1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
(** This files implements the type [coPset] of efficient finite/cofinite sets
of positive binary naturals [positive]. These sets are:
- Closed under union, intersection and set complement.
- Closed under splitting of cofinite sets.
Also, they enjoy various nice properties, such as decidable equality and set
membership, as well as extensional equality (i.e. [X = Y ↔ ∀ x, x ∈ X ↔ x ∈ Y]).
Since [positive]s are bitstrings, we encode [coPset]s as trees that correspond
to the decision function that map bitstrings to bools. *)
From stdpp Require Export sets.
From stdpp Require Import pmap gmap mapset.
From stdpp Require Import options.
Local Open Scope positive_scope.
(** * The tree data structure *)
Inductive coPset_raw :=
| coPLeaf : bool → coPset_raw
| coPNode : bool → coPset_raw → coPset_raw → coPset_raw.
Global Instance coPset_raw_eq_dec : EqDecision coPset_raw.
Proof. solve_decision. Defined.
Fixpoint coPset_wf (t : coPset_raw) : bool :=
match t with
| coPLeaf _ => true
| coPNode true (coPLeaf true) (coPLeaf true) => false
| coPNode false (coPLeaf false) (coPLeaf false) => false
| coPNode _ l r => coPset_wf l && coPset_wf r
end.
Global Arguments coPset_wf !_ / : simpl nomatch, assert.
Lemma coPNode_wf b l r :
coPset_wf l → coPset_wf r →
(l = coPLeaf true → r = coPLeaf true → b = true → False) →
(l = coPLeaf false → r = coPLeaf false → b = false → False) →
coPset_wf (coPNode b l r).
Proof. destruct b, l as [[]|], r as [[]|]; naive_solver. Qed.
Lemma coPNode_wf_l b l r : coPset_wf (coPNode b l r) → coPset_wf l.
Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
Lemma coPNode_wf_r b l r : coPset_wf (coPNode b l r) → coPset_wf r.
Proof. destruct b, l as [[]|],r as [[]|]; simpl; rewrite ?andb_True; tauto. Qed.
Local Hint Immediate coPNode_wf_l coPNode_wf_r : core.
Definition coPNode' (b : bool) (l r : coPset_raw) : coPset_raw :=
match b, l, r with
| true, coPLeaf true, coPLeaf true => coPLeaf true
| false, coPLeaf false, coPLeaf false => coPLeaf false
| _, _, _ => coPNode b l r
end.
Global Arguments coPNode' : simpl never.
Lemma coPNode'_wf b l r : coPset_wf l → coPset_wf r → coPset_wf (coPNode' b l r).
Proof. destruct b, l as [[]|], r as [[]|]; simpl; auto. Qed.
Global Hint Resolve coPNode'_wf : core.
Fixpoint coPset_elem_of_raw (p : positive) (t : coPset_raw) {struct t} : bool :=
match t, p with
| coPLeaf b, _ => b
| coPNode b l r, 1 => b
| coPNode _ l _, p~0 => coPset_elem_of_raw p l
| coPNode _ _ r, p~1 => coPset_elem_of_raw p r
end.
Local Notation e_of := coPset_elem_of_raw.
Global Arguments coPset_elem_of_raw _ !_ / : simpl nomatch, assert.
Lemma coPset_elem_of_node b l r p :
e_of p (coPNode' b l r) = e_of p (coPNode b l r).
Proof. by destruct p, b, l as [[]|], r as [[]|]. Qed.
Lemma coPLeaf_wf t b : (∀ p, e_of p t = b) → coPset_wf t → t = coPLeaf b.
Proof.
induction t as [b'|b' l IHl r IHr]; intros Ht ?; [f_equal; apply (Ht 1)|].
assert (b' = b) by (apply (Ht 1)); subst.
assert (l = coPLeaf b) as -> by (apply IHl; try apply (λ p, Ht (p~0)); eauto).
assert (r = coPLeaf b) as -> by (apply IHr; try apply (λ p, Ht (p~1)); eauto).
by destruct b.
Qed.
Lemma coPset_eq t1 t2 :
(∀ p, e_of p t1 = e_of p t2) → coPset_wf t1 → coPset_wf t2 → t1 = t2.
