1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
(** This file implements the type [coGset A] of finite/cofinite sets
of elements of any countable type [A].
Note that [coGset positive] cannot represent all elements of [coPset]
(e.g., [coPset_suffixes], [coPset_l], and [coPset_r] construct
infinite sets that cannot be represented). *)
From stdpp Require Export sets countable.
From stdpp Require Import decidable finite gmap coPset.
From stdpp Require Import options.
(* Pick up extra assumptions from section parameters. *)
Set Default Proof Using "Type*".
Inductive coGset `{Countable A} :=
| FinGSet (X : gset A)
| CoFinGset (X : gset A).
Global Arguments coGset _ {_ _} : assert.
Global Instance coGset_eq_dec `{Countable A} : EqDecision (coGset A).
Proof. solve_decision. Defined.
Global Instance coGset_countable `{Countable A} : Countable (coGset A).
Proof.
apply (inj_countable'
(λ X, match X with FinGSet X => inl X | CoFinGset X => inr X end)
(λ s, match s with inl X => FinGSet X | inr X => CoFinGset X end)).
by intros [].
Qed.
Section coGset.
Context `{Countable A}.
Global Instance coGset_elem_of : ElemOf A (coGset A) := λ x X,
match X with FinGSet X => x ∈ X | CoFinGset X => x ∉ X end.
Global Instance coGset_empty : Empty (coGset A) := FinGSet ∅.
Global Instance coGset_top : Top (coGset A) := CoFinGset ∅.
Global Instance coGset_singleton : Singleton A (coGset A) := λ x,
FinGSet {[x]}.
Global Instance coGset_union : Union (coGset A) := λ X Y,
match X, Y with
| FinGSet X, FinGSet Y => FinGSet (X ∪ Y)
| CoFinGset X, CoFinGset Y => CoFinGset (X ∩ Y)
| FinGSet X, CoFinGset Y => CoFinGset (Y ∖ X)
| CoFinGset X, FinGSet Y => CoFinGset (X ∖ Y)
end.
Global Instance coGset_intersection : Intersection (coGset A) := λ X Y,
match X, Y with
| FinGSet X, FinGSet Y => FinGSet (X ∩ Y)
| CoFinGset X, CoFinGset Y => CoFinGset (X ∪ Y)
| FinGSet X, CoFinGset Y => FinGSet (X ∖ Y)
| CoFinGset X, FinGSet Y => FinGSet (Y ∖ X)
end.
Global Instance coGset_difference : Difference (coGset A) := λ X Y,
match X, Y with
| FinGSet X, FinGSet Y => FinGSet (X ∖ Y)
| CoFinGset X, CoFinGset Y => FinGSet (Y ∖ X)
| FinGSet X, CoFinGset Y => FinGSet (X ∩ Y)
| CoFinGset X, FinGSet Y => CoFinGset (X ∪ Y)
end.
Global Instance coGset_set : TopSet A (coGset A).
Proof.
split; [split; [split| |]|].
- by intros ??.
- intros x y. unfold elem_of, coGset_elem_of; simpl.
by rewrite elem_of_singleton.
- intros [X|X] [Y|Y] x; unfold elem_of, coGset_elem_of, coGset_union; simpl.
+ set_solver.
+ by rewrite not_elem_of_difference, (comm (∨)).
+ by rewrite not_elem_of_difference.
+ by rewrite not_elem_of_intersection.
- intros [] [];
unfold elem_of, coGset_elem_of, coGset_intersection; set_solver.
- intros [X|X] [Y|Y] x;
unfold elem_of, coGset_elem_of, coGset_difference; simpl.
+ set_solver.
+ rewrite elem_of_intersection. destruct (decide (x ∈ Y)); tauto.
+ set_solver.
+ rewrite elem_of_difference. destruct (decide (x ∈ Y)); tauto.
- done.
Qed.
End coGset.
Global Instance coGset_elem_of_dec `{Countable A} : RelDecision (∈@{coGset A}) :=
λ x X,
match X with
| FinGSet X => decide_rel elem_of x X
| CoFinGset X => not_dec (decide_rel elem_of x X)
end.
Section infinite.
Context `{Countable A, Infinite A}.
Global Instance coGset_leibniz : LeibnizEquiv (coGset A).
Proof.
intros [X|X] [Y|Y]; rewrite set_equiv;
unfold elem_of, coGset_elem_of; simpl; intros HXY.
- f_equal. by apply leibniz_equiv.
- by destruct (exist_fresh (X ∪ Y)) as [? [? ?%HXY]%not_elem_of_union].
