File: base.v

package info (click to toggle)
coq-stdpp 1.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,696 kB
  • sloc: makefile: 52; sh: 35; sed: 1
file content (1629 lines) | stat: -rw-r--r-- 77,673 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, sets, and various other data
structures. *)

(* We want to ensure that [le] and [lt] refer to operations on [nat].
These two functions being defined both in [Coq.Bool] and in [Coq.Peano],
we must export [Coq.Peano] later than any export of [Coq.Bool]. *)
(* We also want to ensure that notations from [Coq.Utf8] take precedence
over the ones of [Coq.Peano] (see Coq PR#12950), so we import [Utf8] last. *)
From Coq Require Export Morphisms RelationClasses List Bool Setoid Peano Utf8.
From Coq Require Import Permutation.
Export ListNotations.
From Coq.Program Require Export Basics Syntax.

(* notations _.1 and _.2 below, TODO: remove when requiring Coq > 8.19 *)
From Coq.ssr Require Import (notations) ssrfun.

From stdpp Require Import options.

(** This notation is necessary to prevent [length] from being printed
as [strings.length] if strings.v is imported and later base.v. See
also strings.v and
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/144 and
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/129. *)
Notation length := Datatypes.length.

(** * Enable implicit generalization. *)
(** This option enables implicit generalization in arguments of the form
   [`{...}] (i.e., anonymous arguments).  Unfortunately, it also enables
   implicit generalization in [Instance].  We think that the fact that both
   behaviors are coupled together is a [bug in
   Coq](https://github.com/coq/coq/issues/6030). *)
Global Generalizable All Variables.

(** * Tweak program *)
(** 1. Since we only use Program to solve logical side-conditions, they should
always be made Opaque, otherwise we end up with performance problems due to
Coq blindly unfolding them.

Note that in most cases we use [Next Obligation. (* ... *) Qed.], for which
this option does not matter. However, sometimes we write things like
[Solve Obligations with naive_solver (* ... *)], and then the obligations
should surely be opaque. *)
Global Unset Transparent Obligations.

(** 2. Do not let Program automatically simplify obligations. The default
obligation tactic is [Tactics.program_simpl], which, among other things,
introduces all variables and gives them fresh names. As such, it becomes
impossible to refer to hypotheses in a robust way. *)
Global Obligation Tactic := idtac.

(** 3. Hide obligations and unsealing lemmas from the results of the [Search]
commands. *)
Add Search Blacklist "_obligation_".
Add Search Blacklist "_unseal".

(** * Sealing off definitions *)
#[projections(primitive=yes)]
Record seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }.
Global Arguments unseal {_ _} _ : assert.
Global Arguments seal_eq {_ _} _ : assert.

(** * Solving type class instances *)
(** The tactic [tc_solve] is used to solve type class goals by invoking type
class search. It is similar to [apply _], but it is more robust since it does
not affect unrelated goals/evars due to https://github.com/coq/coq/issues/6583.

The tactic [tc_solve] is particularly useful when building custom tactics that
need tight control over when type class search is invoked. In Iris, many of the
proof mode tactics make use of [notypeclasses refine] and use [tc_solve] to
manually invoke type class search.

Note that [typeclasses eauto] is multi-success. That means, whenever subsequent
tactics fail, it will backtrack to [typeclasses eauto] to try the next type
class instance. This is almost always undesired and can lead to poor performance
and horrible error messages. Hence, we wrap it in a [once]. *)
Ltac tc_solve :=
  solve [once (typeclasses eauto)].

(** * Non-backtracking type classes *)
(** The type class [TCNoBackTrack P] can be used to establish [P] without ever
backtracking on the instance of [P] that has been found. Backtracking may
normally happen when [P] contains evars that could be instanciated in different
ways depending on which instance is picked, and type class search somewhere else
depends on this evar.

The proper way of handling this would be by setting Coq's option
`Typeclasses Unique Instances`. However, this option seems to be broken, see Coq
issue #6714.

See https://gitlab.mpi-sws.org/FP/iris-coq/merge_requests/112 for a rationale
of this type class. *)
Class TCNoBackTrack (P : Prop) := TCNoBackTrack_intro { tc_no_backtrack : P }.
Global Hint Extern 0 (TCNoBackTrack _) =>
  notypeclasses refine (TCNoBackTrack_intro _ _); tc_solve : typeclass_instances.

(* A conditional at the type class level. Note that [TCIf P Q R] is not the same
as [TCOr (TCAnd P Q) R]: the latter will backtrack to [R] if it fails to
establish [Q], i.e. does not have the behavior of a conditional. Furthermore,
note that [TCOr (TCAnd P Q) (TCAnd (TCNot P) R)] would not work; we generally
would not be able to prove the negation of [P]. *)
Inductive TCIf (P Q R : Prop) : Prop :=
  | TCIf_true : P → Q → TCIf P Q R
  | TCIf_false : R → TCIf P Q R.
Existing Class TCIf.

Global Hint Extern 0 (TCIf _ _ _) =>
  first [notypeclasses refine (TCIf_true _ _ _ _ _); [tc_solve|]
        |notypeclasses refine (TCIf_false _ _ _ _)] : typeclass_instances.

(** * Typeclass opaque definitions *)
(** The constant [tc_opaque] is used to make definitions opaque for just type
class search. Note that [simpl] is set up to always unfold [tc_opaque]. *)
Definition tc_opaque {A} (x : A) : A := x.
Global Typeclasses Opaque tc_opaque.
Global Arguments tc_opaque {_} _ /.

(** Below we define type class versions of the common logical operators. It is
important to note that we duplicate the definitions, and do not declare the
existing logical operators as type classes. That is, we do not say:

  Existing Class or.
  Existing Class and.

If we could define the existing logical operators as classes, there is no way
of disambiguating whether a premise of a lemma should be solved by type class
resolution or not.

These classes are useful for two purposes: writing complicated type class
premises in a more concise way, and for efficiency. For example, using the [Or]
class, instead of defining two instances [P → Q1 → R] and [P → Q2 → R] we could
have one instance [P → Or Q1 Q2 → R]. When we declare the instance that way, we
avoid the need to derive [P] twice. *)
Inductive TCOr (P1 P2 : Prop) : Prop :=
  | TCOr_l : P1 → TCOr P1 P2
  | TCOr_r : P2 → TCOr P1 P2.
Existing Class TCOr.
Global Existing Instance TCOr_l | 9.
Global Existing Instance TCOr_r | 10.
Global Hint Mode TCOr ! ! : typeclass_instances.

Inductive TCAnd (P1 P2 : Prop) : Prop := TCAnd_intro : P1 → P2 → TCAnd P1 P2.
Existing Class TCAnd.
Global Existing Instance TCAnd_intro.
Global Hint Mode TCAnd ! ! : typeclass_instances.

Inductive TCTrue : Prop := TCTrue_intro : TCTrue.
Existing Class TCTrue.
Global Existing Instance TCTrue_intro.

(** The class [TCFalse] is not stricly necessary as one could also use
[False]. However, users might expect that TCFalse exists and if it
does not, it can cause hard to diagnose bugs due to automatic
generalization. *)
Inductive TCFalse : Prop :=.
Existing Class TCFalse.

(** The class [TCUnless] can be used to check that search for [P]
fails. This is useful as a guard for certain instances together with
classes like [TCFastDone] (see [tactics.v]) to prevent infinite loops
(e.g. when saturating the context). *)
Notation TCUnless P := (TCIf P TCFalse TCTrue).

Inductive TCForall {A} (P : A → Prop) : list A → Prop :=
  | TCForall_nil : TCForall P []
  | TCForall_cons x xs : P x → TCForall P xs → TCForall P (x :: xs).
Existing Class TCForall.
Global Existing Instance TCForall_nil.
Global Existing Instance TCForall_cons.
Global Hint Mode TCForall ! ! ! : typeclass_instances.

(** The class [TCForall2 P l k] is commonly used to transform an input list [l]
into an output list [k], or the converse. Therefore there are two modes, either
[l] input and [k] output, or [k] input and [l] input. *)
Inductive TCForall2 {A B} (P : A → B → Prop) : list A → list B → Prop :=
  | TCForall2_nil : TCForall2 P [] []
  | TCForall2_cons x y xs ys :
     P x y → TCForall2 P xs ys → TCForall2 P (x :: xs) (y :: ys).
Existing Class TCForall2.
Global Existing Instance TCForall2_nil.
Global Existing Instance TCForall2_cons.
Global Hint Mode TCForall2 ! ! ! ! - : typeclass_instances.
Global Hint Mode TCForall2 ! ! ! - ! : typeclass_instances.

Inductive TCExists {A} (P : A → Prop) : list A → Prop :=
  | TCExists_cons_hd x l : P x → TCExists P (x :: l)
  | TCExists_cons_tl x l: TCExists P l → TCExists P (x :: l).
Existing Class TCExists.
Global Existing Instance TCExists_cons_hd | 10.
Global Existing Instance TCExists_cons_tl | 20.
Global Hint Mode TCExists ! ! ! : typeclass_instances.

Inductive TCElemOf {A} (x : A) : list A → Prop :=
  | TCElemOf_here xs : TCElemOf x (x :: xs)
  | TCElemOf_further y xs : TCElemOf x xs → TCElemOf x (y :: xs).
Existing Class TCElemOf.
Global Existing Instance TCElemOf_here.
Global Existing Instance TCElemOf_further.
Global Hint Mode TCElemOf ! ! ! : typeclass_instances.

(** The intended use of [TCEq x y] is to use [x] as input and [y] as output, but
this is not enforced. We use output mode [-] (instead of [!]) for [x] to ensure
that type class search succeed on goals like [TCEq (if ? then e1 else e2) ?y],
see https://gitlab.mpi-sws.org/iris/iris/merge_requests/391 for a use case.
Mode [-] is harmless, the only instance of [TCEq] is [TCEq_refl] below, so we
cannot create loops. *)
Inductive TCEq {A} (x : A) : A → Prop := TCEq_refl : TCEq x x.
Existing Class TCEq.
Global Existing Instance TCEq_refl.
Global Hint Mode TCEq ! - - : typeclass_instances.

Lemma TCEq_eq {A} (x1 x2 : A) : TCEq x1 x2 ↔ x1 = x2.
Proof. split; destruct 1; reflexivity. Qed.

(** The [TCSimpl x y] type class is similar to [TCEq] but performs [simpl]
before proving the goal by reflexivity. Similar to [TCEq], the argument [x]
is the input and [y] the output. When solving [TCEq x y], the argument [x]
should be a concrete term and [y] an evar for the [simpl]ed result. *)
Class TCSimpl {A} (x x' : A) := TCSimpl_TCEq : TCEq x x'.
Global Hint Extern 0 (TCSimpl _ _) =>
  (* Since the second argument should be an evar, we can call [simpl] on the
  whole goal. *)
  simpl; notypeclasses refine (TCEq_refl _) : typeclass_instances.
Global Hint Mode TCSimpl ! - - : typeclass_instances.

