1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
|
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, sets, and various other data
structures. *)
(* We want to ensure that [le] and [lt] refer to operations on [nat].
These two functions being defined both in [Coq.Bool] and in [Coq.Peano],
we must export [Coq.Peano] later than any export of [Coq.Bool]. *)
(* We also want to ensure that notations from [Coq.Utf8] take precedence
over the ones of [Coq.Peano] (see Coq PR#12950), so we import [Utf8] last. *)
From Coq Require Export Morphisms RelationClasses List Bool Setoid Peano Utf8.
From Coq Require Import Permutation.
Export ListNotations.
From Coq.Program Require Export Basics Syntax.
(* notations _.1 and _.2 below, TODO: remove when requiring Coq > 8.19 *)
From Coq.ssr Require Import (notations) ssrfun.
From stdpp Require Import options.
(** This notation is necessary to prevent [length] from being printed
as [strings.length] if strings.v is imported and later base.v. See
also strings.v and
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/144 and
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/129. *)
Notation length := Datatypes.length.
(** * Enable implicit generalization. *)
(** This option enables implicit generalization in arguments of the form
[`{...}] (i.e., anonymous arguments). Unfortunately, it also enables
implicit generalization in [Instance]. We think that the fact that both
behaviors are coupled together is a [bug in
Coq](https://github.com/coq/coq/issues/6030). *)
Global Generalizable All Variables.
(** * Tweak program *)
(** 1. Since we only use Program to solve logical side-conditions, they should
always be made Opaque, otherwise we end up with performance problems due to
Coq blindly unfolding them.
Note that in most cases we use [Next Obligation. (* ... *) Qed.], for which
this option does not matter. However, sometimes we write things like
[Solve Obligations with naive_solver (* ... *)], and then the obligations
should surely be opaque. *)
Global Unset Transparent Obligations.
(** 2. Do not let Program automatically simplify obligations. The default
obligation tactic is [Tactics.program_simpl], which, among other things,
introduces all variables and gives them fresh names. As such, it becomes
impossible to refer to hypotheses in a robust way. *)
Global Obligation Tactic := idtac.
(** 3. Hide obligations and unsealing lemmas from the results of the [Search]
commands. *)
Add Search Blacklist "_obligation_".
Add Search Blacklist "_unseal".
(** * Sealing off definitions *)
#[projections(primitive=yes)]
Record seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }.
Global Arguments unseal {_ _} _ : assert.
Global Arguments seal_eq {_ _} _ : assert.
(** * Solving type class instances *)
(** The tactic [tc_solve] is used to solve type class goals by invoking type
class search. It is similar to [apply _], but it is more robust since it does
not affect unrelated goals/evars due to https://github.com/coq/coq/issues/6583.
The tactic [tc_solve] is particularly useful when building custom tactics that
need tight control over when type class search is invoked. In Iris, many of the
proof mode tactics make use of [notypeclasses refine] and use [tc_solve] to
manually invoke type class search.
Note that [typeclasses eauto] is multi-success. That means, whenever subsequent
tactics fail, it will backtrack to [typeclasses eauto] to try the next type
class instance. This is almost always undesired and can lead to poor performance
and horrible error messages. Hence, we wrap it in a [once]. *)
Ltac tc_solve :=
solve [once (typeclasses eauto)].
(** * Non-backtracking type classes *)
(** The type class [TCNoBackTrack P] can be used to establish [P] without ever
backtracking on the instance of [P] that has been found. Backtracking may
normally happen when [P] contains evars that could be instanciated in different
ways depending on which instance is picked, and type class search somewhere else
depends on this evar.
The proper way of handling this would be by setting Coq's option
`Typeclasses Unique Instances`. However, this option seems to be broken, see Coq
issue #6714.
See https://gitlab.mpi-sws.org/FP/iris-coq/merge_requests/112 for a rationale
of this type class. *)
Class TCNoBackTrack (P : Prop) := TCNoBackTrack_intro { tc_no_backtrack : P }.
Global Hint Extern 0 (TCNoBackTrack _) =>
notypeclasses refine (TCNoBackTrack_intro _ _); tc_solve : typeclass_instances.
(* A conditional at the type class level. Note that [TCIf P Q R] is not the same
as [TCOr (TCAnd P Q) R]: the latter will backtrack to [R] if it fails to
establish [Q], i.e. does not have the behavior of a conditional. Furthermore,
note that [TCOr (TCAnd P Q) (TCAnd (TCNot P) R)] would not work; we generally
would not be able to prove the negation of [P]. *)
Inductive TCIf (P Q R : Prop) : Prop :=
| TCIf_true : P → Q → TCIf P Q R
| TCIf_false : R → TCIf P Q R.
Existing Class TCIf.
Global Hint Extern 0 (TCIf _ _ _) =>
first [notypeclasses refine (TCIf_true _ _ _ _ _); [tc_solve|]
|notypeclasses refine (TCIf_false _ _ _ _)] : typeclass_instances.
(** * Typeclass opaque definitions *)
(** The constant [tc_opaque] is used to make definitions opaque for just type
class search. Note that [simpl] is set up to always unfold [tc_opaque]. *)
Definition tc_opaque {A} (x : A) : A := x.
Global Typeclasses Opaque tc_opaque.
Global Arguments tc_opaque {_} _ /.
(** Below we define type class versions of the common logical operators. It is
important to note that we duplicate the definitions, and do not declare the
existing logical operators as type classes. That is, we do not say:
Existing Class or.
Existing Class and.
If we could define the existing logical operators as classes, there is no way
of disambiguating whether a premise of a lemma should be solved by type class
resolution or not.
These classes are useful for two purposes: writing complicated type class
premises in a more concise way, and for efficiency. For example, using the [Or]
class, instead of defining two instances [P → Q1 → R] and [P → Q2 → R] we could
have one instance [P → Or Q1 Q2 → R]. When we declare the instance that way, we
avoid the need to derive [P] twice. *)
Inductive TCOr (P1 P2 : Prop) : Prop :=
| TCOr_l : P1 → TCOr P1 P2
| TCOr_r : P2 → TCOr P1 P2.
Existing Class TCOr.
Global Existing Instance TCOr_l | 9.
Global Existing Instance TCOr_r | 10.
Global Hint Mode TCOr ! ! : typeclass_instances.
Inductive TCAnd (P1 P2 : Prop) : Prop := TCAnd_intro : P1 → P2 → TCAnd P1 P2.
Existing Class TCAnd.
Global Existing Instance TCAnd_intro.
Global Hint Mode TCAnd ! ! : typeclass_instances.
Inductive TCTrue : Prop := TCTrue_intro : TCTrue.
Existing Class TCTrue.
Global Existing Instance TCTrue_intro.
(** The class [TCFalse] is not stricly necessary as one could also use
[False]. However, users might expect that TCFalse exists and if it
does not, it can cause hard to diagnose bugs due to automatic
generalization. *)
Inductive TCFalse : Prop :=.
Existing Class TCFalse.
(** The class [TCUnless] can be used to check that search for [P]
fails. This is useful as a guard for certain instances together with
classes like [TCFastDone] (see [tactics.v]) to prevent infinite loops
(e.g. when saturating the context). *)
Notation TCUnless P := (TCIf P TCFalse TCTrue).
Inductive TCForall {A} (P : A → Prop) : list A → Prop :=
| TCForall_nil : TCForall P []
| TCForall_cons x xs : P x → TCForall P xs → TCForall P (x :: xs).
Existing Class TCForall.
Global Existing Instance TCForall_nil.
Global Existing Instance TCForall_cons.
Global Hint Mode TCForall ! ! ! : typeclass_instances.
(** The class [TCForall2 P l k] is commonly used to transform an input list [l]
into an output list [k], or the converse. Therefore there are two modes, either
[l] input and [k] output, or [k] input and [l] input. *)
Inductive TCForall2 {A B} (P : A → B → Prop) : list A → list B → Prop :=
| TCForall2_nil : TCForall2 P [] []
| TCForall2_cons x y xs ys :
P x y → TCForall2 P xs ys → TCForall2 P (x :: xs) (y :: ys).
Existing Class TCForall2.
Global Existing Instance TCForall2_nil.
Global Existing Instance TCForall2_cons.
Global Hint Mode TCForall2 ! ! ! ! - : typeclass_instances.
Global Hint Mode TCForall2 ! ! ! - ! : typeclass_instances.
Inductive TCExists {A} (P : A → Prop) : list A → Prop :=
| TCExists_cons_hd x l : P x → TCExists P (x :: l)
| TCExists_cons_tl x l: TCExists P l → TCExists P (x :: l).
Existing Class TCExists.
Global Existing Instance TCExists_cons_hd | 10.
Global Existing Instance TCExists_cons_tl | 20.
Global Hint Mode TCExists ! ! ! : typeclass_instances.
Inductive TCElemOf {A} (x : A) : list A → Prop :=
| TCElemOf_here xs : TCElemOf x (x :: xs)
| TCElemOf_further y xs : TCElemOf x xs → TCElemOf x (y :: xs).
Existing Class TCElemOf.
Global Existing Instance TCElemOf_here.
Global Existing Instance TCElemOf_further.
Global Hint Mode TCElemOf ! ! ! : typeclass_instances.
(** The intended use of [TCEq x y] is to use [x] as input and [y] as output, but
this is not enforced. We use output mode [-] (instead of [!]) for [x] to ensure
that type class search succeed on goals like [TCEq (if ? then e1 else e2) ?y],
see https://gitlab.mpi-sws.org/iris/iris/merge_requests/391 for a use case.
Mode [-] is harmless, the only instance of [TCEq] is [TCEq_refl] below, so we
cannot create loops. *)
Inductive TCEq {A} (x : A) : A → Prop := TCEq_refl : TCEq x x.
Existing Class TCEq.
Global Existing Instance TCEq_refl.
Global Hint Mode TCEq ! - - : typeclass_instances.
Lemma TCEq_eq {A} (x1 x2 : A) : TCEq x1 x2 ↔ x1 = x2.
Proof. split; destruct 1; reflexivity. Qed.
(** The [TCSimpl x y] type class is similar to [TCEq] but performs [simpl]
before proving the goal by reflexivity. Similar to [TCEq], the argument [x]
is the input and [y] the output. When solving [TCEq x y], the argument [x]
should be a concrete term and [y] an evar for the [simpl]ed result. *)
Class TCSimpl {A} (x x' : A) := TCSimpl_TCEq : TCEq x x'.
Global Hint Extern 0 (TCSimpl _ _) =>
(* Since the second argument should be an evar, we can call [simpl] on the
whole goal. *)
simpl; notypeclasses refine (TCEq_refl _) : typeclass_instances.
Global Hint Mode TCSimpl ! - - : typeclass_instances.
Lemma TCSimpl_eq {A} (x1 x2 : A) : TCSimpl x1 x2 ↔ x1 = x2.
