}: forall x y z, (y ⊓ z) ⊔ x ≡ (y ⊔ x) ⊓ (z ⊔ x).
Proof. intros. now rewrite cupC, cupcap, 2(cupC x). Qed.
Lemma capcup' `{laws} `{DL ≪ l}: forall x y z, (y ⊔ z) ⊓ x ≡ (y ⊓ x) ⊔ (z ⊓ x).
Proof. dual @cupcap'. Qed.
(** * Properties of negation *)
Lemma neg_unique' `{laws} `{BL ≪ l} (x y: X): y ⊓ x ≦ bot -> y ≦ !x.
Proof.
intros E. rewrite <-(capxt y). rewrite <-(cupneg x).
rewrite capcup. rewrite E. lattice.
Qed.
Lemma neg_unique `{laws} `{BL ≪ l} (x y: X):
top ≦ y ⊔ x -> y ⊓ x ≦ bot -> y ≡ !x.
Proof.
intros Ht Hb. apply antisym.
now apply neg_unique'.
revert Ht. dual @neg_unique'.
Qed.
#[export] Instance neg_leq `{laws} `{BL ≪ l}: Proper (leq --> leq) neg.
Proof.
intros x y E. apply neg_unique'.
rewrite <-E, capC. now rewrite capneg.
Qed.
#[export] Instance neg_weq `{laws} `{BL ≪ l}: Proper (weq ==> weq) neg.
Proof. intros x y. rewrite 2weq_spec. intro E; split; apply neg_leq, E. Qed.
Lemma negneg `{laws} `{BL ≪ l} (x: X): !!x ≡ x.
Proof. symmetry. apply neg_unique. now rewrite cupneg. now rewrite capneg. Qed.
Lemma negbot `{laws} `{BL ≪ l}: !bot ≡ top.
Proof. symmetry. apply neg_unique; lattice. Qed.
Lemma negtop `{laws} `{BL ≪ l}: !top ≡ bot.
Proof. dual @negbot. Qed.
Lemma negcap' `{laws} `{BL ≪ l} (x y: X): !x ⊔ !y ≦ !(x ⊓ y).
Proof. apply leq_cupx; apply neg_leq; lattice. Qed.
Lemma negcup `{laws} `{BL ≪ l} (x y: X): !(x ⊔ y) ≡ !x ⊓ !y.
Proof.
apply antisym. dual @negcap'.
rewrite <- (negneg x) at 2.
rewrite <- (negneg y) at 2.
now rewrite negcap', negneg.
Qed.
Lemma negcap `{laws} `{BL ≪ l} (x y: X): !(x ⊓ y) ≡ !x ⊔ !y.
Proof. dual @negcup. Qed.
(** switching negations *)
Lemma neg_leq_iff `{laws} `{BL ≪ l} (x y: X): !x ≦ !y <-> y ≦ x.
Proof. split. intro E. apply neg_leq in E. now rewrite 2negneg in E. apply neg_leq. Qed.
Lemma neg_leq_iff' `{laws} `{BL ≪ l} (x y: X): x ≦ !y <-> y ≦ !x.
Proof. now rewrite <- neg_leq_iff, negneg. Qed.
Lemma neg_leq_iff'' `{laws} `{BL ≪ l} (x y: X): !x ≦ y <-> !y ≦ x.
Proof. now rewrite <- neg_leq_iff, negneg. Qed.
Lemma neg_weq_iff `{laws} `{BL ≪ l} (x y: X): !x ≡ !y <-> y ≡ x.
Proof. now rewrite 2weq_spec, 2neg_leq_iff. Qed.
Lemma neg_weq_iff' `{laws} `{BL ≪ l} (x y: X): x ≡ !y <-> !x ≡ y.
Proof. now rewrite <-neg_weq_iff, negneg. Qed.
Lemma neg_weq_iff'' `{laws} `{BL ≪ l} (x y: X): !x ≡ y <-> x ≡ !y.
Proof. now rewrite <-neg_weq_iff, negneg. Qed.
Ltac neg_switch := first [
rewrite neg_leq_iff |
rewrite neg_leq_iff' |
rewrite neg_leq_iff'' |
rewrite <-neg_leq_iff |
rewrite neg_weq_iff |
rewrite neg_weq_iff' |
rewrite neg_weq_iff'' |
rewrite <-neg_weq_iff ].
Lemma leq_cap_neg `{laws} `{BL ≪ l} (x y: X): y ≦ x <-> y ⊓ !x ≦ bot.
Proof.
split. intro E. now rewrite E, capneg.
intro E. now rewrite (neg_unique' _ _ E), negneg.
Qed.
Lemma leq_cap_neg' `{laws} `{BL ≪ l} (x y: X): y ⊓ x ≦ bot <-> y ≦ !x.
Proof. rewrite <-(negneg x) at 1. symmetry. apply leq_cap_neg. Qed.
Lemma leq_cup_neg `{laws} `{BL ≪ l} (x y: X): x ≦ y <-> top ≦ y ⊔ !x.
