File: coPset.v

package info (click to toggle)
coq-stdpp 1.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,696 kB
  • sloc: makefile: 52; sh: 35; sed: 1
file content (472 lines) | stat: -rw-r--r-- 20,353 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
(** This files implements the type [coPset] of efficient finite/cofinite sets
of positive binary naturals [positive]. These sets are:

- Closed under union, intersection and set complement.
- Closed under splitting of cofinite sets.

Also, they enjoy various nice properties, such as decidable equality and set
membership, as well as extensional equality (i.e. [X = Y ↔ ∀ x, x ∈ X ↔ x ∈ Y]).

Since [positive]s are bitstrings, we encode [coPset]s as trees that correspond
to the decision function that map bitstrings to bools. *)
From stdpp Require Export sets.
From stdpp Require Import pmap gmap mapset.
From stdpp Require Import options.
Local Open Scope positive_scope.

(** * The tree data structure *)
Inductive coPset_raw :=
  | coPLeaf : bool → coPset_raw
  | coPNode : bool → coPset_raw → coPset_raw → coPset_raw.
Global Instance coPset_raw_eq_dec : EqDecision coPset_raw.
Proof. solve_decision. Defined.

Fixpoint coPset_wf (t : coPset_raw) : bool :=
  match t with
  | coPLeaf _ => true
  | coPNode true (coPLeaf true) (coPLeaf true) => false
  | coPNode false (coPLeaf false) (coPLeaf false) => false
  | coPNode _ l r => coPset_wf l && coPset_wf r
  end.
Global Arguments coPset_wf !_ / : simpl nomatch, assert.

Lemma coPNode_wf b l r :
  coPset_wf l → coPset_wf r →
  (l = coPLeaf true → r = coPLeaf true → b = true → False) →
  (l = coPLeaf false → r = coPLeaf false → b = false → False) →
  coPset_wf (coPNode b l r).
Proof. destruct b, l as [[]|], r as [[]|]; naive_solver. Qed.

Lemma coPNode_wf_l b l r : coPset_wf (coPNode b l r) → coPset_wf l.
Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
Lemma coPNode_wf_r b l r : coPset_wf (coPNode b l r) → coPset_wf r.
Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
Local Hint Immediate coPNode_wf_l coPNode_wf_r : core.

Definition coPNode' (b : bool) (l r : coPset_raw) : coPset_raw :=
  match b, l, r with
  | true, coPLeaf true, coPLeaf true => coPLeaf true
  | false, coPLeaf false, coPLeaf false => coPLeaf false
  | _, _, _ => coPNode b l r
  end.
Global Arguments coPNode' : simpl never.
Lemma coPNode'_wf b l r : coPset_wf l → coPset_wf r → coPset_wf (coPNode' b l r).
Proof. destruct b, l as [[]|], r as [[]|]; simpl; auto. Qed.
Global Hint Resolve coPNode'_wf : core.

Fixpoint coPset_elem_of_raw (p : positive) (t : coPset_raw) {struct t} : bool :=
  match t, p with
  | coPLeaf b, _ => b
  | coPNode b l r, 1 => b
  | coPNode _ l _, p~0 => coPset_elem_of_raw p l
  | coPNode _ _ r, p~1 => coPset_elem_of_raw p r
  end.
Local Notation e_of := coPset_elem_of_raw.
Global Arguments coPset_elem_of_raw _ !_ / : simpl nomatch, assert.
Lemma coPset_elem_of_node b l r p :
  e_of p (coPNode' b l r) = e_of p (coPNode b l r).
Proof. by destruct p, b, l as [[]|], r as [[]|]. Qed.

Lemma coPLeaf_wf t b : (∀ p, e_of p t = b) → coPset_wf t → t = coPLeaf b.
Proof.
  induction t as [b'|b' l IHl r IHr]; intros Ht ?; [f_equal; apply (Ht 1)|].
  assert (b' = b) by (apply (Ht 1)); subst.
  assert (l = coPLeaf b) as -> by (apply IHl; try apply (λ p, Ht (p~0)); eauto).
  assert (r = coPLeaf b) as -> by (apply IHr; try apply (λ p, Ht (p~1)); eauto).
  by destruct b.
Qed.
Lemma coPset_eq t1 t2 :
  (∀ p, e_of p t1 = e_of p t2) → coPset_wf t1 → coPset_wf t2 → t1 = t2.
Proof.
  revert t2.
  induction t1 as [b1|b1 l1 IHl r1 IHr]; intros [b2|b2 l2 r2] Ht ??; simpl in *.
  - f_equal; apply (Ht 1).
  - by discriminate (coPLeaf_wf (coPNode b2 l2 r2) b1).
  - by discriminate (coPLeaf_wf (coPNode b1 l1 r1) b2).
  - f_equal; [apply (Ht 1)| |].
    + apply IHl; try apply (λ x, Ht (x~0)); eauto.
    + apply IHr; try apply (λ x, Ht (x~1)); eauto.
Qed.