Proof. apply TCEq_eq. Qed.
Inductive TCDiag {A} (C : A → Prop) : A → A → Prop :=
| TCDiag_diag x : C x → TCDiag C x x.
Existing Class TCDiag.
Global Existing Instance TCDiag_diag.
Global Hint Mode TCDiag ! ! ! - : typeclass_instances.
Global Hint Mode TCDiag ! ! - ! : typeclass_instances.
(** Given a proposition [P] that is a type class, [tc_to_bool P] will return
[true] iff there is an instance of [P]. It is often useful in Ltac programming,
where one can do [lazymatch tc_to_bool P with true => .. | false => .. end]. *)
Definition tc_to_bool (P : Prop)
{p : bool} `{TCIf P (TCEq p true) (TCEq p false)} : bool := p.
(** Throughout this development we use [stdpp_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Declare Scope stdpp_scope.
Delimit Scope stdpp_scope with stdpp.
Global Open Scope stdpp_scope.
(** Change [True] and [False] into notations in order to enable overloading.
We will use this to give [True] and [False] a different interpretation for
embedded logics. *)
Notation "'True'" := True (format "True") : type_scope.
Notation "'False'" := False (format "False") : type_scope.
(** Change [forall] into a notation in order to enable overloading. *)
Notation "'forall' x .. y , P" := (forall x, .. (forall y, P) ..)
(at level 200, x binder, y binder, right associativity,
only parsing) : type_scope.
(** * Equality *)
(** Introduce some Haskell style like notations. *)
Notation "(=)" := eq (only parsing) : stdpp_scope.
Notation "( x =.)" := (eq x) (only parsing) : stdpp_scope.
Notation "(.= x )" := (λ y, eq y x) (only parsing) : stdpp_scope.
Notation "(≠)" := (λ x y, x ≠ y) (only parsing) : stdpp_scope.
Notation "( x ≠.)" := (λ y, x ≠ y) (only parsing) : stdpp_scope.
Notation "(.≠ x )" := (λ y, y ≠ x) (only parsing) : stdpp_scope.
Infix "=@{ A }" := (@eq A)
(at level 70, only parsing, no associativity) : stdpp_scope.
Notation "(=@{ A } )" := (@eq A) (only parsing) : stdpp_scope.
Notation "(≠@{ A } )" := (λ X Y, ¬X =@{A} Y) (only parsing) : stdpp_scope.
Notation "X ≠@{ A } Y":= (¬X =@{ A } Y)
(at level 70, only parsing, no associativity) : stdpp_scope.
Global Hint Extern 0 (_ = _) => reflexivity : core.
Global Hint Extern 100 (_ ≠ _) => discriminate : core.
Global Instance: ∀ A, PreOrder (=@{A}).
Proof. split; repeat intro; congruence. Qed.
(** ** Setoid equality *)
(** We define an operational type class for setoid equality, i.e., the
"canonical" equivalence for a type. The typeclass is tied to the \equiv
symbol. This is based on (Spitters/van der Weegen, 2011). *)
Class Equiv A := equiv: relation A.
Global Hint Mode Equiv ! : typeclass_instances.
(** We instruct setoid rewriting to infer [equiv] as a relation on
type [A] when needed. This allows setoid_rewrite to solve constraints
of shape [Proper (eq ==> ?R) f] using [Proper (eq ==> (equiv (A:=A))) f]
when an equivalence relation is available on type [A]. We put this instance
at level 150 so it does not take precedence over Coq's stdlib instances,
favoring inference of [eq] (all Coq functions are automatically morphisms
for [eq]). We have [eq] (at 100) < [≡] (at 150) < [⊑] (at 200). *)
Global Instance equiv_rewrite_relation `{Equiv A} :
RewriteRelation (@equiv A _) | 150 := {}.
Infix "≡" := equiv (at level 70, no associativity) : stdpp_scope.
Infix "≡@{ A }" := (@equiv A _)
(at level 70, only parsing, no associativity) : stdpp_scope.
Notation "(≡)" := equiv (only parsing) : stdpp_scope.
Notation "( X ≡.)" := (equiv X) (only parsing) : stdpp_scope.
Notation "(.≡ X )" := (λ Y, Y ≡ X) (only parsing) : stdpp_scope.
Notation "(≢)" := (λ X Y, ¬X ≡ Y) (only parsing) : stdpp_scope.
Notation "X ≢ Y":= (¬X ≡ Y) (at level 70, no associativity) : stdpp_scope.
Notation "( X ≢.)" := (λ Y, X ≢ Y) (only parsing) : stdpp_scope.
Notation "(.≢ X )" := (λ Y, Y ≢ X) (only parsing) : stdpp_scope.
Notation "(≡@{ A } )" := (@equiv A _) (only parsing) : stdpp_scope.
Notation "(≢@{ A } )" := (λ X Y, ¬X ≡@{A} Y) (only parsing) : stdpp_scope.
Notation "X ≢@{ A } Y":= (¬X ≡@{ A } Y)
(at level 70, only parsing, no associativity) : stdpp_scope.
(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse.
Various std++ tactics assume that this class is only instantiated if [≡]
is an equivalence relation. *)
Class LeibnizEquiv A `{Equiv A} :=
leibniz_equiv (x y : A) : x ≡ y → x = y.
Global Hint Mode LeibnizEquiv ! ! : typeclass_instances.
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (≡@{A})} (x y : A) :
x ≡ y ↔ x = y.
Proof. split; [apply leibniz_equiv|]. intros ->; reflexivity. Qed.
Ltac fold_leibniz := repeat
match goal with
| H : context [ _ ≡@{?A} _ ] |- _ =>
setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
| |- context [ _ ≡@{?A} _ ] =>
setoid_rewrite (leibniz_equiv_iff (A:=A))
end.
Ltac unfold_leibniz := repeat
match goal with
| H : context [ _ =@{?A} _ ] |- _ =>
setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
| |- context [ _ =@{?A} _ ] =>
setoid_rewrite <-(leibniz_equiv_iff (A:=A))
end.
Definition equivL {A} : Equiv A := (=).
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Global Instance: Params (@equiv) 2 := {}.
(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Global Instance equiv_default_relation `{Equiv A} :
DefaultRelation (≡@{A}) | 3 := {}.
Global Hint Extern 0 (_ ≡ _) => reflexivity : core.
Global Hint Extern 0 (_ ≡ _) => symmetry; assumption : core.
(** * Type classes *)
(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. *)
Class Decision (P : Prop) := decide : {P} + {¬P}.
Global Hint Mode Decision ! : typeclass_instances.
Global Arguments decide _ {_} : simpl never, assert.
(** Although [RelDecision R] is just [∀ x y, Decision (R x y)], we make this
an explicit class instead of a notation for two reasons:
- It allows us to control [Hint Mode] more precisely. In particular, if it were
defined as a notation, the above [Hint Mode] for [Decision] would not prevent
diverging instance search when looking for [RelDecision (@eq ?A)], which would
result in it looking for [Decision (@eq ?A x y)], i.e. an instance where the
head position of [Decision] is not en evar.
- We use it to avoid inefficient computation due to eager evaluation of
propositions by [vm_compute]. This inefficiency arises for example if
[(x = y) := (f x = f y)]. Since [decide (x = y)] evaluates to
[decide (f x = f y)], this would then lead to evaluation of [f x] and [f y].
Using the [RelDecision], the [f] is hidden under a lambda, which prevents
unnecessary evaluation. *)
Class RelDecision {A B} (R : A → B → Prop) :=
decide_rel x y :: Decision (R x y).
Global Hint Mode RelDecision ! ! ! : typeclass_instances.
Global Arguments decide_rel {_ _} _ {_} _ _ : simpl never, assert.
Notation EqDecision A := (RelDecision (=@{A})).
(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
Global Hint Mode Inhabited ! : typeclass_instances.
Global Arguments populate {_} _ : assert.
(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.
Global Hint Mode ProofIrrel ! : typeclass_instances.
(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++.)] it
allows us to write [inj (k ++.)] instead of [app_inv_head k]. *)
Class Inj {A B} (R : relation A) (S : relation B) (f : A → B) : Prop :=
inj x y : S (f x) (f y) → R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
(S : relation C) (f : A → B → C) : Prop :=
inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2) → R1 x1 y1 ∧ R2 x2 y2.
Class Cancel {A B} (S : relation B) (f : A → B) (g : B → A) : Prop :=
cancel x : S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A → B) :=
surj y : ∃ x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A → A → A) : Prop :=
idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B → B → A) : Prop :=
comm x y : R (f x y) (f y x).
Class LeftId {A} (R : relation A) (i : A) (f : A → A → A) : Prop :=
left_id x : R (f i x) x.
Class RightId {A} (R : relation A) (i : A) (f : A → A → A) : Prop :=
right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A → A → A) : Prop :=
assoc x y z : R (f x (f y z)) (f (f x y) z).
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A → A → A) : Prop :=
left_absorb x : R (f i x) i.
Class RightAbsorb {A} (R : relation A) (i : A) (f : A → A → A) : Prop :=
right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
anti_symm x y : S x y → S y x → R x y.
Class Total {A} (R : relation A) := total x y : R x y ∨ R y x.
Class Trichotomy {A} (R : relation A) :=
trichotomy x y : R x y ∨ x = y ∨ R y x.
Class TrichotomyT {A} (R : relation A) :=
trichotomyT x y : {R x y} + {x = y} + {R y x}.
Notation Involutive R f := (Cancel R f f).
Lemma involutive {A} {R : relation A} (f : A → A) `{Involutive R f} x :
R (f (f x)) x.
Proof. auto. Qed.
Global Arguments irreflexivity {_} _ {_} _ _ : assert.
Global Arguments inj {_ _ _ _} _ {_} _ _ _ : assert.
Global Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _: assert.
Global Arguments cancel {_ _ _} _ _ {_} _ : assert.
Global Arguments surj {_ _ _} _ {_} _ : assert.
Global Arguments idemp {_ _} _ {_} _ : assert.
Global Arguments comm {_ _ _} _ {_} _ _ : assert.
Global Arguments left_id {_ _} _ _ {_} _ : assert.
Global Arguments right_id {_ _} _ _ {_} _ : assert.
Global Arguments assoc {_ _} _ {_} _ _ _ : assert.
Global Arguments left_absorb {_ _} _ _ {_} _ : assert.
Global Arguments right_absorb {_ _} _ _ {_} _ : assert.
Global Arguments anti_symm {_ _} _ {_} _ _ _ _ : assert.
Global Arguments total {_} _ {_} _ _ : assert.
Global Arguments trichotomy {_} _ {_} _ _ : assert.
Global Arguments trichotomyT {_} _ {_} _ _ : assert.
Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y → ¬R y x.
Proof. intuition. Qed.
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y ↔ R y x.