Proof.
revert t2.
induction t1 as [b1|b1 l1 IHl r1 IHr]; intros [b2|b2 l2 r2] Ht ??; simpl in *.
- f_equal; apply (Ht 1).
- by discriminate (coPLeaf_wf (coPNode b2 l2 r2) b1).
- by discriminate (coPLeaf_wf (coPNode b1 l1 r1) b2).
- f_equal; [apply (Ht 1)| |].
+ apply IHl; try apply (λ x, Ht (x~0)); eauto.
+ apply IHr; try apply (λ x, Ht (x~1)); eauto.
Qed.
Fixpoint coPset_singleton_raw (p : positive) : coPset_raw :=
match p with
| 1 => coPNode true (coPLeaf false) (coPLeaf false)
| p~0 => coPNode' false (coPset_singleton_raw p) (coPLeaf false)
| p~1 => coPNode' false (coPLeaf false) (coPset_singleton_raw p)
end.
Global Instance coPset_union_raw : Union coPset_raw :=
fix go t1 t2 := let _ : Union _ := @go in
match t1, t2 with
| coPLeaf false, coPLeaf false => coPLeaf false
| _, coPLeaf true => coPLeaf true
| coPLeaf true, _ => coPLeaf true
| coPNode b l r, coPLeaf false => coPNode b l r
| coPLeaf false, coPNode b l r => coPNode b l r
| coPNode b1 l1 r1, coPNode b2 l2 r2 => coPNode' (b1||b2) (l1 ∪ l2) (r1 ∪ r2)
end.
Local Arguments union _ _!_ !_ / : assert.
Global Instance coPset_intersection_raw : Intersection coPset_raw :=
fix go t1 t2 := let _ : Intersection _ := @go in
match t1, t2 with
| coPLeaf true, coPLeaf true => coPLeaf true
| _, coPLeaf false => coPLeaf false
| coPLeaf false, _ => coPLeaf false
| coPNode b l r, coPLeaf true => coPNode b l r
| coPLeaf true, coPNode b l r => coPNode b l r
| coPNode b1 l1 r1, coPNode b2 l2 r2 => coPNode' (b1&&b2) (l1 ∩ l2) (r1 ∩ r2)
end.
Local Arguments intersection _ _!_ !_ / : assert.
Fixpoint coPset_opp_raw (t : coPset_raw) : coPset_raw :=
match t with
| coPLeaf b => coPLeaf (negb b)
| coPNode b l r => coPNode' (negb b) (coPset_opp_raw l) (coPset_opp_raw r)
end.
Lemma coPset_singleton_wf p : coPset_wf (coPset_singleton_raw p).
Proof. induction p; simpl; eauto. Qed.
Lemma coPset_union_wf t1 t2 : coPset_wf t1 → coPset_wf t2 → coPset_wf (t1 ∪ t2).
Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
Lemma coPset_intersection_wf t1 t2 :
coPset_wf t1 → coPset_wf t2 → coPset_wf (t1 ∩ t2).
Proof. revert t2; induction t1 as [[]|[]]; intros [[]|[] ??]; simpl; eauto. Qed.
Lemma coPset_opp_wf t : coPset_wf (coPset_opp_raw t).
Proof. induction t as [[]|[]]; simpl; eauto. Qed.
Lemma coPset_elem_of_singleton p q : e_of p (coPset_singleton_raw q) ↔ p = q.
Proof.
split; [|by intros <-; induction p; simpl; rewrite ?coPset_elem_of_node].
by revert q; induction p; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; intros; f_equal/=; auto.
Qed.
Lemma coPset_elem_of_union t1 t2 p : e_of p (t1 ∪ t2) = e_of p t1 || e_of p t2.
Proof.
by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl;
rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r.
Qed.
Lemma coPset_elem_of_intersection t1 t2 p :
e_of p (t1 ∩ t2) = e_of p t1 && e_of p t2.
Proof.
by revert t2 p; induction t1 as [[]|[]]; intros [[]|[] ??] [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl;
rewrite ?andb_true_l, ?andb_false_l, ?andb_true_r, ?andb_false_r.
Qed.