Lemma TCSimpl_eq {A} (x1 x2 : A) : TCSimpl x1 x2 ↔ x1 = x2.
Proof. apply TCEq_eq. Qed.

Inductive TCDiag {A} (C : A → Prop) : A → A → Prop :=
  | TCDiag_diag x : C x → TCDiag C x x.
Existing Class TCDiag.
Global Existing Instance TCDiag_diag.
Global Hint Mode TCDiag ! ! ! - : typeclass_instances.
Global Hint Mode TCDiag ! ! - ! : typeclass_instances.

(** Given a proposition [P] that is a type class, [tc_to_bool P] will return
[true] iff there is an instance of [P]. It is often useful in Ltac programming,
where one can do [lazymatch tc_to_bool P with true => .. | false => .. end]. *)
Definition tc_to_bool (P : Prop)
  {p : bool} `{TCIf P (TCEq p true) (TCEq p false)} : bool := p.

(** Throughout this development we use [stdpp_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Declare Scope stdpp_scope.
Delimit Scope stdpp_scope with stdpp.
Global Open Scope stdpp_scope.

(** Change [True] and [False] into notations in order to enable overloading.
We will use this to give [True] and [False] a different interpretation for
embedded logics. *)
Notation "'True'" := True (format "True") : type_scope.
Notation "'False'" := False (format "False") : type_scope.

(** Change [forall] into a notation in order to enable overloading. *)
Notation "'forall' x .. y , P" := (forall x, .. (forall y, P) ..)
  (at level 200, x binder, y binder, right associativity,
   only parsing) : type_scope.


(** * Equality *)
(** Introduce some Haskell style like notations. *)
Notation "(=)" := eq (only parsing) : stdpp_scope.
Notation "( x =.)" := (eq x) (only parsing) : stdpp_scope.
Notation "(.= x )" := (λ y, eq y x) (only parsing) : stdpp_scope.
Notation "(≠)" := (λ x y, x ≠ y) (only parsing) : stdpp_scope.
Notation "( x ≠.)" := (λ y, x ≠ y) (only parsing) : stdpp_scope.
Notation "(.≠ x )" := (λ y, y ≠ x) (only parsing) : stdpp_scope.

Infix "=@{ A }" := (@eq A)
  (at level 70, only parsing, no associativity) : stdpp_scope.
Notation "(=@{ A } )" := (@eq A) (only parsing) : stdpp_scope.
Notation "(≠@{ A } )" := (λ X Y, ¬X =@{A} Y) (only parsing) : stdpp_scope.
Notation "X ≠@{ A } Y":= (¬X =@{ A } Y)
  (at level 70, only parsing, no associativity) : stdpp_scope.

Global Hint Extern 0 (_ = _) => reflexivity : core.
Global Hint Extern 100 (_ ≠ _) => discriminate : core.

Global Instance: ∀ A, PreOrder (=@{A}).
Proof. split; repeat intro; congruence. Qed.

(** ** Setoid equality *)
(** We define an operational type class for setoid equality, i.e., the
"canonical" equivalence for a type. The typeclass is tied to the \equiv
symbol. This is based on (Spitters/van der Weegen, 2011). *)
Class Equiv A := equiv: relation A.
Global Hint Mode Equiv ! : typeclass_instances.

(** We instruct setoid rewriting to infer [equiv] as a relation on
type [A] when needed. This allows setoid_rewrite to solve constraints
of shape [Proper (eq ==> ?R) f] using [Proper (eq ==> (equiv (A:=A))) f]
when an equivalence relation is available on type [A]. We put this instance
at level 150 so it does not take precedence over Coq's stdlib instances,
favoring inference of [eq] (all Coq functions are automatically morphisms
for [eq]). We have [eq] (at 100) < [≡] (at 150) < [⊑] (at 200). *)
Global Instance equiv_rewrite_relation `{Equiv A} :
  RewriteRelation (@equiv A _) | 150 := {}.

Infix "≡" := equiv (at level 70, no associativity) : stdpp_scope.
Infix "≡@{ A }" := (@equiv A _)
  (at level 70, only parsing, no associativity) : stdpp_scope.

Notation "(≡)" := equiv (only parsing) : stdpp_scope.
Notation "( X ≡.)" := (equiv X) (only parsing) : stdpp_scope.
Notation "(.≡ X )" := (λ Y, Y ≡ X) (only parsing) : stdpp_scope.
Notation "(≢)" := (λ X Y, ¬X ≡ Y) (only parsing) : stdpp_scope.
Notation "X ≢ Y":= (¬X ≡ Y) (at level 70, no associativity) : stdpp_scope.
Notation "( X ≢.)" := (λ Y, X ≢ Y) (only parsing) : stdpp_scope.
Notation "(.≢ X )" := (λ Y, Y ≢ X) (only parsing) : stdpp_scope.

Notation "(≡@{ A } )" := (@equiv A _) (only parsing) : stdpp_scope.
Notation "(≢@{ A } )" := (λ X Y, ¬X ≡@{A} Y) (only parsing) : stdpp_scope.
Notation "X ≢@{ A } Y":= (¬X ≡@{ A } Y)
  (at level 70, only parsing, no associativity) : stdpp_scope.

(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse.

Various std++ tactics assume that this class is only instantiated if [≡]
is an equivalence relation. *)
Class LeibnizEquiv A `{Equiv A} :=
  leibniz_equiv (x y : A) : x ≡ y → x = y.
Global Hint Mode LeibnizEquiv ! ! : typeclass_instances.

Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (≡@{A})} (x y : A) :
  x ≡ y ↔ x = y.
Proof. split; [apply leibniz_equiv|]. intros ->; reflexivity. Qed.

Ltac fold_leibniz := repeat
  match goal with
  | H : context [ _ ≡@{?A} _ ] |- _ =>
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
  | |- context [ _ ≡@{?A} _ ] =>
    setoid_rewrite (leibniz_equiv_iff (A:=A))
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ _ =@{?A} _ ] |- _ =>
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
  | |- context [ _ =@{?A} _ ] =>
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
  end.

Definition equivL {A} : Equiv A := (=).

(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Global Instance: Params (@equiv) 2 := {}.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Global Instance equiv_default_relation `{Equiv A} :
  DefaultRelation (≡@{A}) | 3 := {}.
Global Hint Extern 0 (_ ≡ _) => reflexivity : core.
Global Hint Extern 0 (_ ≡ _) => symmetry; assumption : core.


(** * Type classes *)
(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. *)
Class Decision (P : Prop) := decide : {P} + {¬P}.
Global Hint Mode Decision ! : typeclass_instances.
Global Arguments decide _ {_} : simpl never, assert.

(** Although [RelDecision R] is just [∀ x y, Decision (R x y)], we make this
an explicit class instead of a notation for two reasons:

- It allows us to control [Hint Mode] more precisely. In particular, if it were
  defined as a notation, the above [Hint Mode] for [Decision] would not prevent
  diverging instance search when looking for [RelDecision (@eq ?A)], which would
  result in it looking for [Decision (@eq ?A x y)], i.e. an instance where the
  head position of [Decision] is not en evar.
- We use it to avoid inefficient computation due to eager evaluation of
  propositions by [vm_compute]. This inefficiency arises for example if
  [(x = y) := (f x = f y)]. Since [decide (x = y)] evaluates to
  [decide (f x = f y)], this would then lead to evaluation of [f x] and [f y].
  Using the [RelDecision], the [f] is hidden under a lambda, which prevents
  unnecessary evaluation. *)
Class RelDecision {A B} (R : A → B → Prop) :=
  decide_rel x y :: Decision (R x y).
Global Hint Mode RelDecision ! ! ! : typeclass_instances.
Global Arguments decide_rel {_ _} _ {_} _ _ : simpl never, assert.
Notation EqDecision A := (RelDecision (=@{A})).

(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
Global Hint Mode Inhabited ! : typeclass_instances.
Global Arguments populate {_} _ : assert.

(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.
Global Hint Mode ProofIrrel ! : typeclass_instances.

(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++.)] it
allows us to write [inj (k ++.)] instead of [app_inv_head k]. *)
Class Inj {A B} (R : relation A) (S : relation B) (f : A → B) : Prop :=
  inj x y : S (f x) (f y) → R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
    (S : relation C) (f : A → B → C) : Prop :=
  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2) → R1 x1 y1 ∧ R2 x2 y2.
Class Cancel {A B} (S : relation B) (f : A → B) (g : B → A) : Prop :=
  cancel x : S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A → B) :=
  surj y : ∃ x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A → A → A) : Prop :=
  idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B → B → A) : Prop :=
  comm x y : R (f x y) (f y x).
Class LeftId {A} (R : relation A) (i : A) (f : A → A → A) : Prop :=
  left_id x : R (f i x) x.
Class RightId {A} (R : relation A) (i : A) (f : A → A → A) : Prop :=
  right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A → A → A) : Prop :=
  assoc x y z : R (f x (f y z)) (f (f x y) z).
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A → A → A) : Prop :=
  left_absorb x : R (f i x) i.
Class RightAbsorb {A} (R : relation A) (i : A) (f : A → A → A) : Prop :=
  right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
  anti_symm x y : S x y → S y x → R x y.
Class Total {A} (R : relation A) := total x y : R x y ∨ R y x.
Class Trichotomy {A} (R : relation A) :=
  trichotomy x y : R x y ∨ x = y ∨ R y x.
Class TrichotomyT {A} (R : relation A) :=
  trichotomyT x y : {R x y} + {x = y} + {R y x}.

Notation Involutive R f := (Cancel R f f).
Lemma involutive {A} {R : relation A} (f : A → A) `{Involutive R f} x :
  R (f (f x)) x.
Proof. auto. Qed.

Global Arguments irreflexivity {_} _ {_} _ _ : assert.
Global Arguments inj {_ _ _ _} _ {_} _ _ _ : assert.
Global Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _: assert.
Global Arguments cancel {_ _ _} _ _ {_} _ : assert.
Global Arguments surj {_ _ _} _ {_} _ : assert.
Global Arguments idemp {_ _} _ {_} _ : assert.
Global Arguments comm {_ _ _} _ {_} _ _ : assert.
Global Arguments left_id {_ _} _ _ {_} _ : assert.
Global Arguments right_id {_ _} _ _ {_} _ : assert.
Global Arguments assoc {_ _} _ {_} _ _ _ : assert.
Global Arguments left_absorb {_ _} _ _ {_} _ : assert.
Global Arguments right_absorb {_ _} _ _ {_} _ : assert.
Global Arguments anti_symm {_ _} _ {_} _ _ _ _ : assert.
Global Arguments total {_} _ {_} _ _ : assert.
Global Arguments trichotomy {_} _ {_} _ _ : assert.
Global Arguments trichotomyT {_} _ {_} _ _ : assert.

Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y → ¬R y x.
Proof. intuition. Qed.
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y ↔ R y x.
Proof. intuition. Qed.

Lemma not_inj `{Inj A B R R' f} x y : ¬R x y → ¬R' (f x) (f y).
Proof. intuition. Qed.
Lemma not_inj2_1 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R x1 x2 → ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.
Lemma not_inj2_2 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R' y1 y2 → ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR' HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.

Lemma inj_iff {A B} {R : relation A} {S : relation B} (f : A → B)
  `{!Inj R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y) ↔ R x y.
Proof. firstorder. Qed.
Global Instance inj2_inj_1 `{Inj2 A B C R1 R2 R3 f} y : Inj R1 R3 (λ x, f x y).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
Global Instance inj2_inj_2 `{Inj2 A B C R1 R2 R3 f} x : Inj R2 R3 (f x).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.

Lemma cancel_inj `{Cancel A B R1 f g, !Equivalence R1, !Proper (R2 ==> R1) f} :
  Inj R1 R2 g.
Proof.
  intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity.
Qed.
Lemma cancel_surj `{Cancel A B R1 f g} : Surj R1 f.
Proof. intros y. exists (g y). auto. Qed.

(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idemp_L {A} f `{!@IdemP A (=) f} x : f x x = x.
Proof. auto. Qed.
Lemma comm_L {A B} f `{!@Comm A B (=) f} x y : f x y = f y x.
Proof. auto. Qed.
Lemma left_id_L {A} i f `{!@LeftId A (=) i f} x : f i x = x.
Proof. auto. Qed.
Lemma right_id_L {A} i f `{!@RightId A (=) i f} x : f x i = x.
Proof. auto. Qed.
Lemma assoc_L {A} f `{!@Assoc A (=) f} x y z : f x (f y z) = f (f x y) z.
Proof. auto. Qed.
Lemma left_absorb_L {A} i f `{!@LeftAbsorb A (=) i f} x : f i x = i.
Proof. auto. Qed.
Lemma right_absorb_L {A} i f `{!@RightAbsorb A (=) i f} x : f x i = i.
Proof. auto. Qed.

(** ** Generic orders *)
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y ∧ ¬R Y X.
Global Instance: Params (@strict) 2 := {}.

Class PartialOrder {A} (R : relation A) : Prop := {
  partial_order_pre :: PreOrder R;
  partial_order_anti_symm :: AntiSymm (=) R
}.
Global Hint Mode PartialOrder ! ! : typeclass_instances.

Class TotalOrder {A} (R : relation A) : Prop := {
  total_order_partial :: PartialOrder R;
  total_order_trichotomy :: Trichotomy (strict R)
}.
Global Hint Mode TotalOrder ! ! : typeclass_instances.

(** * Logic *)
Global Instance prop_inhabited : Inhabited Prop := populate True.

Notation "(∧)" := and (only parsing) : stdpp_scope.
Notation "( A ∧.)" := (and A) (only parsing) : stdpp_scope.
Notation "(.∧ B )" := (λ A, A ∧ B) (only parsing) : stdpp_scope.

Notation "(∨)" := or (only parsing) : stdpp_scope.
Notation "( A ∨.)" := (or A) (only parsing) : stdpp_scope.
Notation "(.∨ B )" := (λ A, A ∨ B) (only parsing) : stdpp_scope.

Notation "(↔)" := iff (only parsing) : stdpp_scope.
Notation "( A ↔.)" := (iff A) (only parsing) : stdpp_scope.
Notation "(.↔ B )" := (λ A, A ↔ B) (only parsing) : stdpp_scope.

Global Hint Extern 0 (_ ↔ _) => reflexivity : core.
Global Hint Extern 0 (_ ↔ _) => symmetry; assumption : core.

Lemma or_l P Q : ¬Q → P ∨ Q ↔ P.
Proof. tauto. Qed.
Lemma or_r P Q : ¬P → P ∨ Q ↔ Q.
Proof. tauto. Qed.
Lemma and_wlog_l (P Q : Prop) : (Q → P) → Q → (P ∧ Q).
Proof. tauto. Qed.
Lemma and_wlog_r (P Q : Prop) : P → (P → Q) → (P ∧ Q).
Proof. tauto. Qed.
Lemma impl_transitive (P Q R : Prop) : (P → Q) → (Q → R) → (P → R).
Proof. tauto. Qed.
Lemma forall_proper {A} (P Q : A → Prop) :
  (∀ x, P x ↔ Q x) → (∀ x, P x) ↔ (∀ x, Q x).
Proof. firstorder. Qed.
Lemma exist_proper {A} (P Q : A → Prop) :
  (∀ x, P x ↔ Q x) → (∃ x, P x) ↔ (∃ x, Q x).
Proof. firstorder. Qed.

Global Instance eq_comm {A} : Comm (↔) (=@{A}).
Proof. red; intuition. Qed.
Global Instance flip_eq_comm {A} : Comm (↔) (λ x y, y =@{A} x).
Proof. red; intuition. Qed.
Global Instance iff_comm : Comm (↔) (↔).
Proof. red; intuition. Qed.
Global Instance and_comm : Comm (↔) (∧).
Proof. red; intuition. Qed.
Global Instance and_assoc : Assoc (↔) (∧).
Proof. red; intuition. Qed.
Global Instance and_idemp : IdemP (↔) (∧).
Proof. red; intuition. Qed.
Global Instance or_comm : Comm (↔) (∨).
Proof. red; intuition. Qed.
Global Instance or_assoc : Assoc (↔) (∨).
Proof. red; intuition. Qed.
Global Instance or_idemp : IdemP (↔) (∨).
Proof. red; intuition. Qed.
Global Instance True_and : LeftId (↔) True (∧).
Proof. red; intuition. Qed.
Global Instance and_True : RightId (↔) True (∧).
Proof. red; intuition. Qed.
Global Instance False_and : LeftAbsorb (↔) False (∧).
Proof. red; intuition. Qed.
Global Instance and_False : RightAbsorb (↔) False (∧).
Proof. red; intuition. Qed.
Global Instance False_or : LeftId (↔) False (∨).
Proof. red; intuition. Qed.
Global Instance or_False : RightId (↔) False (∨).
Proof. red; intuition. Qed.
Global Instance True_or : LeftAbsorb (↔) True (∨).
Proof. red; intuition. Qed.
Global Instance or_True : RightAbsorb (↔) True (∨).
Proof. red; intuition. Qed.
Global Instance True_impl : LeftId (↔) True impl.
Proof. unfold impl. red; intuition. Qed.
Global Instance impl_True : RightAbsorb (↔) True impl.
Proof. unfold impl. red; intuition. Qed.


(** * Common data types *)
(** ** Functions *)
Notation "(→)" := (λ A B, A → B) (only parsing) : stdpp_scope.
Notation "( A →.)" := (λ B, A → B) (only parsing) : stdpp_scope.
Notation "(.→ B )" := (λ A, A → B) (only parsing) : stdpp_scope.

Notation "t $ r" := (t r)
  (at level 65, right associativity, only parsing) : stdpp_scope.
Notation "($)" := (λ f x, f x) (only parsing) : stdpp_scope.
Notation "(.$ x )" := (λ f, f x) (only parsing) : stdpp_scope.

Infix "∘" := compose : stdpp_scope.
Notation "(∘)" := compose (only parsing) : stdpp_scope.
Notation "( f ∘.)" := (compose f) (only parsing) : stdpp_scope.
Notation "(.∘ f )" := (λ g, compose g f) (only parsing) : stdpp_scope.

Global Instance impl_inhabited {A} `{Inhabited B} : Inhabited (A → B) :=
  populate (λ _, inhabitant).

(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
Global Arguments id _ _ / : assert.
Global Arguments compose _ _ _ _ _ _ / : assert.
Global Arguments flip _ _ _ _ _ _ / : assert.
Global Arguments const _ _ _ _ / : assert.
Global Typeclasses Transparent id compose flip const.

Definition fun_map {A A' B B'} (f: A' → A) (g: B → B') (h : A → B) : A' → B' :=
  g ∘ h ∘ f.

Global Instance const_proper `{R1 : relation A, R2 : relation B} (x : B) :
  Reflexive R2 → Proper (R1 ==> R2) (λ _, x).
Proof. intros ? y1 y2; reflexivity. Qed.

Global Instance id_inj {A} : Inj (=) (=) (@id A).
Proof. intros ??; auto. Qed.
Global Instance compose_inj {A B C} R1 R2 R3 (f : A → B) (g : B → C) :
  Inj R1 R2 f → Inj R2 R3 g → Inj R1 R3 (g ∘ f).
Proof. red; intuition. Qed.

Global Instance id_surj {A} : Surj (=) (@id A).
Proof. intros y; exists y; reflexivity. Qed.
Global Instance compose_surj {A B C} R (f : A → B) (g : B → C) :
  Surj (=) f → Surj R g → Surj R (g ∘ f).
Proof.
  intros ?? x. unfold compose. destruct (surj g x) as [y ?].
  destruct (surj f y) as [z ?]. exists z. congruence.
Qed.

Global Instance const2_comm {A B} (x : B) : Comm (=) (λ _ _ : A, x).
Proof. intros ?; reflexivity. Qed.
Global Instance const2_assoc {A} (x : A) : Assoc (=) (λ _ _ : A, x).
Proof. intros ???; reflexivity. Qed.
Global Instance id1_assoc {A} : Assoc (=) (λ x _ : A, x).
Proof. intros ???; reflexivity. Qed.
Global Instance id2_assoc {A} : Assoc (=) (λ _ x : A, x).
Proof. intros ???; reflexivity. Qed.
Global Instance id1_idemp {A} : IdemP (=) (λ x _ : A, x).
Proof. intros ?; reflexivity. Qed.
Global Instance id2_idemp {A} : IdemP (=) (λ _ x : A, x).
Proof. intros ?; reflexivity. Qed.

(** ** Lists *)
Global Instance list_inhabited {A} : Inhabited (list A) := populate [].

Definition zip_with {A B C} (f : A → B → C) : list A → list B → list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).

(** ** Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
Global Hint Unfold Is_true : core.
Global Hint Immediate Is_true_eq_left : core.
Global Hint Resolve orb_prop_intro andb_prop_intro : core.
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).

Global Instance bool_inhabated : Inhabited bool := populate true.

Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Global Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.