Proof. intuition. Qed.
Lemma not_inj `{Inj A B R R' f} x y : ¬R x y → ¬R' (f x) (f y).
Proof. intuition. Qed.
Lemma not_inj2_1 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
¬R x1 x2 → ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.
Lemma not_inj2_2 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
¬R' y1 y2 → ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR' HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.
Lemma inj_iff {A B} {R : relation A} {S : relation B} (f : A → B)
`{!Inj R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y) ↔ R x y.
Proof. firstorder. Qed.
Global Instance inj2_inj_1 `{Inj2 A B C R1 R2 R3 f} y : Inj R1 R3 (λ x, f x y).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
Global Instance inj2_inj_2 `{Inj2 A B C R1 R2 R3 f} x : Inj R2 R3 (f x).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
Lemma cancel_inj `{Cancel A B R1 f g, !Equivalence R1, !Proper (R2 ==> R1) f} :
Inj R1 R2 g.
Proof.
intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity.
Qed.
Lemma cancel_surj `{Cancel A B R1 f g} : Surj R1 f.
Proof. intros y. exists (g y). auto. Qed.
(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
Lemma idemp_L {A} f `{!@IdemP A (=) f} x : f x x = x.
Proof. auto. Qed.
Lemma comm_L {A B} f `{!@Comm A B (=) f} x y : f x y = f y x.
Proof. auto. Qed.
Lemma left_id_L {A} i f `{!@LeftId A (=) i f} x : f i x = x.
Proof. auto. Qed.
Lemma right_id_L {A} i f `{!@RightId A (=) i f} x : f x i = x.
Proof. auto. Qed.
Lemma assoc_L {A} f `{!@Assoc A (=) f} x y z : f x (f y z) = f (f x y) z.
Proof. auto. Qed.
Lemma left_absorb_L {A} i f `{!@LeftAbsorb A (=) i f} x : f i x = i.
Proof. auto. Qed.
Lemma right_absorb_L {A} i f `{!@RightAbsorb A (=) i f} x : f x i = i.
Proof. auto. Qed.
(** ** Generic orders *)
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y ∧ ¬R Y X.
Global Instance: Params (@strict) 2 := {}.
Class PartialOrder {A} (R : relation A) : Prop := {
partial_order_pre :: PreOrder R;
partial_order_anti_symm :: AntiSymm (=) R
}.
Global Hint Mode PartialOrder ! ! : typeclass_instances.
Class TotalOrder {A} (R : relation A) : Prop := {
total_order_partial :: PartialOrder R;
total_order_trichotomy :: Trichotomy (strict R)
}.
Global Hint Mode TotalOrder ! ! : typeclass_instances.
(** * Logic *)
Global Instance prop_inhabited : Inhabited Prop := populate True.
Notation "(∧)" := and (only parsing) : stdpp_scope.
Notation "( A ∧.)" := (and A) (only parsing) : stdpp_scope.
Notation "(.∧ B )" := (λ A, A ∧ B) (only parsing) : stdpp_scope.
Notation "(∨)" := or (only parsing) : stdpp_scope.
Notation "( A ∨.)" := (or A) (only parsing) : stdpp_scope.
Notation "(.∨ B )" := (λ A, A ∨ B) (only parsing) : stdpp_scope.
Notation "(↔)" := iff (only parsing) : stdpp_scope.
Notation "( A ↔.)" := (iff A) (only parsing) : stdpp_scope.
Notation "(.↔ B )" := (λ A, A ↔ B) (only parsing) : stdpp_scope.
Global Hint Extern 0 (_ ↔ _) => reflexivity : core.
Global Hint Extern 0 (_ ↔ _) => symmetry; assumption : core.
Lemma or_l P Q : ¬Q → P ∨ Q ↔ P.
Proof. tauto. Qed.
Lemma or_r P Q : ¬P → P ∨ Q ↔ Q.
Proof. tauto. Qed.
Lemma and_wlog_l (P Q : Prop) : (Q → P) → Q → (P ∧ Q).
Proof. tauto. Qed.
Lemma and_wlog_r (P Q : Prop) : P → (P → Q) → (P ∧ Q).
Proof. tauto. Qed.
Lemma impl_transitive (P Q R : Prop) : (P → Q) → (Q → R) → (P → R).
Proof. tauto. Qed.
Lemma forall_proper {A} (P Q : A → Prop) :
(∀ x, P x ↔ Q x) → (∀ x, P x) ↔ (∀ x, Q x).
Proof. firstorder. Qed.
Lemma exist_proper {A} (P Q : A → Prop) :
(∀ x, P x ↔ Q x) → (∃ x, P x) ↔ (∃ x, Q x).
Proof. firstorder. Qed.
Global Instance eq_comm {A} : Comm (↔) (=@{A}).
Proof. red; intuition. Qed.
Global Instance flip_eq_comm {A} : Comm (↔) (λ x y, y =@{A} x).
Proof. red; intuition. Qed.
Global Instance iff_comm : Comm (↔) (↔).
Proof. red; intuition. Qed.
Global Instance and_comm : Comm (↔) (∧).
Proof. red; intuition. Qed.
Global Instance and_assoc : Assoc (↔) (∧).
Proof. red; intuition. Qed.
Global Instance and_idemp : IdemP (↔) (∧).
Proof. red; intuition. Qed.
Global Instance or_comm : Comm (↔) (∨).
Proof. red; intuition. Qed.
Global Instance or_assoc : Assoc (↔) (∨).
Proof. red; intuition. Qed.
Global Instance or_idemp : IdemP (↔) (∨).
Proof. red; intuition. Qed.
Global Instance True_and : LeftId (↔) True (∧).
Proof. red; intuition. Qed.
Global Instance and_True : RightId (↔) True (∧).
Proof. red; intuition. Qed.
Global Instance False_and : LeftAbsorb (↔) False (∧).
Proof. red; intuition. Qed.
Global Instance and_False : RightAbsorb (↔) False (∧).
Proof. red; intuition. Qed.
Global Instance False_or : LeftId (↔) False (∨).
Proof. red; intuition. Qed.
Global Instance or_False : RightId (↔) False (∨).
Proof. red; intuition. Qed.
Global Instance True_or : LeftAbsorb (↔) True (∨).
Proof. red; intuition. Qed.
Global Instance or_True : RightAbsorb (↔) True (∨).
Proof. red; intuition. Qed.
Global Instance True_impl : LeftId (↔) True impl.
Proof. unfold impl. red; intuition. Qed.
Global Instance impl_True : RightAbsorb (↔) True impl.
Proof. unfold impl. red; intuition. Qed.
(** * Common data types *)
(** ** Functions *)
Notation "(→)" := (λ A B, A → B) (only parsing) : stdpp_scope.
Notation "( A →.)" := (λ B, A → B) (only parsing) : stdpp_scope.
Notation "(.→ B )" := (λ A, A → B) (only parsing) : stdpp_scope.
Notation "t $ r" := (t r)
(at level 65, right associativity, only parsing) : stdpp_scope.
Notation "($)" := (λ f x, f x) (only parsing) : stdpp_scope.
Notation "(.$ x )" := (λ f, f x) (only parsing) : stdpp_scope.
Infix "∘" := compose : stdpp_scope.
Notation "(∘)" := compose (only parsing) : stdpp_scope.
Notation "( f ∘.)" := (compose f) (only parsing) : stdpp_scope.
Notation "(.∘ f )" := (λ g, compose g f) (only parsing) : stdpp_scope.
Global Instance impl_inhabited {A} `{Inhabited B} : Inhabited (A → B) :=
populate (λ _, inhabitant).
(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
Global Arguments id _ _ / : assert.
Global Arguments compose _ _ _ _ _ _ / : assert.
Global Arguments flip _ _ _ _ _ _ / : assert.
Global Arguments const _ _ _ _ / : assert.
Global Typeclasses Transparent id compose flip const.
Definition fun_map {A A' B B'} (f: A' → A) (g: B → B') (h : A → B) : A' → B' :=
g ∘ h ∘ f.
Global Instance const_proper `{R1 : relation A, R2 : relation B} (x : B) :
Reflexive R2 → Proper (R1 ==> R2) (λ _, x).
Proof. intros ? y1 y2; reflexivity. Qed.
Global Instance id_inj {A} : Inj (=) (=) (@id A).
Proof. intros ??; auto. Qed.
Global Instance compose_inj {A B C} R1 R2 R3 (f : A → B) (g : B → C) :
Inj R1 R2 f → Inj R2 R3 g → Inj R1 R3 (g ∘ f).
Proof. red; intuition. Qed.
Global Instance id_surj {A} : Surj (=) (@id A).
Proof. intros y; exists y; reflexivity. Qed.
Global Instance compose_surj {A B C} R (f : A → B) (g : B → C) :
Surj (=) f → Surj R g → Surj R (g ∘ f).
Proof.
intros ?? x. unfold compose. destruct (surj g x) as [y ?].
destruct (surj f y) as [z ?]. exists z. congruence.
Qed.
Global Instance const2_comm {A B} (x : B) : Comm (=) (λ _ _ : A, x).
Proof. intros ?; reflexivity. Qed.
Global Instance const2_assoc {A} (x : A) : Assoc (=) (λ _ _ : A, x).
Proof. intros ???; reflexivity. Qed.
Global Instance id1_assoc {A} : Assoc (=) (λ x _ : A, x).
Proof. intros ???; reflexivity. Qed.
Global Instance id2_assoc {A} : Assoc (=) (λ _ x : A, x).
Proof. intros ???; reflexivity. Qed.
Global Instance id1_idemp {A} : IdemP (=) (λ x _ : A, x).
Proof. intros ?; reflexivity. Qed.
Global Instance id2_idemp {A} : IdemP (=) (λ _ x : A, x).
Proof. intros ?; reflexivity. Qed.
(** ** Lists *)
Global Instance list_inhabited {A} : Inhabited (list A) := populate [].
Definition zip_with {A B C} (f : A → B → C) : list A → list B → list C :=
fix go l1 l2 :=
match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).
(** ** Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
Global Hint Unfold Is_true : core.
Global Hint Immediate Is_true_eq_left : core.
Global Hint Resolve orb_prop_intro andb_prop_intro : core.
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).
Global Instance bool_inhabated : Inhabited bool := populate true.
Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Global Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.
Lemma andb_True b1 b2 : b1 && b2 ↔ b1 ∧ b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2 ↔ b1 ∨ b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b ↔ ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_true (b : bool) : b ↔ b = true.
Proof. now destruct b. Qed.
Lemma Is_true_true_1 (b : bool) : b → b = true.
Proof. apply Is_true_true. Qed.
Lemma Is_true_true_2 (b : bool) : b = true → b.
Proof. apply Is_true_true. Qed.
Lemma Is_true_false (b : bool) : ¬ b ↔ b = false.
Proof. now destruct b; simpl. Qed.