Fixpoint coPset_singleton_raw (p : positive) : coPset_raw :=
  match p with
  | 1 => coPNode true (coPLeaf false) (coPLeaf false)
  | p~0 => coPNode' false (coPset_singleton_raw p) (coPLeaf false)
  | p~1 => coPNode' false (coPLeaf false) (coPset_singleton_raw p)
  end.
Global Instance coPset_union_raw : Union coPset_raw :=
  fix go t1 t2 := let _ : Union _ := @go in
  match t1, t2 with
  | coPLeaf false, coPLeaf false => coPLeaf false
  | _, coPLeaf true => coPLeaf true
  | coPLeaf true, _ => coPLeaf true
  | coPNode b l r, coPLeaf false => coPNode b l r
  | coPLeaf false, coPNode b l r => coPNode b l r
  | coPNode b1 l1 r1, coPNode b2 l2 r2 => coPNode' (b1||b2) (l1 ∪ l2) (r1 ∪ r2)
  end.
Local Arguments union _ _!_ !_ / : assert.
Global Instance coPset_intersection_raw : Intersection coPset_raw :=
  fix go t1 t2 := let _ : Intersection _ := @go in
  match t1, t2 with
  | coPLeaf true, coPLeaf true => coPLeaf true
  | _, coPLeaf false => coPLeaf false
  | coPLeaf false, _ => coPLeaf false
  | coPNode b l r, coPLeaf true => coPNode b l r
  | coPLeaf true, coPNode b l r => coPNode b l r
  | coPNode b1 l1 r1, coPNode b2 l2 r2 => coPNode' (b1&&b2) (l1 ∩ l2) (r1 ∩ r2)
  end.
Local Arguments intersection _ _!_ !_ / : assert.
Fixpoint coPset_opp_raw (t : coPset_raw) : coPset_raw :=
  match t with
  | coPLeaf b => coPLeaf (negb b)
  | coPNode b l r => coPNode' (negb b) (coPset_opp_raw l) (coPset_opp_raw r)
  end.

Lemma coPset_singleton_wf p : coPset_wf (coPset_singleton_raw p).
Proof. induction p; simpl; eauto. Qed.
Lemma coPset_union_wf t1 t2 : coPset_wf t1 → coPset_wf t2 → coPset_wf (t1 ∪ t2).
Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
Lemma coPset_intersection_wf t1 t2 :
  coPset_wf t1 → coPset_wf t2 → coPset_wf (t1 ∩ t2).
Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
Lemma coPset_opp_wf t : coPset_wf (coPset_opp_raw t).
Proof. induction t as [[]|[]]; simpl; eauto. Qed.
Lemma coPset_elem_of_singleton p q : e_of p (coPset_singleton_raw q) ↔ p = q.
Proof.
  split; [|by intros <-; induction p; simpl; rewrite ?coPset_elem_of_node].
  by revert q; induction p; intros [?|?|]; simpl;
    rewrite ?coPset_elem_of_node; intros; f_equal/=; auto.
Qed.
Lemma coPset_elem_of_union t1 t2 p : e_of p (t1 ∪ t2) = e_of p t1 || e_of p t2.
Proof.
  by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
    rewrite ?coPset_elem_of_node; simpl;
    rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r.
Qed.
Lemma coPset_elem_of_intersection t1 t2 p :
  e_of p (t1 ∩ t2) = e_of p t1 && e_of p t2.
Proof.
  by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
    rewrite ?coPset_elem_of_node; simpl;
    rewrite ?andb_true_l, ?andb_false_l, ?andb_true_r, ?andb_false_r.
Qed.
Lemma coPset_elem_of_opp t p : e_of p (coPset_opp_raw t) = negb (e_of p t).
Proof.
  by revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
    rewrite ?coPset_elem_of_node; simpl.
Qed.

(** * Packed together + set operations *)
Definition coPset := { t | coPset_wf t }.