Lemma andb_True b1 b2 : b1 && b2 ↔ b1 ∧ b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2 ↔ b1 ∨ b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b ↔ ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_true (b : bool) : b ↔ b = true.
Proof. now destruct b. Qed.
Lemma Is_true_true_1 (b : bool) : b → b = true.
Proof. apply Is_true_true. Qed.
Lemma Is_true_true_2 (b : bool) : b = true → b.
Proof. apply Is_true_true. Qed.
Lemma Is_true_false (b : bool) : ¬ b ↔ b = false.
Proof. now destruct b; simpl. Qed.
Lemma Is_true_false_1 (b : bool) : ¬b → b = false.
Proof. apply Is_true_false. Qed.
Lemma Is_true_false_2 (b : bool) : b = false → ¬b.
Proof. apply Is_true_false. Qed.

(** ** Unit *)
Global Instance unit_equiv : Equiv unit := λ _ _, True.
Global Instance unit_equivalence : Equivalence (≡@{unit}).
Proof. repeat split. Qed.
Global Instance unit_leibniz : LeibnizEquiv unit.
Proof. intros [] []; reflexivity. Qed.
Global Instance unit_inhabited: Inhabited unit := populate ().

(** ** Empty *)
Global Instance Empty_set_equiv : Equiv Empty_set := λ _ _, True.
Global Instance Empty_set_equivalence : Equivalence (≡@{Empty_set}).
Proof. repeat split. Qed.
Global Instance Empty_set_leibniz : LeibnizEquiv Empty_set.
Proof. intros [] []; reflexivity. Qed.

(** ** Products *)
Notation "( x ,.)" := (pair x) (only parsing) : stdpp_scope.
Notation "(., y )" := (λ x, (x,y)) (only parsing) : stdpp_scope.

Notation "p .1" := (fst p).
Notation "p .2" := (snd p).

Global Instance: Params (@pair) 2 := {}.
Global Instance: Params (@fst) 2 := {}.
Global Instance: Params (@snd) 2 := {}.

Global Instance: Params (@curry) 3 := {}.
Global Instance: Params (@uncurry) 3 := {}.

Definition uncurry3 {A B C D} (f : A → B → C → D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Global Instance: Params (@uncurry3) 4 := {}.
Definition uncurry4 {A B C D E} (f : A → B → C → D → E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.
Global Instance: Params (@uncurry4) 5 := {}.

Definition curry3 {A B C D} (f : A * B * C → D) (a : A) (b : B) (c : C) : D :=
  f (a, b, c).
Global Instance: Params (@curry3) 4 := {}.
Definition curry4 {A B C D E} (f : A * B * C * D → E)
  (a : A) (b : B) (c : C) (d : D) : E := f (a, b, c, d).
Global Instance: Params (@curry4) 5 := {}.

Definition prod_map {A A' B B'} (f: A → A') (g: B → B') (p : A * B) : A' * B' :=
  (f (p.1), g (p.2)).
Global Instance: Params (@prod_map) 4 := {}.
Global Arguments prod_map {_ _ _ _} _ _ !_ / : assert.

Definition prod_zip {A A' A'' B B' B''} (f : A → A' → A'') (g : B → B' → B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Global Instance: Params (@prod_zip) 6 := {}.
Global Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ / : assert.

Definition prod_swap {A B} (p : A * B) : B * A := (p.2, p.1).
Global Arguments prod_swap {_ _} !_ /.
Global Instance: Params (@prod_swap) 2 := {}.

Global Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with populate x, populate y => populate (x,y) end.

(** Note that we need eta for products for the [uncurry_curry] lemmas to hold
in non-applied form ([uncurry (curry f) = f]). *)
Lemma curry_uncurry {A B C} (f : A → B → C) : curry (uncurry f) = f.
Proof. reflexivity. Qed.
Lemma uncurry_curry {A B C} (f : A * B → C) p : uncurry (curry f) p = f p.
Proof. destruct p; reflexivity. Qed.
Lemma curry3_uncurry3 {A B C D} (f : A → B → C → D) : curry3 (uncurry3 f) = f.
Proof. reflexivity. Qed.
Lemma uncurry3_curry3 {A B C D} (f : A * B * C → D) p :
  uncurry3 (curry3 f) p = f p.
Proof. destruct p as [[??] ?]; reflexivity. Qed.
Lemma curry4_uncurry4 {A B C D E} (f : A → B → C → D → E) :
  curry4 (uncurry4 f) = f.
Proof. reflexivity. Qed.
Lemma uncurry4_curry4 {A B C D E} (f : A * B * C * D → E) p :
  uncurry4 (curry4 f) p = f p.
Proof. destruct p as [[[??] ?] ?]; reflexivity. Qed.

(** [pair_eq] as a name is more consistent with our usual naming. *)
Lemma pair_eq {A B} (a1 a2 : A) (b1 b2 : B) :
  (a1, b1) = (a2, b2) ↔ a1 = a2 ∧ b1 = b2.
Proof. apply pair_equal_spec. Qed.

Global Instance pair_inj {A B} : Inj2 (=) (=) (=) (@pair A B).
Proof. injection 1; auto. Qed.
Global Instance prod_map_inj {A A' B B'} (f : A → A') (g : B → B') :
  Inj (=) (=) f → Inj (=) (=) g → Inj (=) (=) (prod_map f g).
Proof.
  intros ?? [??] [??] ?; simpl in *; f_equal;
    [apply (inj f)|apply (inj g)]; congruence.
Qed.

Global Instance prod_swap_cancel {A B} :
  Cancel (=) (@prod_swap A B) (@prod_swap B A).
Proof. intros [??]; reflexivity. Qed.
Global Instance prod_swap_inj {A B} : Inj (=) (=) (@prod_swap A B).
Proof. apply cancel_inj. Qed.
Global Instance prod_swap_surj {A B} : Surj (=) (@prod_swap A B).
Proof. apply cancel_surj. Qed.

Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (x.1) (y.1) ∧ R2 (x.2) (y.2).

Section prod_relation.
  Context `{RA : relation A, RB : relation B}.

  Global Instance prod_relation_refl :
    Reflexive RA → Reflexive RB → Reflexive (prod_relation RA RB).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_sym :
    Symmetric RA → Symmetric RB → Symmetric (prod_relation RA RB).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_trans :
    Transitive RA → Transitive RB → Transitive (prod_relation RA RB).
  Proof. firstorder eauto. Qed.
  Global Instance prod_relation_equiv :
    Equivalence RA → Equivalence RB → Equivalence (prod_relation RA RB).
  Proof. split; apply _. Qed.

  Global Instance pair_proper' : Proper (RA ==> RB ==> prod_relation RA RB) pair.
  Proof. firstorder eauto. Qed.
  Global Instance pair_inj' : Inj2 RA RB (prod_relation RA RB) pair.
  Proof. inversion_clear 1; eauto. Qed.
  Global Instance fst_proper' : Proper (prod_relation RA RB ==> RA) fst.
  Proof. firstorder eauto. Qed.
  Global Instance snd_proper' : Proper (prod_relation RA RB ==> RB) snd.
  Proof. firstorder eauto. Qed.

  Global Instance prod_swap_proper' :
    Proper (prod_relation RA RB ==> prod_relation RB RA) prod_swap.
  Proof. firstorder eauto. Qed.

  Global Instance curry_proper' `{RC : relation C} :
    Proper ((prod_relation RA RB ==> RC) ==> RA ==> RB ==> RC) curry.
  Proof. firstorder eauto. Qed.
  Global Instance uncurry_proper' `{RC : relation C} :
    Proper ((RA ==> RB ==> RC) ==> prod_relation RA RB ==> RC) uncurry.
  Proof. intros f1 f2 Hf [x1 y1] [x2 y2] []; apply Hf; assumption. Qed.

  Global Instance curry3_proper' `{RC : relation C, RD : relation D} :
    Proper ((prod_relation (prod_relation RA RB) RC ==> RD) ==>
            RA ==> RB ==> RC ==> RD) curry3.
  Proof. firstorder eauto. Qed.
  Global Instance uncurry3_proper' `{RC : relation C, RD : relation D} :
    Proper ((RA ==> RB ==> RC ==> RD) ==>
            prod_relation (prod_relation RA RB) RC ==> RD) uncurry3.
  Proof. intros f1 f2 Hf [[??] ?] [[??] ?] [[??] ?]; apply Hf; assumption. Qed.

  Global Instance curry4_proper' `{RC : relation C, RD : relation D, RE : relation E} :
    Proper ((prod_relation (prod_relation (prod_relation RA RB) RC) RD ==> RE) ==>
            RA ==> RB ==> RC ==> RD ==> RE) curry4.
  Proof. firstorder eauto. Qed.
  Global Instance uncurry4_proper' `{RC : relation C, RD : relation D, RE : relation E} :
    Proper ((RA ==> RB ==> RC ==> RD ==> RE) ==>
            prod_relation (prod_relation (prod_relation RA RB) RC) RD ==> RE) uncurry4.
  Proof.
    intros f1 f2 Hf [[[??] ?] ?] [[[??] ?] ?] [[[??] ?] ?]; apply Hf; assumption.
  Qed.
End prod_relation.

Global Instance prod_equiv `{Equiv A,Equiv B} : Equiv (A * B) :=
  prod_relation (≡) (≡).

(** Below we make [prod_equiv] type class opaque, so we first lift all
instances *)
Section prod_setoid.
  Context `{Equiv A, Equiv B}.

  Global Instance prod_equivalence :
    Equivalence (≡@{A}) → Equivalence (≡@{B}) → Equivalence (≡@{A * B}) := _.

  Global Instance pair_proper : Proper ((≡) ==> (≡) ==> (≡@{A*B})) pair := _.
  Global Instance pair_equiv_inj : Inj2 (≡) (≡) (≡@{A*B}) pair := _.
  Global Instance fst_proper : Proper ((≡@{A*B}) ==> (≡)) fst := _.
  Global Instance snd_proper : Proper ((≡@{A*B}) ==> (≡)) snd := _.

  Global Instance prod_swap_proper :
    Proper ((≡@{A*B}) ==> (≡@{B*A})) prod_swap := _.

  Global Instance curry_proper `{Equiv C} :
    Proper (((≡@{A*B}) ==> (≡@{C})) ==> (≡) ==> (≡) ==> (≡)) curry := _.
  Global Instance uncurry_proper `{Equiv C} :
    Proper (((≡) ==> (≡) ==> (≡)) ==> (≡@{A*B}) ==> (≡@{C})) uncurry := _.

  Global Instance curry3_proper `{Equiv C, Equiv D} :
    Proper (((≡@{A*B*C}) ==> (≡@{D})) ==>
            (≡) ==> (≡) ==> (≡) ==> (≡)) curry3 := _.
  Global Instance uncurry3_proper `{Equiv C, Equiv D} :
    Proper (((≡) ==> (≡) ==> (≡) ==> (≡)) ==>
            (≡@{A*B*C}) ==> (≡@{D})) uncurry3 := _.