Lemma Is_true_false_1 (b : bool) : ¬b → b = false.
Proof. apply Is_true_false. Qed.
Lemma Is_true_false_2 (b : bool) : b = false → ¬b.
Proof. apply Is_true_false. Qed.
(** ** Unit *)
Global Instance unit_equiv : Equiv unit := λ _ _, True.
Global Instance unit_equivalence : Equivalence (≡@{unit}).
Proof. repeat split. Qed.
Global Instance unit_leibniz : LeibnizEquiv unit.
Proof. intros [] []; reflexivity. Qed.
Global Instance unit_inhabited: Inhabited unit := populate ().
(** ** Empty *)
Global Instance Empty_set_equiv : Equiv Empty_set := λ _ _, True.
Global Instance Empty_set_equivalence : Equivalence (≡@{Empty_set}).
Proof. repeat split. Qed.
Global Instance Empty_set_leibniz : LeibnizEquiv Empty_set.
Proof. intros [] []; reflexivity. Qed.
(** ** Products *)
Notation "( x ,.)" := (pair x) (only parsing) : stdpp_scope.
Notation "(., y )" := (λ x, (x,y)) (only parsing) : stdpp_scope.
Notation "p .1" := (fst p).
Notation "p .2" := (snd p).
Global Instance: Params (@pair) 2 := {}.
Global Instance: Params (@fst) 2 := {}.
Global Instance: Params (@snd) 2 := {}.
Global Instance: Params (@curry) 3 := {}.
Global Instance: Params (@uncurry) 3 := {}.
Definition uncurry3 {A B C D} (f : A → B → C → D) (p : A * B * C) : D :=
let '(a,b,c) := p in f a b c.
Global Instance: Params (@uncurry3) 4 := {}.
Definition uncurry4 {A B C D E} (f : A → B → C → D → E) (p : A * B * C * D) : E :=
let '(a,b,c,d) := p in f a b c d.
Global Instance: Params (@uncurry4) 5 := {}.
Definition curry3 {A B C D} (f : A * B * C → D) (a : A) (b : B) (c : C) : D :=
f (a, b, c).
Global Instance: Params (@curry3) 4 := {}.
Definition curry4 {A B C D E} (f : A * B * C * D → E)
(a : A) (b : B) (c : C) (d : D) : E := f (a, b, c, d).
Global Instance: Params (@curry4) 5 := {}.
Definition prod_map {A A' B B'} (f: A → A') (g: B → B') (p : A * B) : A' * B' :=
(f (p.1), g (p.2)).
Global Instance: Params (@prod_map) 4 := {}.
Global Arguments prod_map {_ _ _ _} _ _ !_ / : assert.
Definition prod_zip {A A' A'' B B' B''} (f : A → A' → A'') (g : B → B' → B'')
(p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Global Instance: Params (@prod_zip) 6 := {}.
Global Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ / : assert.
Definition prod_swap {A B} (p : A * B) : B * A := (p.2, p.1).
Global Arguments prod_swap {_ _} !_ /.
Global Instance: Params (@prod_swap) 2 := {}.
Global Instance prod_inhabited {A B} (iA : Inhabited A)
(iB : Inhabited B) : Inhabited (A * B) :=
match iA, iB with populate x, populate y => populate (x,y) end.
(** Note that we need eta for products for the [uncurry_curry] lemmas to hold
in non-applied form ([uncurry (curry f) = f]). *)
Lemma curry_uncurry {A B C} (f : A → B → C) : curry (uncurry f) = f.
Proof. reflexivity. Qed.
Lemma uncurry_curry {A B C} (f : A * B → C) p : uncurry (curry f) p = f p.
Proof. destruct p; reflexivity. Qed.
Lemma curry3_uncurry3 {A B C D} (f : A → B → C → D) : curry3 (uncurry3 f) = f.
Proof. reflexivity. Qed.
Lemma uncurry3_curry3 {A B C D} (f : A * B * C → D) p :
uncurry3 (curry3 f) p = f p.
Proof. destruct p as [[??] ?]; reflexivity. Qed.
Lemma curry4_uncurry4 {A B C D E} (f : A → B → C → D → E) :
curry4 (uncurry4 f) = f.
Proof. reflexivity. Qed.
Lemma uncurry4_curry4 {A B C D E} (f : A * B * C * D → E) p :
uncurry4 (curry4 f) p = f p.
Proof. destruct p as [[[??] ?] ?]; reflexivity. Qed.
(** [pair_eq] as a name is more consistent with our usual naming. *)
Lemma pair_eq {A B} (a1 a2 : A) (b1 b2 : B) :
(a1, b1) = (a2, b2) ↔ a1 = a2 ∧ b1 = b2.
Proof. apply pair_equal_spec. Qed.
Global Instance pair_inj {A B} : Inj2 (=) (=) (=) (@pair A B).
Proof. injection 1; auto. Qed.
Global Instance prod_map_inj {A A' B B'} (f : A → A') (g : B → B') :
Inj (=) (=) f → Inj (=) (=) g → Inj (=) (=) (prod_map f g).
Proof.
intros ?? [??] [??] ?; simpl in *; f_equal;
[apply (inj f)|apply (inj g)]; congruence.
Qed.
Global Instance prod_swap_cancel {A B} :
Cancel (=) (@prod_swap A B) (@prod_swap B A).
Proof. intros [??]; reflexivity. Qed.
Global Instance prod_swap_inj {A B} : Inj (=) (=) (@prod_swap A B).
Proof. apply cancel_inj. Qed.
Global Instance prod_swap_surj {A B} : Surj (=) (@prod_swap A B).
Proof. apply cancel_surj. Qed.
Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
relation (A * B) := λ x y, R1 (x.1) (y.1) ∧ R2 (x.2) (y.2).
Section prod_relation.
Context `{RA : relation A, RB : relation B}.
Global Instance prod_relation_refl :
Reflexive RA → Reflexive RB → Reflexive (prod_relation RA RB).
Proof. firstorder eauto. Qed.
Global Instance prod_relation_sym :
Symmetric RA → Symmetric RB → Symmetric (prod_relation RA RB).
Proof. firstorder eauto. Qed.
Global Instance prod_relation_trans :
Transitive RA → Transitive RB → Transitive (prod_relation RA RB).
Proof. firstorder eauto. Qed.
Global Instance prod_relation_equiv :
Equivalence RA → Equivalence RB → Equivalence (prod_relation RA RB).
Proof. split; apply _. Qed.
Global Instance pair_proper' : Proper (RA ==> RB ==> prod_relation RA RB) pair.
Proof. firstorder eauto. Qed.
Global Instance pair_inj' : Inj2 RA RB (prod_relation RA RB) pair.
Proof. inversion_clear 1; eauto. Qed.
Global Instance fst_proper' : Proper (prod_relation RA RB ==> RA) fst.
Proof. firstorder eauto. Qed.
Global Instance snd_proper' : Proper (prod_relation RA RB ==> RB) snd.
Proof. firstorder eauto. Qed.
Global Instance prod_swap_proper' :
Proper (prod_relation RA RB ==> prod_relation RB RA) prod_swap.
Proof. firstorder eauto. Qed.
Global Instance curry_proper' `{RC : relation C} :
Proper ((prod_relation RA RB ==> RC) ==> RA ==> RB ==> RC) curry.
Proof. firstorder eauto. Qed.
Global Instance uncurry_proper' `{RC : relation C} :
Proper ((RA ==> RB ==> RC) ==> prod_relation RA RB ==> RC) uncurry.
Proof. intros f1 f2 Hf [x1 y1] [x2 y2] []; apply Hf; assumption. Qed.
Global Instance curry3_proper' `{RC : relation C, RD : relation D} :
Proper ((prod_relation (prod_relation RA RB) RC ==> RD) ==>
RA ==> RB ==> RC ==> RD) curry3.
Proof. firstorder eauto. Qed.
Global Instance uncurry3_proper' `{RC : relation C, RD : relation D} :
Proper ((RA ==> RB ==> RC ==> RD) ==>
prod_relation (prod_relation RA RB) RC ==> RD) uncurry3.
Proof. intros f1 f2 Hf [[??] ?] [[??] ?] [[??] ?]; apply Hf; assumption. Qed.
Global Instance curry4_proper' `{RC : relation C, RD : relation D, RE : relation E} :
Proper ((prod_relation (prod_relation (prod_relation RA RB) RC) RD ==> RE) ==>
RA ==> RB ==> RC ==> RD ==> RE) curry4.
Proof. firstorder eauto. Qed.
Global Instance uncurry4_proper' `{RC : relation C, RD : relation D, RE : relation E} :
Proper ((RA ==> RB ==> RC ==> RD ==> RE) ==>
prod_relation (prod_relation (prod_relation RA RB) RC) RD ==> RE) uncurry4.
Proof.
intros f1 f2 Hf [[[??] ?] ?] [[[??] ?] ?] [[[??] ?] ?]; apply Hf; assumption.
Qed.
End prod_relation.
Global Instance prod_equiv `{Equiv A,Equiv B} : Equiv (A * B) :=
prod_relation (≡) (≡).
(** Below we make [prod_equiv] type class opaque, so we first lift all
instances *)
Section prod_setoid.
Context `{Equiv A, Equiv B}.
Global Instance prod_equivalence :
Equivalence (≡@{A}) → Equivalence (≡@{B}) → Equivalence (≡@{A * B}) := _.
Global Instance pair_proper : Proper ((≡) ==> (≡) ==> (≡@{A*B})) pair := _.
Global Instance pair_equiv_inj : Inj2 (≡) (≡) (≡@{A*B}) pair := _.
Global Instance fst_proper : Proper ((≡@{A*B}) ==> (≡)) fst := _.
Global Instance snd_proper : Proper ((≡@{A*B}) ==> (≡)) snd := _.
Global Instance prod_swap_proper :
Proper ((≡@{A*B}) ==> (≡@{B*A})) prod_swap := _.
Global Instance curry_proper `{Equiv C} :
Proper (((≡@{A*B}) ==> (≡@{C})) ==> (≡) ==> (≡) ==> (≡)) curry := _.
Global Instance uncurry_proper `{Equiv C} :
Proper (((≡) ==> (≡) ==> (≡)) ==> (≡@{A*B}) ==> (≡@{C})) uncurry := _.
Global Instance curry3_proper `{Equiv C, Equiv D} :
Proper (((≡@{A*B*C}) ==> (≡@{D})) ==>
(≡) ==> (≡) ==> (≡) ==> (≡)) curry3 := _.
Global Instance uncurry3_proper `{Equiv C, Equiv D} :
Proper (((≡) ==> (≡) ==> (≡) ==> (≡)) ==>
(≡@{A*B*C}) ==> (≡@{D})) uncurry3 := _.