Global Instance coPset_singleton : Singleton positive coPset := λ p,
  coPset_singleton_raw p ↾ coPset_singleton_wf _.
Global Instance coPset_elem_of : ElemOf positive coPset := λ p X, e_of p (`X).
Global Instance coPset_empty : Empty coPset := coPLeaf false ↾ I.
Global Instance coPset_top : Top coPset := coPLeaf true ↾ I.
Global Instance coPset_union : Union coPset := λ X Y,
  let (t1,Ht1) := X in let (t2,Ht2) := Y in
  (t1 ∪ t2) ↾ coPset_union_wf _ _ Ht1 Ht2.
Global Instance coPset_intersection : Intersection coPset := λ X Y,
  let (t1,Ht1) := X in let (t2,Ht2) := Y in
  (t1 ∩ t2) ↾ coPset_intersection_wf _ _ Ht1 Ht2.
Global Instance coPset_difference : Difference coPset := λ X Y,
  let (t1,Ht1) := X in let (t2,Ht2) := Y in
  (t1 ∩ coPset_opp_raw t2) ↾ coPset_intersection_wf _ _ Ht1 (coPset_opp_wf _).

Global Instance coPset_top_set : TopSet positive coPset.
Proof.
  split; [split; [split| |]|].
  - by intros ??.
  - intros p q. apply coPset_elem_of_singleton.
  - intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_union; simpl.
    by rewrite coPset_elem_of_union, orb_True.
  - intros [t] [t'] p; unfold elem_of,coPset_elem_of,coPset_intersection; simpl.
    by rewrite coPset_elem_of_intersection, andb_True.
  - intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_difference; simpl.
    by rewrite coPset_elem_of_intersection,
      coPset_elem_of_opp, andb_True, negb_True.
  - done.
Qed.

(** Iris and specifically [solve_ndisj] heavily rely on this hint. *)
Local Definition coPset_top_subseteq := top_subseteq (C:=coPset).
Global Hint Resolve coPset_top_subseteq : core.

Global Instance coPset_leibniz : LeibnizEquiv coPset.
Proof.
  intros X Y; rewrite set_equiv; intros HXY.
  apply (sig_eq_pi _), coPset_eq; try apply @proj2_sig.
  intros p; apply eq_bool_prop_intro, (HXY p).
Qed.

Global Instance coPset_elem_of_dec : RelDecision (∈@{coPset}).
Proof. solve_decision. Defined.
Global Instance coPset_equiv_dec : RelDecision (≡@{coPset}).
Proof. refine (λ X Y, cast_if (decide (X = Y))); abstract (by fold_leibniz). Defined.
Global Instance mapset_disjoint_dec : RelDecision (##@{coPset}).
Proof.
 refine (λ X Y, cast_if (decide (X ∩ Y = ∅)));
  abstract (by rewrite disjoint_intersection_L).
Defined.
Global Instance mapset_subseteq_dec : RelDecision (⊆@{coPset}).
Proof.
 refine (λ X Y, cast_if (decide (X ∪ Y = Y))); abstract (by rewrite subseteq_union_L).
Defined.

(** * Finite sets *)
Fixpoint coPset_finite (t : coPset_raw) : bool :=
  match t with
  | coPLeaf b => negb b | coPNode b l r => coPset_finite l && coPset_finite r
  end.
Lemma coPset_finite_node b l r :
  coPset_finite (coPNode' b l r) = coPset_finite l && coPset_finite r.
Proof. by destruct b, l as [[]|], r as [[]|]. Qed.
Lemma coPset_finite_spec X : set_finite X ↔ coPset_finite (`X).
Proof.
  destruct X as [t Ht].
  unfold set_finite, elem_of at 1, coPset_elem_of; simpl; clear Ht; split.
  - induction t as [b|b l IHl r IHr]; simpl.
    { destruct b; simpl; [intros [l Hl]|done].
      by apply (infinite_is_fresh l), Hl. }
    intros [ll Hll]; rewrite andb_True; split.
    + apply IHl; exists (omap (maybe (~0)) ll); intros i.
      rewrite elem_of_list_omap; intros; exists (i~0); auto.
    + apply IHr; exists (omap (maybe (~1)) ll); intros i.
      rewrite elem_of_list_omap; intros; exists (i~1); auto.
  - induction t as [b|b l IHl r IHr]; simpl; [by exists []; destruct b|].
    rewrite andb_True; intros [??]; destruct IHl as [ll ?], IHr as [rl ?]; auto.
    exists ([1] ++ ((~0) <$> ll) ++ ((~1) <$> rl))%list; intros [i|i|]; simpl;
      rewrite elem_of_cons, elem_of_app, !elem_of_list_fmap; naive_solver.
Qed.
Global Instance coPset_finite_dec (X : coPset) : Decision (set_finite X).
Proof.
  refine (cast_if (decide (coPset_finite (`X)))); by rewrite coPset_finite_spec.
Defined.