- by destruct (exist_fresh (X ∪ Y)) as [? [?%HXY ?]%not_elem_of_union].
- f_equal. apply leibniz_equiv; intros x. by apply not_elem_of_iff.
Qed.
Global Instance coGset_equiv_dec : RelDecision (≡@{coGset A}).
Proof.
refine (λ X Y, cast_if (decide (X = Y))); abstract (by fold_leibniz).
Defined.
Global Instance coGset_disjoint_dec : RelDecision (##@{coGset A}).
Proof.
refine (λ X Y, cast_if (decide (X ∩ Y = ∅)));
abstract (by rewrite disjoint_intersection_L).
Defined.
Global Instance coGset_subseteq_dec : RelDecision (⊆@{coGset A}).
Proof.
refine (λ X Y, cast_if (decide (X ∪ Y = Y)));
abstract (by rewrite subseteq_union_L).
Defined.
Definition coGset_finite (X : coGset A) : bool :=
match X with FinGSet _ => true | CoFinGset _ => false end.
Lemma coGset_finite_spec X : set_finite X ↔ coGset_finite X.
Proof.
destruct X as [X|X];
unfold set_finite, elem_of at 1, coGset_elem_of; simpl.
- split; [done|intros _]. exists (elements X). set_solver.
- split; [intros [Y HXY]%(pred_finite_set(C:=gset A))|done].
by destruct (exist_fresh (X ∪ Y)) as [? [?%HXY ?]%not_elem_of_union].
Qed.
Global Instance coGset_finite_dec (X : coGset A) : Decision (set_finite X).
Proof.
refine (cast_if (decide (coGset_finite X)));
abstract (by rewrite coGset_finite_spec).
Defined.
End infinite.
(** * Pick elements from infinite sets *)
Definition coGpick `{Countable A, Infinite A} (X : coGset A) : A :=
fresh (match X with FinGSet _ => ∅ | CoFinGset X => X end).
Lemma coGpick_elem_of `{Countable A, Infinite A} (X : coGset A) :
¬set_finite X → coGpick X ∈ X.
Proof.
unfold coGpick.
destruct X as [X|X]; rewrite coGset_finite_spec; simpl; [done|].
by intros _; apply is_fresh.
Qed.
(** * Conversion to and from gset *)
Definition coGset_to_gset `{Countable A} (X : coGset A) : gset A :=
match X with FinGSet X => X | CoFinGset _ => ∅ end.
Definition gset_to_coGset `{Countable A} : gset A → coGset A := FinGSet.
Section to_gset.
Context `{Countable A}.
Lemma elem_of_gset_to_coGset (X : gset A) x : x ∈ gset_to_coGset X ↔ x ∈ X.
Proof. done. Qed.
Context `{Infinite A}.
Lemma elem_of_coGset_to_gset (X : coGset A) x :
set_finite X → x ∈ coGset_to_gset X ↔ x ∈ X.
Proof. rewrite coGset_finite_spec. by destruct X. Qed.
Lemma gset_to_coGset_finite (X : gset A) : set_finite (gset_to_coGset X).
Proof. by rewrite coGset_finite_spec. Qed.
End to_gset.
(** * Conversion to coPset *)
Definition coGset_to_coPset (X : coGset positive) : coPset :=
match X with
| FinGSet X => gset_to_coPset X
| CoFinGset X => ⊤ ∖ gset_to_coPset X
end.
Lemma elem_of_coGset_to_coPset X x : x ∈ coGset_to_coPset X ↔ x ∈ X.
Proof.
destruct X as [X|X]; simpl.
- by rewrite elem_of_gset_to_coPset.
- by rewrite elem_of_difference, elem_of_gset_to_coPset, (left_id True (∧)).
Qed.
(** * Inefficient conversion to arbitrary sets with a top element *)
(** This shows that, when [A] is countable, [coGset A] is initial
among sets with [∪], [∩], [∖], [∅], [{[_]}], and [⊤]. *)
Definition coGset_to_top_set `{Countable A, Empty C, Singleton A C, Union C,
Top C, Difference C} (X : coGset A) : C :=
match X with
| FinGSet X => list_to_set (elements X)
| CoFinGset X => ⊤ ∖ list_to_set (elements X)
end.
Lemma elem_of_coGset_to_top_set `{Countable A, TopSet A C} X x :
x ∈@{C} coGset_to_top_set X ↔ x ∈ X.
Proof. destruct X; set_solver. Qed.
Global Typeclasses Opaque coGset_elem_of coGset_empty coGset_top coGset_singleton.
Global Typeclasses Opaque coGset_union coGset_intersection coGset_difference.
|