Global Instance curry4_proper `{Equiv C, Equiv D, Equiv E} :
Proper (((≡@{A*B*C*D}) ==> (≡@{E})) ==>
(≡) ==> (≡) ==> (≡) ==> (≡) ==> (≡)) curry4 := _.
Global Instance uncurry4_proper `{Equiv C, Equiv D, Equiv E} :
Proper (((≡) ==> (≡) ==> (≡) ==> (≡) ==> (≡)) ==>
(≡@{A*B*C*D}) ==> (≡@{E})) uncurry4 := _.
Lemma pair_equiv (a1 a2 : A) (b1 b2 : B) :
(a1, b1) ≡ (a2, b2) ↔ a1 ≡ a2 ∧ b1 ≡ b2.
Proof. reflexivity. Qed.
End prod_setoid.
Global Typeclasses Opaque prod_equiv.
Global Instance prod_leibniz `{LeibnizEquiv A, LeibnizEquiv B} :
LeibnizEquiv (A * B).
Proof. intros [??] [??] [??]; f_equal; apply leibniz_equiv; auto. Qed.
(** ** Sums *)
Definition sum_map {A A' B B'} (f: A → A') (g: B → B') (xy : A + B) : A' + B' :=
match xy with inl x => inl (f x) | inr y => inr (g y) end.
Global Arguments sum_map {_ _ _ _} _ _ !_ / : assert.
Global Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
match iA with populate x => populate (inl x) end.
Global Instance sum_inhabited_r {A B} (iB : Inhabited B) : Inhabited (A + B) :=
match iB with populate y => populate (inr y) end.
Global Instance inl_inj {A B} : Inj (=) (=) (@inl A B).
Proof. injection 1; auto. Qed.
Global Instance inr_inj {A B} : Inj (=) (=) (@inr A B).
Proof. injection 1; auto. Qed.
Global Instance sum_map_inj {A A' B B'} (f : A → A') (g : B → B') :
Inj (=) (=) f → Inj (=) (=) g → Inj (=) (=) (sum_map f g).
Proof. intros ?? [?|?] [?|?] [=]; f_equal; apply (inj _); auto. Qed.
Inductive sum_relation {A B}
(RA : relation A) (RB : relation B) : relation (A + B) :=
| inl_related x1 x2 : RA x1 x2 → sum_relation RA RB (inl x1) (inl x2)
| inr_related y1 y2 : RB y1 y2 → sum_relation RA RB (inr y1) (inr y2).
Section sum_relation.
Context `{RA : relation A, RB : relation B}.
Global Instance sum_relation_refl :
Reflexive RA → Reflexive RB → Reflexive (sum_relation RA RB).
Proof. intros ?? [?|?]; constructor; reflexivity. Qed.
Global Instance sum_relation_sym :
Symmetric RA → Symmetric RB → Symmetric (sum_relation RA RB).
Proof. destruct 3; constructor; eauto. Qed.
Global Instance sum_relation_trans :
Transitive RA → Transitive RB → Transitive (sum_relation RA RB).
Proof. destruct 3; inversion_clear 1; constructor; eauto. Qed.
Global Instance sum_relation_equiv :
Equivalence RA → Equivalence RB → Equivalence (sum_relation RA RB).
Proof. split; apply _. Qed.
Global Instance inl_proper' : Proper (RA ==> sum_relation RA RB) inl.
Proof. constructor; auto. Qed.
Global Instance inr_proper' : Proper (RB ==> sum_relation RA RB) inr.
Proof. constructor; auto. Qed.
Global Instance inl_inj' : Inj RA (sum_relation RA RB) inl.
Proof. inversion_clear 1; auto. Qed.
Global Instance inr_inj' : Inj RB (sum_relation RA RB) inr.
Proof. inversion_clear 1; auto. Qed.
End sum_relation.
Global Instance sum_equiv `{Equiv A, Equiv B} : Equiv (A + B) := sum_relation (≡) (≡).
Global Instance inl_proper `{Equiv A, Equiv B} : Proper ((≡) ==> (≡)) (@inl A B) := _.
Global Instance inr_proper `{Equiv A, Equiv B} : Proper ((≡) ==> (≡)) (@inr A B) := _.
Global Instance inl_equiv_inj `{Equiv A, Equiv B} : Inj (≡) (≡) (@inl A B) := _.
Global Instance inr_equiv_inj `{Equiv A, Equiv B} : Inj (≡) (≡) (@inr A B) := _.
Global Typeclasses Opaque sum_equiv.
(** ** Option *)
Global Instance option_inhabited {A} : Inhabited (option A) := populate None.
(** ** Sigma types *)
Global Arguments existT {_ _} _ _ : assert.
Global Arguments projT1 {_ _} _ : assert.
Global Arguments projT2 {_ _} _ : assert.
Global Arguments exist {_} _ _ _ : assert.
Global Arguments proj1_sig {_ _} _ : assert.
Global Arguments proj2_sig {_ _} _ : assert.
Notation "x ↾ p" := (exist _ x p) (at level 20) : stdpp_scope.
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : stdpp_scope.
Lemma proj1_sig_inj {A} (P : A → Prop) x (Px : P x) y (Py : P y) :
x↾Px = y↾Py → x = y.
Proof. injection 1; trivial. Qed.
Section sig_map.
Context `{P : A → Prop} `{Q : B → Prop} (f : A → B) (Hf : ∀ x, P x → Q (f x)).
Definition sig_map (x : sig P) : sig Q := f (`x) ↾ Hf _ (proj2_sig x).
Global Instance sig_map_inj:
(∀ x, ProofIrrel (P x)) → Inj (=) (=) f → Inj (=) (=) sig_map.
Proof.
intros ?? [x Hx] [y Hy]. injection 1. intros Hxy.
apply (inj f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto.
Qed.
End sig_map.
Global Arguments sig_map _ _ _ _ _ _ !_ / : assert.
Definition proj1_ex {P : Prop} {Q : P → Prop} (p : ∃ x, Q x) : P :=
let '(ex_intro _ x _) := p in x.
Definition proj2_ex {P : Prop} {Q : P → Prop} (p : ∃ x, Q x) : Q (proj1_ex p) :=
let '(ex_intro _ x H) := p in H.
(** * Operations on sets *)
(** We define operational type classes for the traditional operations and
relations on sets: the empty set [∅], the union [(∪)],
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(##)]. *)
Class Empty A := empty: A.
Global Hint Mode Empty ! : typeclass_instances.
Notation "∅" := empty (format "∅") : stdpp_scope.
Global Instance empty_inhabited `(Empty A) : Inhabited A := populate ∅.
Class Union A := union: A → A → A.
Global Hint Mode Union ! : typeclass_instances.
Global Instance: Params (@union) 2 := {}.
Infix "∪" := union (at level 50, left associativity) : stdpp_scope.
Notation "(∪)" := union (only parsing) : stdpp_scope.
Notation "( x ∪.)" := (union x) (only parsing) : stdpp_scope.
Notation "(.∪ x )" := (λ y, union y x) (only parsing) : stdpp_scope.
Infix "∪*" := (zip_with (∪)) (at level 50, left associativity) : stdpp_scope.
Notation "(∪*)" := (zip_with (∪)) (only parsing) : stdpp_scope.
Definition union_list `{Empty A} `{Union A} : list A → A := fold_right (∪) ∅.
Global Arguments union_list _ _ _ !_ / : assert.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃ l") : stdpp_scope.
Class Intersection A := intersection: A → A → A.
Global Hint Mode Intersection ! : typeclass_instances.
Global Instance: Params (@intersection) 2 := {}.
Infix "∩" := intersection (at level 40) : stdpp_scope.
Notation "(∩)" := intersection (only parsing) : stdpp_scope.
Notation "( x ∩.)" := (intersection x) (only parsing) : stdpp_scope.
Notation "(.∩ x )" := (λ y, intersection y x) (only parsing) : stdpp_scope.
Class Difference A := difference: A → A → A.
Global Hint Mode Difference ! : typeclass_instances.
Global Instance: Params (@difference) 2 := {}.
Infix "∖" := difference (at level 40, left associativity) : stdpp_scope.
Notation "(∖)" := difference (only parsing) : stdpp_scope.
Notation "( x ∖.)" := (difference x) (only parsing) : stdpp_scope.
Notation "(.∖ x )" := (λ y, difference y x) (only parsing) : stdpp_scope.
Infix "∖*" := (zip_with (∖)) (at level 40, left associativity) : stdpp_scope.
Notation "(∖*)" := (zip_with (∖)) (only parsing) : stdpp_scope.
(** The operation [cprod X Y] gives the Cartesian product of set-like structures
[X] and [Y], i.e., [cprod X Y := { (x,y) | x ∈ X, y ∈ Y }]. The implementation/
instance depends on the representation of the set. *)
Class CProd A B C := cprod : A → B → C.
Global Hint Mode CProd ! ! - : typeclass_instances.
Global Instance: Params (@cprod) 4 := {}.
(** We do not have a notation for [cprod] (yet) since this operation seems
not commonly enough used. *)
Class Singleton A B := singleton: A → B.
Global Hint Mode Singleton - ! : typeclass_instances.
Global Instance: Params (@singleton) 3 := {}.
Notation "{[ x ]}" := (singleton x) (at level 1) : stdpp_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
(union .. (union (singleton x) (singleton y)) .. (singleton z))
(at level 1) : stdpp_scope.
Class SubsetEq A := subseteq: relation A.
Global Hint Mode SubsetEq ! : typeclass_instances.
Global Instance: Params (@subseteq) 2 := {}.
Infix "⊆" := subseteq (at level 70) : stdpp_scope.
Notation "(⊆)" := subseteq (only parsing) : stdpp_scope.
Notation "( X ⊆.)" := (subseteq X) (only parsing) : stdpp_scope.
Notation "(.⊆ X )" := (λ Y, Y ⊆ X) (only parsing) : stdpp_scope.
Notation "X ⊈ Y" := (¬X ⊆ Y) (at level 70) : stdpp_scope.
Notation "(⊈)" := (λ X Y, X ⊈ Y) (only parsing) : stdpp_scope.
Notation "( X ⊈.)" := (λ Y, X ⊈ Y) (only parsing) : stdpp_scope.
Notation "(.⊈ X )" := (λ Y, Y ⊈ X) (only parsing) : stdpp_scope.
Infix "⊆@{ A }" := (@subseteq A _) (at level 70, only parsing) : stdpp_scope.
Notation "(⊆@{ A } )" := (@subseteq A _) (only parsing) : stdpp_scope.
Infix "⊆*" := (Forall2 (⊆)) (at level 70) : stdpp_scope.
Notation "(⊆*)" := (Forall2 (⊆)) (only parsing) : stdpp_scope.
Global Hint Extern 0 (_ ⊆ _) => reflexivity : core.
Global Hint Extern 0 (_ ⊆* _) => reflexivity : core.