  Global Instance curry4_proper `{Equiv C, Equiv D, Equiv E} :
    Proper (((≡@{A*B*C*D}) ==> (≡@{E})) ==>
            (≡) ==> (≡) ==> (≡) ==> (≡) ==> (≡)) curry4 := _.
  Global Instance uncurry4_proper `{Equiv C, Equiv D, Equiv E} :
    Proper (((≡) ==> (≡) ==> (≡) ==> (≡) ==> (≡)) ==>
            (≡@{A*B*C*D}) ==> (≡@{E})) uncurry4 := _.

  Lemma pair_equiv (a1 a2 : A) (b1 b2 : B) :
    (a1, b1) ≡ (a2, b2) ↔ a1 ≡ a2 ∧ b1 ≡ b2.
  Proof. reflexivity. Qed.
End prod_setoid.

Global Typeclasses Opaque prod_equiv.

Global Instance prod_leibniz `{LeibnizEquiv A, LeibnizEquiv B} :
  LeibnizEquiv (A * B).
Proof. intros [??] [??] [??]; f_equal; apply leibniz_equiv; auto. Qed.

(** ** Sums *)
Definition sum_map {A A' B B'} (f: A → A') (g: B → B') (xy : A + B) : A' + B' :=
  match xy with inl x => inl (f x) | inr y => inr (g y) end.
Global Arguments sum_map {_ _ _ _} _ _ !_ / : assert.

Global Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
  match iA with populate x => populate (inl x) end.
Global Instance sum_inhabited_r {A B} (iB : Inhabited B) : Inhabited (A + B) :=
  match iB with populate y => populate (inr y) end.

Global Instance inl_inj {A B} : Inj (=) (=) (@inl A B).
Proof. injection 1; auto. Qed.
Global Instance inr_inj {A B} : Inj (=) (=) (@inr A B).
Proof. injection 1; auto. Qed.

Global Instance sum_map_inj {A A' B B'} (f : A → A') (g : B → B') :
  Inj (=) (=) f → Inj (=) (=) g → Inj (=) (=) (sum_map f g).
Proof. intros ?? [?|?] [?|?] [=]; f_equal; apply (inj _); auto. Qed.

Inductive sum_relation {A B}
     (RA : relation A) (RB : relation B) : relation (A + B) :=
  | inl_related x1 x2 : RA x1 x2 → sum_relation RA RB (inl x1) (inl x2)
  | inr_related y1 y2 : RB y1 y2 → sum_relation RA RB (inr y1) (inr y2).

Section sum_relation.
  Context `{RA : relation A, RB : relation B}.
  Global Instance sum_relation_refl :
    Reflexive RA → Reflexive RB → Reflexive (sum_relation RA RB).
  Proof. intros ?? [?|?]; constructor; reflexivity. Qed.
  Global Instance sum_relation_sym :
    Symmetric RA → Symmetric RB → Symmetric (sum_relation RA RB).
  Proof. destruct 3; constructor; eauto. Qed.
  Global Instance sum_relation_trans :
    Transitive RA → Transitive RB → Transitive (sum_relation RA RB).
  Proof. destruct 3; inversion_clear 1; constructor; eauto. Qed.
  Global Instance sum_relation_equiv :
    Equivalence RA → Equivalence RB → Equivalence (sum_relation RA RB).
  Proof. split; apply _. Qed.
  Global Instance inl_proper' : Proper (RA ==> sum_relation RA RB) inl.
  Proof. constructor; auto. Qed.
  Global Instance inr_proper' : Proper (RB ==> sum_relation RA RB) inr.
  Proof. constructor; auto. Qed.
  Global Instance inl_inj' : Inj RA (sum_relation RA RB) inl.
  Proof. inversion_clear 1; auto. Qed.
  Global Instance inr_inj' : Inj RB (sum_relation RA RB) inr.
  Proof. inversion_clear 1; auto. Qed.
End sum_relation.

Global Instance sum_equiv `{Equiv A, Equiv B} : Equiv (A + B) := sum_relation (≡) (≡).
Global Instance inl_proper `{Equiv A, Equiv B} : Proper ((≡) ==> (≡)) (@inl A B) := _.
Global Instance inr_proper `{Equiv A, Equiv B} : Proper ((≡) ==> (≡)) (@inr A B) := _.
Global Instance inl_equiv_inj `{Equiv A, Equiv B} : Inj (≡) (≡) (@inl A B) := _.
Global Instance inr_equiv_inj `{Equiv A, Equiv B} : Inj (≡) (≡) (@inr A B) := _.
Global Typeclasses Opaque sum_equiv.

(** ** Option *)
Global Instance option_inhabited {A} : Inhabited (option A) := populate None.

(** ** Sigma types *)
Global Arguments existT {_ _} _ _ : assert.
Global Arguments projT1 {_ _} _ : assert.
Global Arguments projT2 {_ _} _ : assert.

Global Arguments exist {_} _ _ _ : assert.
Global Arguments proj1_sig {_ _} _ : assert.
Global Arguments proj2_sig {_ _} _ : assert.
Notation "x ↾ p" := (exist _ x p) (at level 20) : stdpp_scope.
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : stdpp_scope.

Lemma proj1_sig_inj {A} (P : A → Prop) x (Px : P x) y (Py : P y) :
  x↾Px = y↾Py → x = y.
Proof. injection 1; trivial. Qed.

Section sig_map.
  Context `{P : A → Prop} `{Q : B → Prop} (f : A → B) (Hf : ∀ x, P x → Q (f x)).
  Definition sig_map (x : sig P) : sig Q := f (`x) ↾ Hf _ (proj2_sig x).
  Global Instance sig_map_inj:
    (∀ x, ProofIrrel (P x)) → Inj (=) (=) f → Inj (=) (=) sig_map.
  Proof.
    intros ?? [x Hx] [y Hy]. injection 1. intros Hxy.
    apply (inj f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto.
  Qed.
End sig_map.
Global Arguments sig_map _ _ _ _ _ _ !_ / : assert.

Definition proj1_ex {P : Prop} {Q : P → Prop} (p : ∃ x, Q x) : P :=
  let '(ex_intro _ x _) := p in x.
Definition proj2_ex {P : Prop} {Q : P → Prop} (p : ∃ x, Q x) : Q (proj1_ex p) :=
  let '(ex_intro _ x H) := p in H.

(** * Operations on sets *)
(** We define operational type classes for the traditional operations and
relations on sets: the empty set [∅], the union [(∪)],
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(##)]. *)
Class Empty A := empty: A.
Global Hint Mode Empty ! : typeclass_instances.
Notation "∅" := empty (format "∅") : stdpp_scope.

Global Instance empty_inhabited `(Empty A) : Inhabited A := populate ∅.

Class Union A := union: A → A → A.
Global Hint Mode Union ! : typeclass_instances.
Global Instance: Params (@union) 2 := {}.
Infix "∪" := union (at level 50, left associativity) : stdpp_scope.
Notation "(∪)" := union (only parsing) : stdpp_scope.
Notation "( x ∪.)" := (union x) (only parsing) : stdpp_scope.
Notation "(.∪ x )" := (λ y, union y x) (only parsing) : stdpp_scope.
Infix "∪*" := (zip_with (∪)) (at level 50, left associativity) : stdpp_scope.
Notation "(∪*)" := (zip_with (∪)) (only parsing) : stdpp_scope.

Definition union_list `{Empty A} `{Union A} : list A → A := fold_right (∪) ∅.
Global Arguments union_list _ _ _ !_ / : assert.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : stdpp_scope.

Class Intersection A := intersection: A → A → A.
Global Hint Mode Intersection ! : typeclass_instances.
Global Instance: Params (@intersection) 2 := {}.
Infix "∩" := intersection (at level 40) : stdpp_scope.
Notation "(∩)" := intersection (only parsing) : stdpp_scope.
Notation "( x ∩.)" := (intersection x) (only parsing) : stdpp_scope.
Notation "(.∩ x )" := (λ y, intersection y x) (only parsing) : stdpp_scope.

Class Difference A := difference: A → A → A.
Global Hint Mode Difference ! : typeclass_instances.
Global Instance: Params (@difference) 2 := {}.
Infix "∖" := difference (at level 40, left associativity) : stdpp_scope.
Notation "(∖)" := difference (only parsing) : stdpp_scope.
Notation "( x ∖.)" := (difference x) (only parsing) : stdpp_scope.
Notation "(.∖ x )" := (λ y, difference y x) (only parsing) : stdpp_scope.
Infix "∖*" := (zip_with (∖)) (at level 40, left associativity) : stdpp_scope.
Notation "(∖*)" := (zip_with (∖)) (only parsing) : stdpp_scope.

(** The operation [cprod X Y] gives the Cartesian product of set-like structures
[X] and [Y], i.e., [cprod X Y := { (x,y) | x ∈ X, y ∈ Y }]. The implementation/
instance depends on the representation of the set. *)
Class CProd A B C := cprod : A → B → C.
Global Hint Mode CProd ! ! - : typeclass_instances.
Global Instance: Params (@cprod) 4 := {}.
(** We do not have a notation for [cprod] (yet) since this operation seems
not commonly enough used. *)

Class Singleton A B := singleton: A → B.
Global Hint Mode Singleton - ! : typeclass_instances.
Global Instance: Params (@singleton) 3 := {}.
Notation "{[ x ]}" := (singleton x) (at level 1) : stdpp_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : stdpp_scope.

Class SubsetEq A := subseteq: relation A.
Global Hint Mode SubsetEq ! : typeclass_instances.
Global Instance: Params (@subseteq) 2 := {}.
Infix "⊆" := subseteq (at level 70) : stdpp_scope.
Notation "(⊆)" := subseteq (only parsing) : stdpp_scope.
Notation "( X ⊆.)" := (subseteq X) (only parsing) : stdpp_scope.
Notation "(.⊆ X )" := (λ Y, Y ⊆ X) (only parsing) : stdpp_scope.
Notation "X ⊈ Y" := (¬X ⊆ Y) (at level 70) : stdpp_scope.
Notation "(⊈)" := (λ X Y, X ⊈ Y) (only parsing) : stdpp_scope.
Notation "( X ⊈.)" := (λ Y, X ⊈ Y) (only parsing) : stdpp_scope.
Notation "(.⊈ X )" := (λ Y, Y ⊈ X) (only parsing) : stdpp_scope.

Infix "⊆@{ A }" := (@subseteq A _) (at level 70, only parsing) : stdpp_scope.
Notation "(⊆@{ A } )" := (@subseteq A _) (only parsing) : stdpp_scope.

Infix "⊆*" := (Forall2 (⊆)) (at level 70) : stdpp_scope.
Notation "(⊆*)" := (Forall2 (⊆)) (only parsing) : stdpp_scope.

Global Hint Extern 0 (_ ⊆ _) => reflexivity : core.
Global Hint Extern 0 (_ ⊆* _) => reflexivity : core.