Proof. dual @leq_cap_neg. Qed.
Lemma leq_cup_neg' `{laws} `{BL ≪ l} (x y: X): top ≦ y ⊔ x -> !x ≦ y.
Proof. dual @leq_cap_neg'. Qed.
(** * Morphisms *)
(** an [l]-morphism betwen to sets of operations are defined as
expected: the function is requried to preserve only the operations
listed in [l] *)
Class morphism l {X Y: ops} (f: X -> Y) := {
fn_leq: Proper (leq ==> leq) f;
fn_weq: Proper (weq ==> weq) f;
fn_cup {Hl:CUP ≪ l}: forall x y, f (x ⊔ y) ≡ f x ⊔ f y;
fn_cap {Hl:CAP ≪ l}: forall x y, f (x ⊓ y) ≡ f x ⊓ f y;
fn_bot {Hl:BOT ≪ l}: f bot ≡ bot;
fn_top {Hl:TOP ≪ l}: f top ≡ top;
fn_neg {Hl:NEG ≪ l}: forall x, f (!x) ≡ !(f x)
}.
(** generating a structure by injective embedding *)
Lemma laws_of_injective_morphism {h l X Y} {L: laws h Y} {Hl: l ≪ h} f:
@morphism l X Y f ->
(forall x y, f x ≦ f y -> x ≦ y) ->
(forall x y, f x ≡ f y -> x ≡ y) ->
laws l X.
Proof.
intros Hf Hleq Hweq. apply (@lower_lattice_laws _ _ _ L) in Hl. clear L.
assert (Hleq_iff: forall x y, f x ≦ f y <-> x ≦ y).
split. apply Hleq. apply fn_leq.
assert (Hweq_iff: forall x y, f x ≡ f y <-> x ≡ y).
split. apply Hweq. apply fn_weq.
constructor. constructor.
intro. apply Hleq. reflexivity.
intros x y z. rewrite <-3Hleq_iff. apply Hl.
intros. now rewrite <-Hweq_iff, weq_spec, 2Hleq_iff.
intros. rewrite <-3Hleq_iff, fn_cup. apply cup_spec.
intros. rewrite <-3Hleq_iff, fn_cap. apply cap_spec.
right. intros. apply Hleq. rewrite fn_bot. apply leq_bx.
right. intros. apply Hleq. rewrite fn_top. apply leq_xt.
intros. apply Hleq. rewrite fn_cup, fn_cap, 2fn_cup, fn_cap. apply cupcap_.
intros. rewrite <-Hweq_iff. rewrite fn_cap, fn_neg, fn_bot. apply capneg.
intros. rewrite <-Hweq_iff. rewrite fn_cup, fn_neg, fn_top. apply cupneg.
Qed.
(** * Pointwise extension of a structure *)
Definition pw0 {Y X} (f: X) (y: Y) := f.
Definition pw1 {Y X} (f: X -> X) (u: Y -> X) (y: Y) := f (u y).
Definition pw2 {Y X} (f: X -> X -> X) (u v: Y -> X) (y: Y) := f (u y) (v y).
Arguments pw0 {Y X} _ _ /.
Arguments pw1 {Y X} _ _ _ /.
Arguments pw2 {Y X} _ _ _ _ /.
Universe pw.
(** As explained above, we use canonical structures for operations inference *)
Canonical Structure pw_ops (X: ops) (Y : Type@{pw}) : ops := {|
car := Y -> X;
leq := pwr leq;
weq := pwr weq;
cup := pw2 cup;
cap := pw2 cap;
neg := pw1 neg;
bot := pw0 bot;
top := pw0 top
|}.
(** In contrast, we use typeclass resolution for laws inference.
Note the level polymorphism in the instance below: laws of level [l]
on [X] yield laws of the same level [l] on [Y -> X]. *)
#[export] Instance pw_laws `{laws} (Y : Type@{pw}) : laws l (pw_ops X Y).
Proof.
constructor; simpl; intros. constructor.
intros f x. reflexivity.
intros f g h ? ? x. now transitivity (g x).
setoid_rewrite weq_spec. firstorder.
setoid_rewrite cup_spec. firstorder.
setoid_rewrite cap_spec. firstorder.
right; intros; apply leq_bx.
right; intros; apply leq_xt.
apply cupcap_.
apply capneg.
apply cupneg.
Qed.
(** trick to factorise code in various tactics: make the choice
between [leq] or [weq] first-class *)
Definition leq_or_weq (b: bool) := if b then @leq else @weq.
Arguments leq_or_weq _ {_} (_ _)%ra.
Notation "x <=[ b ]= y" := (leq_or_weq b x y) (at level 79): ra_scope.
Lemma leq_or_weq_weq `{laws} b: Proper (weq ==> weq ==> iff) (leq_or_weq b).
Proof. unfold leq_or_weq; case b; eauto with typeclass_instances. Qed.
|