Infix "⊂" := (strict (⊆)) (at level 70) : stdpp_scope.
Notation "(⊂)" := (strict (⊆)) (only parsing) : stdpp_scope.
Notation "( X ⊂.)" := (strict (⊆) X) (only parsing) : stdpp_scope.
Notation "(.⊂ X )" := (λ Y, Y ⊂ X) (only parsing) : stdpp_scope.
Notation "X ⊄ Y" := (¬X ⊂ Y) (at level 70) : stdpp_scope.
Notation "(⊄)" := (λ X Y, X ⊄ Y) (only parsing) : stdpp_scope.
Notation "( X ⊄.)" := (λ Y, X ⊄ Y) (only parsing) : stdpp_scope.
Notation "(.⊄ X )" := (λ Y, Y ⊄ X) (only parsing) : stdpp_scope.
Infix "⊂@{ A }" := (strict (⊆@{A})) (at level 70, only parsing) : stdpp_scope.
Notation "(⊂@{ A } )" := (strict (⊆@{A})) (only parsing) : stdpp_scope.
Notation "X ⊆ Y ⊆ Z" := (X ⊆ Y ∧ Y ⊆ Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊆ Y ⊂ Z" := (X ⊆ Y ∧ Y ⊂ Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊂ Y ⊆ Z" := (X ⊂ Y ∧ Y ⊆ Z) (at level 70, Y at next level) : stdpp_scope.
Notation "X ⊂ Y ⊂ Z" := (X ⊂ Y ∧ Y ⊂ Z) (at level 70, Y at next level) : stdpp_scope.
(** We define type classes for multisets: disjoint union [⊎] and the multiset
singleton [{[+ _ +]}]. Multiset literals [{[+ x1; ..; xn +]}] are defined in
terms of iterated disjoint union [{[+ x1 +]} ⊎ .. ⊎ {[+ xn +]}], and are thus
different from set literals [{[ x1; ..; xn ]}], which use [∪].
Note that in principle we could reuse the set singleton [{[ _ ]}] for multisets,
and define [{[+ x1; ..; xn +]}] as [{[ x1 ]} ⊎ .. ⊎ {[ xn ]}]. However, this
would risk accidentally using [{[ x1; ..; xn ]}] for multisets (leading to
unexpected results) and lead to ambigious pretty printing for [{[+ x +]}]. *)
Class DisjUnion A := disj_union: A → A → A.
Global Hint Mode DisjUnion ! : typeclass_instances.
Global Instance: Params (@disj_union) 2 := {}.
Infix "⊎" := disj_union (at level 50, left associativity) : stdpp_scope.
Notation "(⊎)" := disj_union (only parsing) : stdpp_scope.
Notation "( x ⊎.)" := (disj_union x) (only parsing) : stdpp_scope.
Notation "(.⊎ x )" := (λ y, disj_union y x) (only parsing) : stdpp_scope.
Class SingletonMS A B := singletonMS: A → B.
Global Hint Mode SingletonMS - ! : typeclass_instances.
Global Instance: Params (@singletonMS) 3 := {}.
Notation "{[+ x +]}" := (singletonMS x)
(at level 1, format "{[+ x +]}") : stdpp_scope.
Notation "{[+ x ; y ; .. ; z +]}" :=
(disj_union .. (disj_union (singletonMS x) (singletonMS y)) .. (singletonMS z))
(at level 1, format "{[+ x ; y ; .. ; z +]}") : stdpp_scope.
Definition option_to_set `{Singleton A C, Empty C} (mx : option A) : C :=
match mx with None => ∅ | Some x => {[ x ]} end.
Fixpoint list_to_set `{Singleton A C, Empty C, Union C} (l : list A) : C :=
match l with [] => ∅ | x :: l => {[ x ]} ∪ list_to_set l end.
Fixpoint list_to_set_disj `{SingletonMS A C, Empty C, DisjUnion C} (l : list A) : C :=
match l with [] => ∅ | x :: l => {[+ x +]} ⊎ list_to_set_disj l end.
Class ScalarMul N A := scalar_mul : N → A → A.
Global Hint Mode ScalarMul - ! : typeclass_instances.
(** The [N] arguments is typically [nat] or [Z], so we do not want to rewrite
in that. Hence, the value of [Params] is 3. *)
Global Instance: Params (@scalar_mul) 3 := {}.
(** The notation [*:] and level is taken from ssreflect, see
https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/ssrnotations.v *)
Infix "*:" := scalar_mul (at level 40) : stdpp_scope.
Notation "(*:)" := scalar_mul (only parsing) : stdpp_scope.
Notation "( x *:.)" := (scalar_mul x) (only parsing) : stdpp_scope.
Notation "(.*: x )" := (λ y, scalar_mul y x) (only parsing) : stdpp_scope.
(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.
Global Hint Mode Lexico ! : typeclass_instances.
Class ElemOf A B := elem_of: A → B → Prop.
Global Hint Mode ElemOf - ! : typeclass_instances.
Global Instance: Params (@elem_of) 3 := {}.
Infix "∈" := elem_of (at level 70) : stdpp_scope.
Notation "(∈)" := elem_of (only parsing) : stdpp_scope.
Notation "( x ∈.)" := (elem_of x) (only parsing) : stdpp_scope.
Notation "(.∈ X )" := (λ x, elem_of x X) (only parsing) : stdpp_scope.
Notation "x ∉ X" := (¬x ∈ X) (at level 80) : stdpp_scope.
Notation "(∉)" := (λ x X, x ∉ X) (only parsing) : stdpp_scope.
Notation "( x ∉.)" := (λ X, x ∉ X) (only parsing) : stdpp_scope.
Notation "(.∉ X )" := (λ x, x ∉ X) (only parsing) : stdpp_scope.
Infix "∈@{ B }" := (@elem_of _ B _) (at level 70, only parsing) : stdpp_scope.
Notation "(∈@{ B } )" := (@elem_of _ B _) (only parsing) : stdpp_scope.
Notation "x ∉@{ B } X" := (¬x ∈@{B} X) (at level 80, only parsing) : stdpp_scope.
Notation "(∉@{ B } )" := (λ x X, x ∉@{B} X) (only parsing) : stdpp_scope.
Class Disjoint A := disjoint : A → A → Prop.
Global Hint Mode Disjoint ! : typeclass_instances.
Global Instance: Params (@disjoint) 2 := {}.
Infix "##" := disjoint (at level 70) : stdpp_scope.
Notation "(##)" := disjoint (only parsing) : stdpp_scope.
Notation "( X ##.)" := (disjoint X) (only parsing) : stdpp_scope.
Notation "(.## X )" := (λ Y, Y ## X) (only parsing) : stdpp_scope.
Infix "##@{ A }" := (@disjoint A _) (at level 70, only parsing) : stdpp_scope.
Notation "(##@{ A } )" := (@disjoint A _) (only parsing) : stdpp_scope.
Infix "##*" := (Forall2 (##)) (at level 70) : stdpp_scope.
Notation "(##*)" := (Forall2 (##)) (only parsing) : stdpp_scope.
Global Hint Extern 0 (_ ## _) => symmetry; eassumption : core.
Global Hint Extern 0 (_ ##* _) => symmetry; eassumption : core.
Class Filter A B := filter: ∀ (P : A → Prop) `{∀ x, Decision (P x)}, B → B.
Global Hint Mode Filter - ! : typeclass_instances.
Class UpClose A B := up_close : A → B.
Global Hint Mode UpClose - ! : typeclass_instances.
Notation "↑ x" := (up_close x) (at level 20, format "↑ x").
(** * Monadic operations *)
(** We define operational type classes for the monadic operations bind, join
and fmap. We use these type classes merely for convenient overloading of
notations and do not formalize any theory on monads (we do not even define a
class with the monad laws). *)
Class MRet (M : Type → Type) := mret: ∀ {A}, A → M A.
Global Arguments mret {_ _ _} _ : assert.
Global Instance: Params (@mret) 3 := {}.
Global Hint Mode MRet ! : typeclass_instances.
Class MBind (M : Type → Type) := mbind : ∀ {A B}, (A → M B) → M A → M B.
Global Arguments mbind {_ _ _ _} _ !_ / : assert.
Global Instance: Params (@mbind) 4 := {}.
Global Hint Mode MBind ! : typeclass_instances.
Class MJoin (M : Type → Type) := mjoin: ∀ {A}, M (M A) → M A.
Global Arguments mjoin {_ _ _} !_ / : assert.
Global Instance: Params (@mjoin) 3 := {}.
Global Hint Mode MJoin ! : typeclass_instances.
Class FMap (M : Type → Type) := fmap : ∀ {A B}, (A → B) → M A → M B.
Global Arguments fmap {_ _ _ _} _ !_ / : assert.
Global Instance: Params (@fmap) 4 := {}.
Global Hint Mode FMap ! : typeclass_instances.
Class OMap (M : Type → Type) := omap: ∀ {A B}, (A → option B) → M A → M B.
Global Arguments omap {_ _ _ _} _ !_ / : assert.
Global Instance: Params (@omap) 4 := {}.
Global Hint Mode OMap ! : typeclass_instances.
Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : stdpp_scope.
Notation "( m ≫=.)" := (λ f, mbind f m) (only parsing) : stdpp_scope.
Notation "(.≫= f )" := (mbind f) (only parsing) : stdpp_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : stdpp_scope.
Notation "x ← y ; z" := (y ≫= (λ x : _, z))
(at level 20, y at level 100, z at level 200, only parsing) : stdpp_scope.
Notation "' x ← y ; z" := (y ≫= (λ x : _, z))
(at level 20, x pattern, y at level 100, z at level 200, only parsing) : stdpp_scope.
Infix "<$>" := fmap (at level 61, left associativity) : stdpp_scope.
Notation "x ;; z" := (x ≫= λ _, z)
(at level 100, z at level 200, only parsing, right associativity): stdpp_scope.
Notation "ps .*1" := (fmap (M:=list) fst ps)
(at level 2, left associativity, format "ps .*1").
Notation "ps .*2" := (fmap (M:=list) snd ps)
(at level 2, left associativity, format "ps .*2").
(** For any monad that has a builtin way to throw an exception/error *)
Class MThrow (E : Type) (M : Type → Type) := mthrow : ∀ {A}, E → M A.
Global Arguments mthrow {_ _ _ _} _ : assert.
Global Instance: Params (@mthrow) 4 := {}.
Global Hint Mode MThrow ! ! : typeclass_instances.
(** We use unit as the error content for monads that can only report an error
without any payload like an option *)
Global Notation MFail := (MThrow ()).
Global Notation mfail := (mthrow ()).
Definition guard_or {E} (e : E) `{MThrow E M, MRet M} P `{Decision P} : M P :=
match decide P with
| left H => mret H
| right _ => mthrow e
end.
Global Notation guard := (guard_or ()).