(** * Pick element from infinite sets *)
(* The function [coPpick X] gives an element that is in the set [X], provided
that the set [X] is infinite. Note that [coPpick] function is implemented by
depth-first search, so using it repeatedly to obtain elements [x], and
inserting these elements [x] into the set [X], will give rise to a very
unbalanced tree. *)
Fixpoint coPpick_raw (t : coPset_raw) : option positive :=
  match t with
  | coPLeaf true | coPNode true _ _ => Some 1
  | coPLeaf false => None
  | coPNode false l r =>
     match coPpick_raw l with
     | Some i => Some (i~0) | None => (~1) <$> coPpick_raw r
     end
  end.
Definition coPpick (X : coPset) : positive := default 1 (coPpick_raw (`X)).

Lemma coPpick_raw_elem_of t i : coPpick_raw t = Some i → e_of i t.
Proof.
  revert i; induction t as [[]|[] l ? r]; intros i ?; simplify_eq/=; auto.
  destruct (coPpick_raw l); simplify_option_eq; auto.
Qed.
Lemma coPpick_raw_None t : coPpick_raw t = None → coPset_finite t.
Proof.
  induction t as [[]|[] l ? r]; intros i; simplify_eq/=; auto.
  destruct (coPpick_raw l); simplify_option_eq; auto.
Qed.
Lemma coPpick_elem_of X : ¬set_finite X → coPpick X ∈ X.
Proof.
  destruct X as [t ?]; unfold coPpick; destruct (coPpick_raw _) as [j|] eqn:?.
  - by intros; apply coPpick_raw_elem_of.
  - by intros []; apply coPset_finite_spec, coPpick_raw_None.
Qed.

(** * Conversion to psets *)
Fixpoint coPset_to_Pset_raw (t : coPset_raw) : Pmap () :=
  match t with
  | coPLeaf _ => PEmpty
  | coPNode false l r => pmap.PNode (coPset_to_Pset_raw l) None (coPset_to_Pset_raw r)
  | coPNode true l r => pmap.PNode (coPset_to_Pset_raw l) (Some ()) (coPset_to_Pset_raw r)
  end.
Definition coPset_to_Pset (X : coPset) : Pset :=
  let (t,Ht) := X in Mapset (coPset_to_Pset_raw t).
Lemma elem_of_coPset_to_Pset X i : set_finite X → i ∈ coPset_to_Pset X ↔ i ∈ X.
Proof.
  rewrite coPset_finite_spec; destruct X as [t Ht].
  change (coPset_finite t → coPset_to_Pset_raw t !! i = Some () ↔ e_of i t).
  clear Ht; revert i; induction t as [[]|[] l IHl r IHr]; intros [i|i|];
    simpl; rewrite ?andb_True, ?pmap.Pmap_lookup_PNode; naive_solver.
Qed.

(** * Conversion from psets *)
Definition Pset_to_coPset_raw_aux (go : Pmap_ne () → coPset_raw)
    (mt : Pmap ()) : coPset_raw :=
  match mt with PNodes t => go t | PEmpty => coPLeaf false end.
Fixpoint Pset_ne_to_coPset_raw (t : Pmap_ne ()) : coPset_raw :=
  pmap.Pmap_ne_case t $ λ ml mx mr,
    coPNode match mx with Some _ => true | None => false end
      (Pset_to_coPset_raw_aux Pset_ne_to_coPset_raw ml)
      (Pset_to_coPset_raw_aux Pset_ne_to_coPset_raw mr).
Definition Pset_to_coPset_raw : Pmap () → coPset_raw :=
  Pset_to_coPset_raw_aux Pset_ne_to_coPset_raw.