Infix "⊂" := (strict (⊆)) (at level 70) : stdpp_scope.
Notation "(⊂)" := (strict (⊆)) (only parsing) : stdpp_scope.
Notation "( X ⊂.)" := (strict (⊆) X) (only parsing) : stdpp_scope.
Notation "(.⊂ X )" := (λ Y, Y ⊂ X) (only parsing) : stdpp_scope.
Notation "X ⊄ Y" := (¬X ⊂ Y) (at level 70) : stdpp_scope.
Notation "(⊄)" := (λ X Y, X ⊄ Y) (only parsing) : stdpp_scope.
Notation "( X ⊄.)" := (λ Y, X ⊄ Y) (only parsing) : stdpp_scope.
Notation "(.⊄ X )" := (λ Y, Y ⊄ X) (only parsing) : stdpp_scope.

Infix "⊂@{ A }" := (strict (⊆@{A})) (at level 70, only parsing) : stdpp_scope.
Notation "(⊂@{ A } )" := (strict (⊆@{A})) (only parsing) : stdpp_scope.

Notation "X ⊆ Y ⊆ Z" := (X ⊆ Y ∧ Y ⊆ Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊆ Y ⊂ Z" := (X ⊆ Y ∧ Y ⊂ Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊂ Y ⊆ Z" := (X ⊂ Y ∧ Y ⊆ Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊂ Y ⊂ Z" := (X ⊂ Y ∧ Y ⊂ Z) (at level 70, Y at next level) : stdpp_scope.

(** We define type classes for multisets: disjoint union [⊎] and the multiset
singleton [{[+ _ +]}]. Multiset literals [{[+ x1; ..; xn +]}] are defined in
terms of iterated disjoint union [{[+ x1 +]} ⊎ .. ⊎ {[+ xn +]}], and are thus
different from set literals [{[ x1; ..; xn ]}], which use [∪].

Note that in principle we could reuse the set singleton [{[ _ ]}] for multisets,
and define [{[+ x1; ..; xn +]}] as [{[ x1 ]} ⊎ .. ⊎ {[ xn ]}]. However, this
would risk accidentally using [{[ x1; ..; xn ]}] for multisets (leading to
unexpected results) and lead to ambigious pretty printing for [{[+ x +]}]. *)
Class DisjUnion A := disj_union: A → A → A.
Global Hint Mode DisjUnion ! : typeclass_instances.
Global Instance: Params (@disj_union) 2 := {}.
Infix "⊎" := disj_union (at level 50, left associativity) : stdpp_scope.
Notation "(⊎)" := disj_union (only parsing) : stdpp_scope.
Notation "( x ⊎.)" := (disj_union x) (only parsing) : stdpp_scope.
Notation "(.⊎ x )" := (λ y, disj_union y x) (only parsing) : stdpp_scope.

Class SingletonMS A B := singletonMS: A → B.
Global Hint Mode SingletonMS - ! : typeclass_instances.
Global Instance: Params (@singletonMS) 3 := {}.
Notation "{[+ x +]}" := (singletonMS x)
  (at level 1, format "{[+  x  +]}") : stdpp_scope.
Notation "{[+ x ; y ; .. ; z +]}" :=
  (disj_union .. (disj_union (singletonMS x) (singletonMS y)) .. (singletonMS z))
  (at level 1, format "{[+  x ;  y ;  .. ;  z  +]}") : stdpp_scope.

Definition option_to_set `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None => ∅ | Some x => {[ x ]} end.
Fixpoint list_to_set `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] => ∅ | x :: l => {[ x ]} ∪ list_to_set l end.
Fixpoint list_to_set_disj `{SingletonMS A C, Empty C, DisjUnion C} (l : list A) : C :=
  match l with [] => ∅ | x :: l => {[+ x +]} ⊎ list_to_set_disj l end.

Class ScalarMul N A := scalar_mul : N → A → A.
Global Hint Mode ScalarMul - ! : typeclass_instances.
(** The [N] arguments is typically [nat] or [Z], so we do not want to rewrite
in that. Hence, the value of [Params] is 3. *)
Global Instance: Params (@scalar_mul) 3 := {}.
(** The notation [*:] and level is taken from ssreflect, see
https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/ssrnotations.v *)
Infix "*:" := scalar_mul (at level 40) : stdpp_scope.
Notation "(*:)" :=  scalar_mul (only parsing) : stdpp_scope.
Notation "( x *:.)" := (scalar_mul x) (only parsing) : stdpp_scope.
Notation "(.*: x )" := (λ y, scalar_mul y x) (only parsing) : stdpp_scope.

(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.
Global Hint Mode Lexico ! : typeclass_instances.

Class ElemOf A B := elem_of: A → B → Prop.
Global Hint Mode ElemOf - ! : typeclass_instances.
Global Instance: Params (@elem_of) 3 := {}.
Infix "∈" := elem_of (at level 70) : stdpp_scope.
Notation "(∈)" := elem_of (only parsing) : stdpp_scope.
Notation "( x ∈.)" := (elem_of x) (only parsing) : stdpp_scope.
Notation "(.∈ X )" := (λ x, elem_of x X) (only parsing) : stdpp_scope.
Notation "x ∉ X" := (¬x ∈ X) (at level 80) : stdpp_scope.
Notation "(∉)" := (λ x X, x ∉ X) (only parsing) : stdpp_scope.
Notation "( x ∉.)" := (λ X, x ∉ X) (only parsing) : stdpp_scope.
Notation "(.∉ X )" := (λ x, x ∉ X) (only parsing) : stdpp_scope.

Infix "∈@{ B }" := (@elem_of _ B _) (at level 70, only parsing) : stdpp_scope.
Notation "(∈@{ B } )" := (@elem_of _ B _) (only parsing) : stdpp_scope.

Notation "x ∉@{ B } X" := (¬x ∈@{B} X) (at level 80, only parsing) : stdpp_scope.
Notation "(∉@{ B } )" := (λ x X, x ∉@{B} X) (only parsing) : stdpp_scope.

Class Disjoint A := disjoint : A → A → Prop.
Global Hint Mode Disjoint ! : typeclass_instances.
Global Instance: Params (@disjoint) 2 := {}.
Infix "##" := disjoint (at level 70) : stdpp_scope.
Notation "(##)" := disjoint (only parsing) : stdpp_scope.
Notation "( X ##.)" := (disjoint X) (only parsing) : stdpp_scope.
Notation "(.## X )" := (λ Y, Y ## X) (only parsing) : stdpp_scope.

Infix "##@{ A }" := (@disjoint A _) (at level 70, only parsing) : stdpp_scope.
Notation "(##@{ A } )" := (@disjoint A _) (only parsing) : stdpp_scope.

Infix "##*" := (Forall2 (##)) (at level 70) : stdpp_scope.
Notation "(##*)" := (Forall2 (##)) (only parsing) : stdpp_scope.

Global Hint Extern 0 (_ ## _) => symmetry; eassumption : core.
Global Hint Extern 0 (_ ##* _) => symmetry; eassumption : core.

Class Filter A B := filter: ∀ (P : A → Prop) `{∀ x, Decision (P x)}, B → B.
Global Hint Mode Filter - ! : typeclass_instances.

Class UpClose A B := up_close : A → B.
Global Hint Mode UpClose - ! : typeclass_instances.
Notation "↑ x" := (up_close x) (at level 20, format "↑ x").

(** * Monadic operations *)
(** We define operational type classes for the monadic operations bind, join
and fmap. We use these type classes merely for convenient overloading of
notations and do not formalize any theory on monads (we do not even define a
class with the monad laws). *)
Class MRet (M : Type → Type) := mret: ∀ {A}, A → M A.
Global Arguments mret {_ _ _} _ : assert.
Global Instance: Params (@mret) 3 := {}.
Global Hint Mode MRet ! : typeclass_instances.

Class MBind (M : Type → Type) := mbind : ∀ {A B}, (A → M B) → M A → M B.
Global Arguments mbind {_ _ _ _} _ !_ / : assert.
Global Instance: Params (@mbind) 4 := {}.
Global Hint Mode MBind ! : typeclass_instances.

Class MJoin (M : Type → Type) := mjoin: ∀ {A}, M (M A) → M A.
Global Arguments mjoin {_ _ _} !_ / : assert.
Global Instance: Params (@mjoin) 3 := {}.
Global Hint Mode MJoin ! : typeclass_instances.

Class FMap (M : Type → Type) := fmap : ∀ {A B}, (A → B) → M A → M B.
Global Arguments fmap {_ _ _ _} _ !_ / : assert.
Global Instance: Params (@fmap) 4 := {}.
Global Hint Mode FMap ! : typeclass_instances.

Class OMap (M : Type → Type) := omap: ∀ {A B}, (A → option B) → M A → M B.
Global Arguments omap {_ _ _ _} _ !_ / : assert.
Global Instance: Params (@omap) 4 := {}.
Global Hint Mode OMap ! : typeclass_instances.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : stdpp_scope.
Notation "( m ≫=.)" := (λ f, mbind f m) (only parsing) : stdpp_scope.
Notation "(.≫= f )" := (mbind f) (only parsing) : stdpp_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : stdpp_scope.

Notation "x ← y ; z" := (y ≫= (λ x : _, z))
  (at level 20, y at level 100, z at level 200, only parsing) : stdpp_scope.

Notation "' x ← y ; z" := (y ≫= (λ x : _, z))
  (at level 20, x pattern, y at level 100, z at level 200, only parsing) : stdpp_scope.

Infix "<$>" := fmap (at level 61, left associativity) : stdpp_scope.

Notation "x ;; z" := (x ≫= λ _, z)
  (at level 100, z at level 200, only parsing, right associativity): stdpp_scope.

Notation "ps .*1" := (fmap (M:=list) fst ps)
  (at level 2, left associativity, format "ps .*1").
Notation "ps .*2" := (fmap (M:=list) snd ps)
  (at level 2, left associativity, format "ps .*2").

(** For any monad that has a builtin way to throw an exception/error *)
Class MThrow (E : Type) (M : Type → Type) := mthrow : ∀ {A}, E → M A.
Global Arguments mthrow {_ _ _ _} _ : assert.
Global Instance: Params (@mthrow) 4 := {}.
Global Hint Mode MThrow ! ! : typeclass_instances.

(** We use unit as the error content for monads that can only report an error
    without any payload like an option *)
Global Notation MFail := (MThrow ()).
Global Notation mfail := (mthrow ()).

Definition guard_or {E} (e : E) `{MThrow E M, MRet M} P `{Decision P} : M P :=
  match decide P with
  | left H => mret H
  | right _ => mthrow e
  end.
Global Notation guard := (guard_or ()).