(** * Operations on maps *)
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
The function look up [m !! k] should yield the element at key [k] in [m]. *)
Class Lookup (K A M : Type) := lookup: K → M → option A.
Global Hint Mode Lookup - - ! : typeclass_instances.
Global Instance: Params (@lookup) 5 := {}.
Notation "m !! i" := (lookup i m) (at level 20) : stdpp_scope.
Notation "(!!)" := lookup (only parsing) : stdpp_scope.
Notation "( m !!.)" := (λ i, m !! i) (only parsing) : stdpp_scope.
Notation "(.!! i )" := (lookup i) (only parsing) : stdpp_scope.
Global Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch, assert.
(** The function [lookup_total] should be the total over-approximation
of the partial [lookup] function. *)
Class LookupTotal (K A M : Type) := lookup_total : K → M → A.
Global Hint Mode LookupTotal - - ! : typeclass_instances.
Global Instance: Params (@lookup_total) 5 := {}.
Notation "m !!! i" := (lookup_total i m) (at level 20) : stdpp_scope.
Notation "(!!!)" := lookup_total (only parsing) : stdpp_scope.
Notation "( m !!!.)" := (λ i, m !!! i) (only parsing) : stdpp_scope.
Notation "(.!!! i )" := (lookup_total i) (only parsing) : stdpp_scope.
Global Arguments lookup_total _ _ _ _ !_ !_ / : simpl nomatch, assert.
(** The singleton map *)
Class SingletonM K A M := singletonM: K → A → M.
Global Hint Mode SingletonM - - ! : typeclass_instances.
Global Instance: Params (@singletonM) 5 := {}.
Notation "{[ k := a ]}" := (singletonM k a) (at level 1) : stdpp_scope.
(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
Class Insert (K A M : Type) := insert: K → A → M → M.
Global Hint Mode Insert - - ! : typeclass_instances.
Global Instance: Params (@insert) 5 := {}.
Notation "<[ k := a ]>" := (insert k a)
(at level 5, right associativity, format "<[ k := a ]>") : stdpp_scope.
Global Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch, assert.
(** Notation for more elements (up to 13) *)
(* Defining a generic notation does not seem possible with Coq's
recursive notation system, so we define individual notations
for some cases relevant in practice. *)
(* The "format" makes sure that linebreaks are placed after the separating semicolons [;] when printing. *)
(* TODO : we are using parentheses in the "de-sugaring" of the notation instead of [$] because Coq 8.12
and earlier have trouble with using the notation for printing otherwise.
Once support for Coq 8.12 is dropped, this can be replaced with [$]. *)
Notation "{[ k1 := a1 ; k2 := a2 ]}" :=
(<[ k1 := a1 ]>{[ k2 := a2 ]})
(at level 1, format
"{[ '[hv' '[' k1 := a1 ; ']' '/' '[' k2 := a2 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ]}" :=
(<[ k1 := a1 ]> ( <[ k2 := a2 ]>{[ k3 := a3 ]}))
(at level 1, format
"{[ '[hv' '[' k1 := a1 ; ']' '/' '[' k2 := a2 ; ']' '/' '[' k3 := a3 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ]}" :=
(<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]>{[ k4 := a4 ]})))
(at level 1, format
"{[ '[hv' '[' k1 := a1 ; ']' '/' '[' k2 := a2 ; ']' '/' '[' k3 := a3 ; ']' '/' '[' k4 := a4 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ]}" :=
(<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]>{[ k5 := a5 ]}))))
(at level 1, format
"{[ '[hv' '[' k1 := a1 ; ']' '/' '[' k2 := a2 ; ']' '/' '[' k3 := a3 ; ']' '/' '[' k4 := a4 ; ']' '/' '[' k5 := a5 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ]}" :=
(<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
<[ k5 := a5 ]>{[ k6 := a6 ]})))))
(at level 1, format
"{[ '[hv' '[' k1 := a1 ; ']' '/' '[' k2 := a2 ; ']' '/' '[' k3 := a3 ; ']' '/' '[' k4 := a4 ; ']' '/' '[' k5 := a5 ; ']' '/' '[' k6 := a6 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ]}" :=
(<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
<[ k5 := a5 ]> ( <[ k6 := a6 ]>{[ k7 := a7 ]}))))))
(at level 1, format
"{[ '[hv' '[' k1 := a1 ; ']' '/' '[' k2 := a2 ; ']' '/' '[' k3 := a3 ; ']' '/' '[' k4 := a4 ; ']' '/' '[' k5 := a5 ; ']' '/' '[' k6 := a6 ; ']' '/' '[' k7 := a7 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ; k8 := a8 ]}" :=
(<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
<[ k5 := a5 ]> ( <[ k6 := a6 ]> ( <[ k7 := a7 ]>{[ k8 := a8 ]})))))))
(at level 1, format
"{[ '[hv' '[' k1 := a1 ; ']' '/' '[' k2 := a2 ; ']' '/' '[' k3 := a3 ; ']' '/' '[' k4 := a4 ; ']' '/' '[' k5 := a5 ; ']' '/' '[' k6 := a6 ; ']' '/' '[' k7 := a7 ; ']' '/' '[' k8 := a8 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ; k8 := a8 ; k9 := a9 ]}" :=
(<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
<[ k5 := a5 ]> ( <[ k6 := a6 ]> ( <[ k7 := a7 ]> ( <[ k8 := a8 ]>{[ k9 := a9 ]}))))))))
(at level 1, format
"{[ '[hv' '[' k1 := a1 ; ']' '/' '[' k2 := a2 ; ']' '/' '[' k3 := a3 ; ']' '/' '[' k4 := a4 ; ']' '/' '[' k5 := a5 ; ']' '/' '[' k6 := a6 ; ']' '/' '[' k7 := a7 ; ']' '/' '[' k8 := a8 ; ']' '/' '[' k9 := a9 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ; k8 := a8 ; k9 := a9 ; k10 := a10 ]}" :=
(<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
<[ k5 := a5 ]> ( <[ k6 := a6 ]> ( <[ k7 := a7 ]> ( <[ k8 := a8 ]> (
<[ k9 := a9 ]>{[ k10 := a10 ]})))))))))
(at level 1, format
"{[ '[hv' '[' k1 := a1 ; ']' '/' '[' k2 := a2 ; ']' '/' '[' k3 := a3 ; ']' '/' '[' k4 := a4 ; ']' '/' '[' k5 := a5 ; ']' '/' '[' k6 := a6 ; ']' '/' '[' k7 := a7 ; ']' '/' '[' k8 := a8 ; ']' '/' '[' k9 := a9 ; ']' '/' '[' k10 := a10 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ; k8 := a8 ; k9 := a9 ; k10 := a10 ; k11 := a11 ]}" :=
(<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
<[ k5 := a5 ]> ( <[ k6 := a6 ]> ( <[ k7 := a7 ]> ( <[ k8 := a8 ]> (
<[ k9 := a9 ]> ( <[ k10 := a10 ]>{[ k11 := a11 ]}))))))))))
(at level 1, format
"{[ '[hv' '[' k1 := a1 ; ']' '/' '[' k2 := a2 ; ']' '/' '[' k3 := a3 ; ']' '/' '[' k4 := a4 ; ']' '/' '[' k5 := a5 ; ']' '/' '[' k6 := a6 ; ']' '/' '[' k7 := a7 ; ']' '/' '[' k8 := a8 ; ']' '/' '[' k9 := a9 ; ']' '/' '[' k10 := a10 ; ']' '/' '[' k11 := a11 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ; k8 := a8 ; k9 := a9 ; k10 := a10 ; k11 := a11 ; k12 := a12 ]}" :=
(<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
<[ k5 := a5 ]> ( <[ k6 := a6 ]> ( <[ k7 := a7 ]> ( <[ k8 := a8 ]> (
<[ k9 := a9 ]> ( <[ k10 := a10 ]> ( <[ k11 := a11 ]>{[ k12 := a12 ]})))))))))))
(at level 1, format
"{[ '[hv' '[' k1 := a1 ; ']' '/' '[' k2 := a2 ; ']' '/' '[' k3 := a3 ; ']' '/' '[' k4 := a4 ; ']' '/' '[' k5 := a5 ; ']' '/' '[' k6 := a6 ; ']' '/' '[' k7 := a7 ; ']' '/' '[' k8 := a8 ; ']' '/' '[' k9 := a9 ; ']' '/' '[' k10 := a10 ; ']' '/' '[' k11 := a11 ; ']' '/' '[' k12 := a12 ']' ']' ]}") : stdpp_scope.
Notation "{[ k1 := a1 ; k2 := a2 ; k3 := a3 ; k4 := a4 ; k5 := a5 ; k6 := a6 ; k7 := a7 ; k8 := a8 ; k9 := a9 ; k10 := a10 ; k11 := a11 ; k12 := a12 ; k13 := a13 ]}" :=
(<[ k1 := a1 ]> ( <[ k2 := a2 ]> ( <[ k3 := a3 ]> ( <[ k4 := a4 ]> (
<[ k5 := a5 ]> ( <[ k6 := a6 ]> ( <[ k7 := a7 ]> ( <[ k8 := a8 ]> (
<[ k9 := a9 ]> ( <[ k10 := a10 ]> ( <[ k11 := a11 ]> ( <[ k12 := a12 ]>{[ k13 := a13 ]}))))))))))))
(at level 1, format
"{[ '[hv' '[' k1 := a1 ; ']' '/' '[' k2 := a2 ; ']' '/' '[' k3 := a3 ; ']' '/' '[' k4 := a4 ; ']' '/' '[' k5 := a5 ; ']' '/' '[' k6 := a6 ; ']' '/' '[' k7 := a7 ; ']' '/' '[' k8 := a8 ; ']' '/' '[' k9 := a9 ; ']' '/' '[' k10 := a10 ; ']' '/' '[' k11 := a11 ; ']' '/' '[' k12 := a12 ; ']' '/' '[' k13 := a13 ']' ']' ]}") : stdpp_scope.
(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
Class Delete (K M : Type) := delete: K → M → M.
Global Hint Mode Delete - ! : typeclass_instances.
Global Instance: Params (@delete) 4 := {}.
Global Arguments delete _ _ _ !_ !_ / : simpl nomatch, assert.
(** The function [alter f k m] should update the value at key [k] using the
function [f], which is called with the original value. *)
Class Alter (K A M : Type) := alter: (A → A) → K → M → M.
Global Hint Mode Alter - - ! : typeclass_instances.
Global Instance: Params (@alter) 4 := {}.
Global Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch, assert.
(** The function [partial_alter f k m] should update the value at key [k] using the
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f]
yields [None]. *)
Class PartialAlter (K A M : Type) :=
partial_alter: (option A → option A) → K → M → M.
Global Hint Mode PartialAlter - - ! : typeclass_instances.
Global Instance: Params (@partial_alter) 4 := {}.