Lemma Pset_to_coPset_raw_PNode ml mx mr :
  pmap.PNode_valid ml mx mr →
  Pset_to_coPset_raw (pmap.PNode ml mx mr) =
    coPNode match mx with Some _ => true | None => false end
    (Pset_to_coPset_raw ml) (Pset_to_coPset_raw mr).
Proof. by destruct ml, mx, mr. Qed.
Lemma Pset_to_coPset_raw_wf t : coPset_wf (Pset_to_coPset_raw t).
Proof.
  induction t as [|ml mx mr] using pmap.Pmap_ind; [done|].
  rewrite Pset_to_coPset_raw_PNode by done.
  apply coPNode_wf; [done|done|..];
    destruct mx; destruct ml using pmap.Pmap_ind; destruct mr using pmap.Pmap_ind;
    rewrite ?Pset_to_coPset_raw_PNode by done; naive_solver.
Qed.
Lemma elem_of_Pset_to_coPset_raw i t : e_of i (Pset_to_coPset_raw t) ↔ t !! i = Some ().
Proof.
  revert i. induction t as [|ml mx mr] using pmap.Pmap_ind; [done|].
  intros []; rewrite Pset_to_coPset_raw_PNode,
    pmap.Pmap_lookup_PNode by done; destruct mx as [[]|]; naive_solver.
Qed.
Lemma Pset_to_coPset_raw_finite t : coPset_finite (Pset_to_coPset_raw t).
Proof.
  induction t as [|ml mx mr] using pmap.Pmap_ind; [done|].
  rewrite Pset_to_coPset_raw_PNode by done. destruct mx; naive_solver.
Qed.

Definition Pset_to_coPset (X : Pset) : coPset :=
  let 'Mapset t := X in Pset_to_coPset_raw t ↾ Pset_to_coPset_raw_wf _.
Lemma elem_of_Pset_to_coPset X i : i ∈ Pset_to_coPset X ↔ i ∈ X.
Proof. destruct X; apply elem_of_Pset_to_coPset_raw. Qed.
Lemma Pset_to_coPset_finite X : set_finite (Pset_to_coPset X).
Proof. apply coPset_finite_spec; destruct X; apply Pset_to_coPset_raw_finite. Qed.

(** * Conversion to and from gsets of positives *)
Definition coPset_to_gset (X : coPset) : gset positive :=
  let 'Mapset m := coPset_to_Pset X in
  Mapset (pmap_to_gmap m).

Definition gset_to_coPset (X : gset positive) : coPset :=
  let 'Mapset m := X in
  Pset_to_coPset_raw (gmap_to_pmap m) ↾ Pset_to_coPset_raw_wf _.

Lemma elem_of_coPset_to_gset X i : set_finite X → i ∈ coPset_to_gset X ↔ i ∈ X.
Proof.
  intros ?. rewrite <-elem_of_coPset_to_Pset by done. destruct X as [X ?].
  unfold elem_of, gset_elem_of, mapset_elem_of, coPset_to_gset; simpl.
  by rewrite lookup_pmap_to_gmap.
Qed.

Lemma elem_of_gset_to_coPset X i : i ∈ gset_to_coPset X ↔ i ∈ X.
Proof.
  destruct X as [m]. unfold elem_of, coPset_elem_of; simpl.
  by rewrite elem_of_Pset_to_coPset_raw, lookup_gmap_to_pmap.
Qed.
Lemma gset_to_coPset_finite X : set_finite (gset_to_coPset X).
Proof.
  apply coPset_finite_spec; destruct X as [[?]]; apply Pset_to_coPset_raw_finite.
Qed.

(** * Infinite sets *)
Lemma coPset_infinite_finite (X : coPset) : set_infinite X ↔ ¬set_finite X.
Proof.
  split; [intros ??; by apply (set_not_infinite_finite X)|].
  intros Hfin xs. exists (coPpick (X ∖ list_to_set xs)).
  cut (coPpick (X ∖ list_to_set xs) ∈ X ∖ list_to_set xs); [set_solver|].
  apply coPpick_elem_of; intros Hfin'.
  apply Hfin, (difference_finite_inv _ (list_to_set xs)), Hfin'.
  apply list_to_set_finite.
Qed.
Lemma coPset_finite_infinite (X : coPset) : set_finite X ↔ ¬set_infinite X.
Proof. rewrite coPset_infinite_finite. split; [tauto|apply dec_stable]. Qed.
Global Instance coPset_infinite_dec (X : coPset) : Decision (set_infinite X).
Proof.
  refine (cast_if (decide (¬set_finite X))); by rewrite coPset_infinite_finite.
Defined.