(** * Operations on maps *)
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
The function look up [m !! k] should yield the element at key [k] in [m]. *)
Class Lookup (K A M : Type) := lookup: K → M → option A.
Global Hint Mode Lookup - - ! : typeclass_instances.
Global Instance: Params (@lookup) 5 := {}.
Notation "m !! i" := (lookup i m) (at level 20) : stdpp_scope.
Notation "(!!)" := lookup (only parsing) : stdpp_scope.
Notation "( m !!.)" := (λ i, m !! i) (only parsing) : stdpp_scope.
Notation "(.!! i )" := (lookup i) (only parsing) : stdpp_scope.
Global Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch, assert.

(** The function [lookup_total] should be the total over-approximation
of the partial [lookup] function. *)
Class LookupTotal (K A M : Type) := lookup_total : K → M → A.
Global Hint Mode LookupTotal - - ! : typeclass_instances.
Global Instance: Params (@lookup_total) 5 := {}.
Notation "m !!! i" := (lookup_total i m) (at level 20) : stdpp_scope.
Notation "(!!!)" := lookup_total (only parsing) : stdpp_scope.
Notation "( m !!!.)" := (λ i, m !!! i) (only parsing) : stdpp_scope.
Notation "(.!!! i )" := (lookup_total i) (only parsing) : stdpp_scope.
Global Arguments lookup_total _ _ _ _ !_ !_ / : simpl nomatch, assert.

(** The singleton map *)
Class SingletonM K A M := singletonM: K → A → M.
Global Hint Mode SingletonM - - ! : typeclass_instances.
Global Instance: Params (@singletonM) 5 := {}.
Notation "{[ k := a ]}" := (singletonM k a) (at level 1) : stdpp_scope.

(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
Class Insert (K A M : Type) := insert: K → A → M → M.
Global Hint Mode Insert - - ! : typeclass_instances.
Global Instance: Params (@insert) 5 := {}.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : stdpp_scope.
Global Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch, assert.

(** Notation for more elements (up to 13) *)
(* Defining a generic notation does not seem possible with Coq's
   recursive notation system, so we define individual notations
   for some cases relevant in practice. *)
(* The "format" makes sure that linebreaks are placed after the separating semicolons [;] when printing. *)
(* TODO : we are using parentheses in the "de-sugaring" of the notation instead of [$] because Coq 8.12
   and earlier have trouble with using the notation for printing otherwise.
   Once support for Coq 8.12 is dropped, this can be replaced with [$]. *)
Notation "{[ k1 := a1 ; k2 := a2 ]}" :=
  (<[ k1 := a1 ]>{[ k2 := a2 ]})
  (at level 1, format
  "{[ '[hv' '[' k1  :=  a1 ; ']'  '/' '[' k2  :=  a2 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ]}" :=
  (<[ k1 := a1 ]> ( <[ k2 := a2 ]>{[ k3 := a3 ]}))
  (at level 1, format
  "{[ '[hv' '[' k1  :=  a1 ; ']'  '/' '[' k2  :=  a2 ; ']'  '/' '[' k3  :=  a3 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ]}" :=
  (<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]>{[ k4 := a4 ]})))
  (at level 1, format
  "{[ '[hv' '[' k1  :=  a1 ; ']'  '/' '[' k2  :=  a2 ; ']'  '/' '[' k3  :=  a3 ; ']'  '/' '[' k4  :=  a4 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ]}" :=
  (<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]>{[ k5 := a5 ]}))))
  (at level 1, format
  "{[ '[hv' '[' k1  :=  a1 ; ']'  '/' '[' k2  :=  a2 ; ']'  '/' '[' k3  :=  a3 ; ']'  '/' '[' k4  :=  a4 ; ']'  '/' '[' k5  :=  a5 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ]}" :=
  (<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
    <[ k5 := a5 ]>{[ k6 := a6 ]})))))
  (at level 1, format
  "{[ '[hv' '[' k1  :=  a1 ; ']'  '/' '[' k2  :=  a2 ; ']'  '/' '[' k3  :=  a3 ; ']'  '/' '[' k4  :=  a4 ; ']'  '/' '[' k5  :=  a5 ; ']'  '/' '[' k6  :=  a6 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ]}" :=
  (<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
    <[ k5 := a5 ]> ( <[ k6 := a6 ]>{[ k7 := a7 ]}))))))
  (at level 1, format
  "{[ '[hv' '[' k1  :=  a1 ; ']'  '/' '[' k2  :=  a2 ; ']'  '/' '[' k3  :=  a3 ; ']'  '/' '[' k4  :=  a4 ; ']'  '/' '[' k5  :=  a5 ; ']'  '/' '[' k6  :=  a6 ; ']'  '/' '[' k7  :=  a7 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ; k8 := a8 ]}" :=
  (<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
    <[ k5 := a5 ]> ( <[ k6 := a6 ]> ( <[ k7 := a7 ]>{[ k8 := a8 ]})))))))
  (at level 1, format
  "{[ '[hv' '[' k1  :=  a1 ; ']'  '/' '[' k2  :=  a2 ; ']'  '/' '[' k3  :=  a3 ; ']'  '/' '[' k4  :=  a4 ; ']'  '/' '[' k5  :=  a5 ; ']'  '/' '[' k6  :=  a6 ; ']'  '/' '[' k7  :=  a7 ; ']'  '/' '[' k8  :=  a8 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ; k8 := a8 ; k9 := a9 ]}" :=
  (<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
    <[ k5 := a5 ]> ( <[ k6 := a6 ]> ( <[ k7 := a7 ]> ( <[ k8 := a8 ]>{[ k9 := a9 ]}))))))))
  (at level 1, format
  "{[ '[hv' '[' k1  :=  a1 ; ']'  '/' '[' k2  :=  a2 ; ']'  '/' '[' k3  :=  a3 ; ']'  '/' '[' k4  :=  a4 ; ']'  '/' '[' k5  :=  a5 ; ']'  '/' '[' k6  :=  a6 ; ']'  '/' '[' k7  :=  a7 ; ']'  '/' '[' k8  :=  a8 ; ']'  '/' '[' k9  :=  a9 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ; k8 := a8 ; k9 := a9 ; k10 := a10 ]}" :=
  (<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
    <[ k5 := a5 ]> ( <[ k6 := a6 ]> ( <[ k7 := a7 ]> ( <[ k8 := a8 ]> (
    <[ k9 := a9 ]>{[ k10 := a10 ]})))))))))
  (at level 1, format
  "{[ '[hv' '[' k1  :=  a1 ; ']'  '/' '[' k2  :=  a2 ; ']'  '/' '[' k3  :=  a3 ; ']'  '/' '[' k4  :=  a4 ; ']'  '/' '[' k5  :=  a5 ; ']'  '/' '[' k6  :=  a6 ; ']'  '/' '[' k7  :=  a7 ; ']'  '/' '[' k8  :=  a8 ; ']'  '/' '[' k9  :=  a9 ; ']'  '/' '[' k10  :=  a10 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ; k8 := a8 ; k9 := a9 ; k10 := a10 ; k11 := a11 ]}" :=
  (<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
    <[ k5 := a5 ]> ( <[ k6 := a6 ]> ( <[ k7 := a7 ]> ( <[ k8 := a8 ]> (
    <[ k9 := a9 ]> ( <[ k10 := a10 ]>{[ k11 := a11 ]}))))))))))
  (at level 1, format
  "{[ '[hv' '[' k1  :=  a1 ; ']'  '/' '[' k2  :=  a2 ; ']'  '/' '[' k3  :=  a3 ; ']'  '/' '[' k4  :=  a4 ; ']'  '/' '[' k5  :=  a5 ; ']'  '/' '[' k6  :=  a6 ; ']'  '/' '[' k7  :=  a7 ; ']'  '/' '[' k8  :=  a8 ; ']'  '/' '[' k9  :=  a9 ; ']'  '/' '[' k10  :=  a10 ; ']'  '/' '[' k11  :=  a11 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ; k8 := a8 ; k9 := a9 ; k10 := a10 ; k11 := a11 ; k12 := a12 ]}" :=
  (<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
    <[ k5 := a5 ]> ( <[ k6 := a6 ]> ( <[ k7 := a7 ]> ( <[ k8 := a8 ]> (
    <[ k9 := a9 ]> ( <[ k10 := a10 ]> ( <[ k11 := a11 ]>{[ k12 := a12 ]})))))))))))
  (at level 1, format
  "{[ '[hv' '[' k1  :=  a1 ; ']'  '/' '[' k2  :=  a2 ; ']'  '/' '[' k3  :=  a3 ; ']'  '/' '[' k4  :=  a4 ; ']'  '/' '[' k5  :=  a5 ; ']'  '/' '[' k6  :=  a6 ; ']'  '/' '[' k7  :=  a7 ; ']'  '/' '[' k8  :=  a8 ; ']'  '/' '[' k9  :=  a9 ; ']'  '/' '[' k10  :=  a10 ; ']'  '/' '[' k11  :=  a11 ; ']'  '/' '[' k12  :=  a12 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ; k8 := a8 ; k9 := a9 ; k10 := a10 ; k11 := a11 ; k12 := a12 ; k13 := a13 ]}" :=
  (<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
    <[ k5 := a5 ]> ( <[ k6 := a6 ]> ( <[ k7 := a7 ]> ( <[ k8 := a8 ]> (
    <[ k9 := a9 ]> ( <[ k10 := a10 ]> ( <[ k11 := a11 ]> ( <[ k12 := a12 ]>{[ k13 := a13 ]}))))))))))))
  (at level 1, format
  "{[ '[hv' '[' k1  :=  a1 ; ']'  '/' '[' k2  :=  a2 ; ']'  '/' '[' k3  :=  a3 ; ']'  '/' '[' k4  :=  a4 ; ']'  '/' '[' k5  :=  a5 ; ']'  '/' '[' k6  :=  a6 ; ']'  '/' '[' k7  :=  a7 ; ']'  '/' '[' k8  :=  a8 ; ']'  '/' '[' k9  :=  a9 ; ']'  '/' '[' k10  :=  a10 ; ']'  '/' '[' k11  :=  a11 ; ']'  '/' '[' k12  :=  a12 ; ']'  '/' '[' k13  :=  a13 ']' ']' ]}") : stdpp_scope.

(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
Class Delete (K M : Type) := delete: K → M → M.
Global Hint Mode Delete - ! : typeclass_instances.
Global Instance: Params (@delete) 4 := {}.
Global Arguments delete _ _ _ !_ !_ / : simpl nomatch, assert.

(** The function [alter f k m] should update the value at key [k] using the
function [f], which is called with the original value. *)
Class Alter (K A M : Type) := alter: (A → A) → K → M → M.
Global Hint Mode Alter - - ! : typeclass_instances.
Global Instance: Params (@alter) 4 := {}.
Global Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch, assert.