Global Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch, assert.
(** The function [dom m] should yield the domain of [m]. That is a finite
set of type [D] that contains the keys that are a member of [m].
[D] is an output of the typeclass, i.e., there can be only one instance per map
type [M]. *)
Class Dom (M D : Type) := dom: M → D.
Global Hint Mode Dom ! - : typeclass_instances.
Global Instance: Params (@dom) 3 := {}.
Global Arguments dom : clear implicits.
Global Arguments dom {_ _ _} !_ / : simpl nomatch, assert.
(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type → Type) :=
merge: ∀ {A B C}, (option A → option B → option C) → M A → M B → M C.
Global Hint Mode Merge ! : typeclass_instances.
Global Instance: Params (@merge) 4 := {}.
Global Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch, assert.
(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
union_with: (A → A → option A) → M → M → M.
Global Hint Mode UnionWith - ! : typeclass_instances.
Global Instance: Params (@union_with) 3 := {}.
Global Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch, assert.
(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
intersection_with: (A → A → option A) → M → M → M.
Global Hint Mode IntersectionWith - ! : typeclass_instances.
Global Instance: Params (@intersection_with) 3 := {}.
Global Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch, assert.
Class DifferenceWith (A M : Type) :=
difference_with: (A → A → option A) → M → M → M.
Global Hint Mode DifferenceWith - ! : typeclass_instances.
Global Instance: Params (@difference_with) 3 := {}.
Global Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch, assert.
Definition intersection_with_list `{IntersectionWith A M}
(f : A → A → option A) : M → list M → M := fold_right (intersection_with f).
Global Arguments intersection_with_list _ _ _ _ _ !_ / : assert.
(** * Notations for lattices. *)
(** SqSubsetEq registers the "canonical" partial order for a type, and is used
for the \sqsubseteq symbol. *)
Class SqSubsetEq A := sqsubseteq: relation A.
Global Hint Mode SqSubsetEq ! : typeclass_instances.
Global Instance: Params (@sqsubseteq) 2 := {}.
Infix "⊑" := sqsubseteq (at level 70) : stdpp_scope.
Notation "(⊑)" := sqsubseteq (only parsing) : stdpp_scope.
Notation "( x ⊑.)" := (sqsubseteq x) (only parsing) : stdpp_scope.
Notation "(.⊑ y )" := (λ x, sqsubseteq x y) (only parsing) : stdpp_scope.
Infix "⊑@{ A }" := (@sqsubseteq A _) (at level 70, only parsing) : stdpp_scope.
Notation "(⊑@{ A } )" := (@sqsubseteq A _) (only parsing) : stdpp_scope.
(** [sqsubseteq] does not take precedence over the stdlib's instances (like [eq],
[impl], [iff]) or std++'s [equiv].
We have [eq] (at 100) < [≡] (at 150) < [⊑] (at 200). *)
Global Instance sqsubseteq_rewrite `{SqSubsetEq A} : RewriteRelation (⊑@{A}) | 200 := {}.
Global Hint Extern 0 (_ ⊑ _) => reflexivity : core.
Class Meet A := meet: A → A → A.
Global Hint Mode Meet ! : typeclass_instances.
Global Instance: Params (@meet) 2 := {}.
Infix "⊓" := meet (at level 40) : stdpp_scope.
Notation "(⊓)" := meet (only parsing) : stdpp_scope.
Notation "( x ⊓.)" := (meet x) (only parsing) : stdpp_scope.
Notation "(.⊓ y )" := (λ x, meet x y) (only parsing) : stdpp_scope.
Class Join A := join: A → A → A.
Global Hint Mode Join ! : typeclass_instances.
Global Instance: Params (@join) 2 := {}.
Infix "⊔" := join (at level 50) : stdpp_scope.
Notation "(⊔)" := join (only parsing) : stdpp_scope.
Notation "( x ⊔.)" := (join x) (only parsing) : stdpp_scope.
Notation "(.⊔ y )" := (λ x, join x y) (only parsing) : stdpp_scope.
Class Top A := top : A.
Global Hint Mode Top ! : typeclass_instances.
Notation "⊤" := top (format "⊤") : stdpp_scope.
Class Bottom A := bottom : A.
Global Hint Mode Bottom ! : typeclass_instances.
Notation "⊥" := bottom (format "⊥") : stdpp_scope.
(** * Axiomatization of sets *)
(** The classes [SemiSet A C], [Set_ A C], and [TopSet A C] axiomatize sets of
type [C] with elements of type [A]. The first class, [SemiSet] does not include
intersection and difference. It is useful for the case of lists, where decidable
equality is needed to implement intersection and difference, but not union.
Note that we cannot use the name [Set] since that is a reserved keyword. Hence
we use [Set_]. *)
Class SemiSet A C `{ElemOf A C,
Empty C, Singleton A C, Union C} : Prop := {
not_elem_of_empty (x : A) : x ∉@{C} ∅; (* We prove
[elem_of_empty : x ∈@{C} ∅ ↔ False] in [sets.v], which is more convenient for
rewriting. *)
elem_of_singleton (x y : A) : x ∈@{C} {[ y ]} ↔ x = y;
elem_of_union (X Y : C) (x : A) : x ∈ X ∪ Y ↔ x ∈ X ∨ x ∈ Y
}.
Global Hint Mode SemiSet - ! - - - - : typeclass_instances.
Class Set_ A C `{ElemOf A C, Empty C, Singleton A C,
Union C, Intersection C, Difference C} : Prop := {
set_semi_set :: SemiSet A C;
elem_of_intersection (X Y : C) (x : A) : x ∈ X ∩ Y ↔ x ∈ X ∧ x ∈ Y;
elem_of_difference (X Y : C) (x : A) : x ∈ X ∖ Y ↔ x ∈ X ∧ x ∉ Y
}.
Global Hint Mode Set_ - ! - - - - - - : typeclass_instances.
Class TopSet A C `{ElemOf A C, Empty C, Top C, Singleton A C,
Union C, Intersection C, Difference C} : Prop := {
top_set_set :: Set_ A C;
elem_of_top' (x : A) : x ∈@{C} ⊤; (* We prove [elem_of_top : x ∈@{C} ⊤ ↔ True]
in [sets.v], which is more convenient for rewriting. *)
}.
Global Hint Mode TopSet - ! - - - - - - - : typeclass_instances.
(** We axiomative a finite set as a set whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Class Elements A C := elements: C → list A.
Global Hint Mode Elements - ! : typeclass_instances.
Global Instance: Params (@elements) 3 := {}.
(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
| elem_of_list_here (x : A) l : x ∈ x :: l
| elem_of_list_further (x y : A) l : x ∈ l → x ∈ y :: l.
Global Existing Instance elem_of_list.
Lemma elem_of_list_In {A} (l : list A) x : x ∈ l ↔ In x l.
Proof.
split.
- induction 1; simpl; auto.
- induction l; destruct 1; subst; constructor; auto.
Qed.
Inductive NoDup {A} : list A → Prop :=
| NoDup_nil_2 : NoDup []
| NoDup_cons_2 x l : x ∉ l → NoDup l → NoDup (x :: l).
Lemma NoDup_ListNoDup {A} (l : list A) : NoDup l ↔ List.NoDup l.
Proof.
split.
- induction 1; constructor; rewrite <-?elem_of_list_In; auto.
- induction 1; constructor; rewrite ?elem_of_list_In; auto.
Qed.
(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinSet A C `{ElemOf A C, Empty C, Singleton A C, Union C,
Intersection C, Difference C, Elements A C, EqDecision A} : Prop := {
fin_set_set :: Set_ A C;
elem_of_elements (X : C) x : x ∈ elements X ↔ x ∈ X;
NoDup_elements (X : C) : NoDup (elements X)
}.
Global Hint Mode FinSet - ! - - - - - - - - : typeclass_instances.
Class Size C := size: C → nat.
Global Hint Mode Size ! : typeclass_instances.
Global Arguments size {_ _} !_ / : simpl nomatch, assert.
Global Instance: Params (@size) 2 := {}.
(** The class [MonadSet M] axiomatizes a type constructor [M] that can be
used to construct a set [M A] with elements of type [A]. The advantage
of this class, compared to [Set_], is that it also axiomatizes the
the monadic operations. The disadvantage is that not many inhabitants are
possible: we will only provide as inhabitants [propset] and [listset], which are
represented respectively using Boolean functions and lists with duplicates.
More interesting implementations typically need
decidable equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class MonadSet M `{∀ A, ElemOf A (M A),
∀ A, Empty (M A), ∀ A, Singleton A (M A), ∀ A, Union (M A),
!MBind M, !MRet M, !FMap M, !MJoin M} : Prop := {
monad_set_semi_set A :: SemiSet A (M A);
elem_of_bind {A B} (f : A → M B) (X : M A) (x : B) :
x ∈ X ≫= f ↔ ∃ y, x ∈ f y ∧ y ∈ X;
elem_of_ret {A} (x y : A) : x ∈@{M A} mret y ↔ x = y;
elem_of_fmap {A B} (f : A → B) (X : M A) (x : B) :
x ∈ f <$> X ↔ ∃ y, x = f y ∧ y ∈ X;
elem_of_join {A} (X : M (M A)) (x : A) :
x ∈ mjoin X ↔ ∃ Y : M A, x ∈ Y ∧ Y ∈ X
}.
(** The [Infinite A] class axiomatizes types [A] with infinitely many elements.
It contains a function [fresh : list A → A] that, given a list [xs], gives an
element [fresh xs ∉ xs].
We do not directly make [fresh] a field of the [Infinite] class, but use a
separate operational type class [Fresh] for it. That way we can overload [fresh]
to pick fresh elements from other data structures like sets. See the file
[fin_sets], where we define [fresh : C → A] for any finite set implementation
[FinSet C A].
Note: we require [fresh] to respect permutations, which is needed to define the
aforementioned [fresh] function on finite sets that respect set equality.
Instead of instantiating [Infinite] directly, consider using [max_infinite] or
[inj_infinite] from the [infinite] module. *)
Class Fresh A C := fresh: C → A.
Global Hint Mode Fresh - ! : typeclass_instances.
Global Instance: Params (@fresh) 3 := {}.
Global Arguments fresh : simpl never.
Class Infinite A := {
infinite_fresh :: Fresh A (list A);
infinite_is_fresh (xs : list A) : fresh xs ∉ xs;
infinite_fresh_Permutation :: Proper (@Permutation A ==> (=)) fresh;
}.
Global Hint Mode Infinite ! : typeclass_instances.
Global Arguments infinite_fresh : simpl never.
(** * Miscellaneous *)
Class Half A := half: A → A.
Global Hint Mode Half ! : typeclass_instances.
Notation "½" := half (format "½") : stdpp_scope.
Notation "½*" := (fmap (M:=list) half) : stdpp_scope.
|