(** * Suffix sets *)
Fixpoint coPset_suffixes_raw (p : positive) : coPset_raw :=
  match p with
  | 1 => coPLeaf true
  | p~0 => coPNode' false (coPset_suffixes_raw p) (coPLeaf false)
  | p~1 => coPNode' false (coPLeaf false) (coPset_suffixes_raw p)
  end.
Lemma coPset_suffixes_wf p : coPset_wf (coPset_suffixes_raw p).
Proof. induction p; simpl; eauto. Qed.
Definition coPset_suffixes (p : positive) : coPset :=
  coPset_suffixes_raw p ↾ coPset_suffixes_wf _.
Lemma elem_coPset_suffixes p q : p ∈ coPset_suffixes q ↔ ∃ q', p = q' ++ q.
Proof.
  unfold elem_of, coPset_elem_of; simpl; split.
  - revert p; induction q; intros [?|?|]; simpl;
      rewrite ?coPset_elem_of_node; naive_solver.
  - by intros [q' ->]; induction q; simpl; rewrite ?coPset_elem_of_node.
Qed.
Lemma coPset_suffixes_infinite p : ¬set_finite (coPset_suffixes p).
Proof.
  rewrite coPset_finite_spec; simpl.
  induction p; simpl; rewrite ?coPset_finite_node, ?andb_True; naive_solver.
Qed.

(** * Splitting of infinite sets *)
Fixpoint coPset_l_raw (t : coPset_raw) : coPset_raw :=
  match t with
  | coPLeaf false => coPLeaf false
  | coPLeaf true => coPNode true (coPLeaf true) (coPLeaf false)
  | coPNode b l r => coPNode' b (coPset_l_raw l) (coPset_l_raw r)
  end.
Fixpoint coPset_r_raw (t : coPset_raw) : coPset_raw :=
  match t with
  | coPLeaf false => coPLeaf false
  | coPLeaf true => coPNode false (coPLeaf false) (coPLeaf true)
  | coPNode b l r => coPNode' false (coPset_r_raw l) (coPset_r_raw r)
  end.

Lemma coPset_l_wf t : coPset_wf (coPset_l_raw t).
Proof. induction t as [[]|]; simpl; auto. Qed.
Lemma coPset_r_wf t : coPset_wf (coPset_r_raw t).
Proof. induction t as [[]|]; simpl; auto. Qed.
Definition coPset_l (X : coPset) : coPset :=
  let (t,Ht) := X in coPset_l_raw t ↾ coPset_l_wf _.
Definition coPset_r (X : coPset) : coPset :=
  let (t,Ht) := X in coPset_r_raw t ↾ coPset_r_wf _.

Lemma coPset_lr_disjoint X : coPset_l X ∩ coPset_r X = ∅.
Proof.
  apply elem_of_equiv_empty_L; intros p; apply Is_true_false.
  destruct X as [t Ht]; simpl; clear Ht; rewrite coPset_elem_of_intersection.
  revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
    rewrite ?coPset_elem_of_node; simpl;
    rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
Qed.
Lemma coPset_lr_union X : coPset_l X ∪ coPset_r X = X.
Proof.
  apply set_eq; intros p; apply eq_bool_prop_elim.
  destruct X as [t Ht]; simpl; clear Ht; rewrite coPset_elem_of_union.
  revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
    rewrite ?coPset_elem_of_node; simpl;
    rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
Qed.
Lemma coPset_l_finite X : set_finite (coPset_l X) → set_finite X.
Proof.
  rewrite !coPset_finite_spec; destruct X as [t Ht]; simpl; clear Ht.
  induction t as [[]|]; simpl; rewrite ?coPset_finite_node, ?andb_True; tauto.
Qed.
Lemma coPset_r_finite X : set_finite (coPset_r X) → set_finite X.
Proof.
  rewrite !coPset_finite_spec; destruct X as [t Ht]; simpl; clear Ht.
  induction t as [[]|]; simpl; rewrite ?coPset_finite_node, ?andb_True; tauto.
Qed.
Lemma coPset_split (X : coPset) :
  ¬set_finite X →
  ∃ X1 X2, X = X1 ∪ X2 ∧ X1 ∩ X2 = ∅ ∧ ¬set_finite X1 ∧ ¬set_finite X2.
Proof.
  exists (coPset_l X), (coPset_r X); eauto 10 using coPset_lr_union,
    coPset_lr_disjoint, coPset_l_finite, coPset_r_finite.
Qed.
Lemma coPset_split_infinite (X : coPset) :
  set_infinite X →
  ∃ X1 X2, X = X1 ∪ X2 ∧ X1 ∩ X2 = ∅ ∧ set_infinite X1 ∧ set_infinite X2.
Proof.
  setoid_rewrite coPset_infinite_finite.
  eapply coPset_split.
Qed.