(** The function [partial_alter f k m] should update the value at key [k] using the
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f]
yields [None]. *)
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A → option A) → K → M → M.
Global Hint Mode PartialAlter - - ! : typeclass_instances.
Global Instance: Params (@partial_alter) 4 := {}.
Global Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch, assert.

(** The function [dom m] should yield the domain of [m]. That is a finite
set of type [D] that contains the keys that are a member of [m].
[D] is an output of the typeclass, i.e., there can be only one instance per map
type [M]. *)
Class Dom (M D : Type) := dom: M → D.
Global Hint Mode Dom ! - : typeclass_instances.
Global Instance: Params (@dom) 3 := {}.
Global Arguments dom : clear implicits.
Global Arguments dom {_ _ _} !_ / : simpl nomatch, assert.

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type → Type) :=
  merge: ∀ {A B C}, (option A → option B → option C) → M A → M B → M C.
Global Hint Mode Merge ! : typeclass_instances.
Global Instance: Params (@merge) 4 := {}.
Global Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch, assert.

(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A → A → option A) → M → M → M.
Global Hint Mode UnionWith - ! : typeclass_instances.
Global Instance: Params (@union_with) 3 := {}.
Global Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch, assert.

(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A → A → option A) → M → M → M.
Global Hint Mode IntersectionWith - ! : typeclass_instances.
Global Instance: Params (@intersection_with) 3 := {}.
Global Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch, assert.

Class DifferenceWith (A M : Type) :=
  difference_with: (A → A → option A) → M → M → M.
Global Hint Mode DifferenceWith - ! : typeclass_instances.
Global Instance: Params (@difference_with) 3 := {}.
Global Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch, assert.

Definition intersection_with_list `{IntersectionWith A M}
  (f : A → A → option A) : M → list M → M := fold_right (intersection_with f).
Global Arguments intersection_with_list _ _ _ _ _ !_ / : assert.

(** * Notations for lattices. *)
(** SqSubsetEq registers the "canonical" partial order for a type, and is used
for the \sqsubseteq symbol. *)
Class SqSubsetEq A := sqsubseteq: relation A.
Global Hint Mode SqSubsetEq ! : typeclass_instances.
Global Instance: Params (@sqsubseteq) 2 := {}.
Infix "⊑" := sqsubseteq (at level 70) : stdpp_scope.
Notation "(⊑)" := sqsubseteq (only parsing) : stdpp_scope.
Notation "( x ⊑.)" := (sqsubseteq x) (only parsing) : stdpp_scope.
Notation "(.⊑ y )" := (λ x, sqsubseteq x y) (only parsing) : stdpp_scope.

Infix "⊑@{ A }" := (@sqsubseteq A _) (at level 70, only parsing) : stdpp_scope.
Notation "(⊑@{ A } )" := (@sqsubseteq A _) (only parsing) : stdpp_scope.

(** [sqsubseteq] does not take precedence over the stdlib's instances (like [eq],
[impl], [iff]) or std++'s [equiv].
We have [eq] (at 100) < [≡] (at 150) < [⊑] (at 200). *)
Global Instance sqsubseteq_rewrite `{SqSubsetEq A} : RewriteRelation (⊑@{A}) | 200 := {}.

Global Hint Extern 0 (_ ⊑ _) => reflexivity : core.

Class Meet A := meet: A → A → A.
Global Hint Mode Meet ! : typeclass_instances.
Global Instance: Params (@meet) 2 := {}.
Infix "⊓" := meet (at level 40) : stdpp_scope.
Notation "(⊓)" := meet (only parsing) : stdpp_scope.
Notation "( x ⊓.)" := (meet x) (only parsing) : stdpp_scope.
Notation "(.⊓ y )" := (λ x, meet x y) (only parsing) : stdpp_scope.

Class Join A := join: A → A → A.
Global Hint Mode Join ! : typeclass_instances.
Global Instance: Params (@join) 2 := {}.
Infix "⊔" := join (at level 50) : stdpp_scope.
Notation "(⊔)" := join (only parsing) : stdpp_scope.
Notation "( x ⊔.)" := (join x) (only parsing) : stdpp_scope.
Notation "(.⊔ y )" := (λ x, join x y) (only parsing) : stdpp_scope.

Class Top A := top : A.
Global Hint Mode Top ! : typeclass_instances.
Notation "⊤" := top (format "⊤") : stdpp_scope.

Class Bottom A := bottom : A.
Global Hint Mode Bottom ! : typeclass_instances.
Notation "⊥" := bottom (format "⊥") : stdpp_scope.


(** * Axiomatization of sets *)
(** The classes [SemiSet A C], [Set_ A C], and [TopSet A C] axiomatize sets of
type [C] with elements of type [A]. The first class, [SemiSet] does not include
intersection and difference. It is useful for the case of lists, where decidable
equality is needed to implement intersection and difference, but not union.

Note that we cannot use the name [Set] since that is a reserved keyword. Hence
we use [Set_]. *)
Class SemiSet A C `{ElemOf A C,
    Empty C, Singleton A C, Union C} : Prop := {
  not_elem_of_empty (x : A) : x ∉@{C} ∅; (* We prove
  [elem_of_empty : x ∈@{C} ∅ ↔ False] in [sets.v], which is more convenient for
  rewriting. *)
  elem_of_singleton (x y : A) : x ∈@{C} {[ y ]} ↔ x = y;
  elem_of_union (X Y : C) (x : A) : x ∈ X ∪ Y ↔ x ∈ X ∨ x ∈ Y
}.
Global Hint Mode SemiSet - ! - - - - : typeclass_instances.

Class Set_ A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C} : Prop := {
  set_semi_set :: SemiSet A C;
  elem_of_intersection (X Y : C) (x : A) : x ∈ X ∩ Y ↔ x ∈ X ∧ x ∈ Y;
  elem_of_difference (X Y : C) (x : A) : x ∈ X ∖ Y ↔ x ∈ X ∧ x ∉ Y
}.
Global Hint Mode Set_ - ! - - - - - - : typeclass_instances.

Class TopSet A C `{ElemOf A C, Empty C, Top C, Singleton A C,
    Union C, Intersection C, Difference C} : Prop := {
  top_set_set :: Set_ A C;
  elem_of_top' (x : A) : x ∈@{C} ⊤; (* We prove [elem_of_top : x ∈@{C} ⊤ ↔ True]
  in [sets.v], which is more convenient for rewriting. *)
}.
Global Hint Mode TopSet - ! - - - - - - - : typeclass_instances.

(** We axiomative a finite set as a set whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Class Elements A C := elements: C → list A.
Global Hint Mode Elements - ! : typeclass_instances.
Global Instance: Params (@elements) 3 := {}.

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x ∈ x :: l
  | elem_of_list_further (x y : A) l : x ∈ l → x ∈ y :: l.
Global Existing Instance elem_of_list.

Lemma elem_of_list_In {A} (l : list A) x : x ∈ l ↔ In x l.
Proof.
  split.
  - induction 1; simpl; auto.
  - induction l; destruct 1; subst; constructor; auto.
Qed.

Inductive NoDup {A} : list A → Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x ∉ l → NoDup l → NoDup (x :: l).

Lemma NoDup_ListNoDup {A} (l : list A) : NoDup l ↔ List.NoDup l.
Proof.
  split.
  - induction 1; constructor; rewrite <-?elem_of_list_In; auto.
  - induction 1; constructor; rewrite ?elem_of_list_In; auto.
Qed.

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinSet A C `{ElemOf A C, Empty C, Singleton A C, Union C,
    Intersection C, Difference C, Elements A C, EqDecision A} : Prop := {
  fin_set_set :: Set_ A C;
  elem_of_elements (X : C) x : x ∈ elements X ↔ x ∈ X;
  NoDup_elements (X : C) : NoDup (elements X)
}.
Global Hint Mode FinSet - ! - - - - - - - - : typeclass_instances.

Class Size C := size: C → nat.
Global Hint Mode Size ! : typeclass_instances.
Global Arguments size {_ _} !_ / : simpl nomatch, assert.
Global Instance: Params (@size) 2 := {}.

(** The class [MonadSet M] axiomatizes a type constructor [M] that can be
used to construct a set [M A] with elements of type [A]. The advantage
of this class, compared to [Set_], is that it also axiomatizes the
the monadic operations. The disadvantage is that not many inhabitants are
possible: we will only provide as inhabitants [propset] and [listset], which are
represented respectively using Boolean functions and lists with duplicates.

More interesting implementations typically need
decidable equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class MonadSet M `{∀ A, ElemOf A (M A),
    ∀ A, Empty (M A), ∀ A, Singleton A (M A), ∀ A, Union (M A),
    !MBind M, !MRet M, !FMap M, !MJoin M} : Prop := {
  monad_set_semi_set A :: SemiSet A (M A);
  elem_of_bind {A B} (f : A → M B) (X : M A) (x : B) :
    x ∈ X ≫= f ↔ ∃ y, x ∈ f y ∧ y ∈ X;
  elem_of_ret {A} (x y : A) : x ∈@{M A} mret y ↔ x = y;
  elem_of_fmap {A B} (f : A → B) (X : M A) (x : B) :
    x ∈ f <$> X ↔ ∃ y, x = f y ∧ y ∈ X;
  elem_of_join {A} (X : M (M A)) (x : A) :
    x ∈ mjoin X ↔ ∃ Y : M A, x ∈ Y ∧ Y ∈ X
}.

(** The [Infinite A] class axiomatizes types [A] with infinitely many elements.
It contains a function [fresh : list A → A] that, given a list [xs], gives an
element [fresh xs ∉ xs].

We do not directly make [fresh] a field of the [Infinite] class, but use a
separate operational type class [Fresh] for it. That way we can overload [fresh]
to pick fresh elements from other data structures like sets. See the file
[fin_sets], where we define [fresh : C → A] for any finite set implementation
[FinSet C A].

Note: we require [fresh] to respect permutations, which is needed to define the
aforementioned [fresh] function on finite sets that respect set equality.

Instead of instantiating [Infinite] directly, consider using [max_infinite] or
[inj_infinite] from the [infinite] module. *)
Class Fresh A C := fresh: C → A.
Global Hint Mode Fresh - ! : typeclass_instances.
Global Instance: Params (@fresh) 3 := {}.
Global Arguments fresh : simpl never.

Class Infinite A := {
  infinite_fresh :: Fresh A (list A);
  infinite_is_fresh (xs : list A) : fresh xs ∉ xs;
  infinite_fresh_Permutation :: Proper (@Permutation A ==> (=)) fresh;
}.
Global Hint Mode Infinite ! : typeclass_instances.
Global Arguments infinite_fresh : simpl never.

(** * Miscellaneous *)
Class Half A := half: A → A.
Global Hint Mode Half ! : typeclass_instances.
Notation "½" := half (format "½") : stdpp_scope.
Notation "½*" := (fmap (M:=list) half) : stdpp_scope.