Lemma coPset_elem_of_opp t p : e_of p (coPset_opp_raw t) = negb (e_of p t).
Proof.
by revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl.
Qed.
(** * Packed together + set operations *)
Definition coPset := { t | coPset_wf t }.
Global Instance coPset_singleton : Singleton positive coPset := λ p,
coPset_singleton_raw p ↾ coPset_singleton_wf _.
Global Instance coPset_elem_of : ElemOf positive coPset := λ p X, e_of p (`X).
Global Instance coPset_empty : Empty coPset := coPLeaf false ↾ I.
Global Instance coPset_top : Top coPset := coPLeaf true ↾ I.
Global Instance coPset_union : Union coPset := λ X Y,
let (t1,Ht1) := X in let (t2,Ht2) := Y in
(t1 ∪ t2) ↾ coPset_union_wf _ _ Ht1 Ht2.
Global Instance coPset_intersection : Intersection coPset := λ X Y,
let (t1,Ht1) := X in let (t2,Ht2) := Y in
(t1 ∩ t2) ↾ coPset_intersection_wf _ _ Ht1 Ht2.
Global Instance coPset_difference : Difference coPset := λ X Y,
let (t1,Ht1) := X in let (t2,Ht2) := Y in
(t1 ∩ coPset_opp_raw t2) ↾ coPset_intersection_wf _ _ Ht1 (coPset_opp_wf _).
Global Instance coPset_top_set : TopSet positive coPset.
Proof.
split; [split; [split| |]|].
- by intros ??.
- intros p q. apply coPset_elem_of_singleton.
- intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_union; simpl.
by rewrite coPset_elem_of_union, orb_True.
- intros [t] [t'] p; unfold elem_of,coPset_elem_of,coPset_intersection; simpl.
by rewrite coPset_elem_of_intersection, andb_True.
- intros [t] [t'] p; unfold elem_of, coPset_elem_of, coPset_difference; simpl.
by rewrite coPset_elem_of_intersection,
coPset_elem_of_opp, andb_True, negb_True.
- done.
Qed.
(** Iris and specifically [solve_ndisj] heavily rely on this hint. *)
Local Definition coPset_top_subseteq := top_subseteq (C:=coPset).
Global Hint Resolve coPset_top_subseteq : core.
Global Instance coPset_leibniz : LeibnizEquiv coPset.
Proof.
intros X Y; rewrite set_equiv; intros HXY.
apply (sig_eq_pi _), coPset_eq; try apply @proj2_sig.
intros p; apply eq_bool_prop_intro, (HXY p).
Qed.
Global Instance coPset_elem_of_dec : RelDecision (∈@{coPset}).
Proof. solve_decision. Defined.
Global Instance coPset_equiv_dec : RelDecision (≡@{coPset}).
Proof. refine (λ X Y, cast_if (decide (X = Y))); abstract (by fold_leibniz). Defined.
Global Instance mapset_disjoint_dec : RelDecision (##@{coPset}).
Proof.
refine (λ X Y, cast_if (decide (X ∩ Y = ∅)));
abstract (by rewrite disjoint_intersection_L).
Defined.
Global Instance mapset_subseteq_dec : RelDecision (⊆@{coPset}).
Proof.
refine (λ X Y, cast_if (decide (X ∪ Y = Y))); abstract (by rewrite subseteq_union_L).
Defined.
(** * Finite sets *)
Fixpoint coPset_finite (t : coPset_raw) : bool :=
match t with
| coPLeaf b => negb b | coPNode b l r => coPset_finite l && coPset_finite r
end.
Lemma coPset_finite_node b l r :
coPset_finite (coPNode' b l r) = coPset_finite l && coPset_finite r.
Proof. by destruct b, l as [[]|], r as [[]|]. Qed.
Lemma coPset_finite_spec X : set_finite X ↔ coPset_finite (`X).
Proof.
destruct X as [t Ht].
unfold set_finite, elem_of at 1, coPset_elem_of; simpl; clear Ht; split.
- induction t as [b|b l IHl r IHr]; simpl.
{ destruct b; simpl; [intros [l Hl]|done].
by apply (infinite_is_fresh l), Hl. }
intros [ll Hll]; rewrite andb_True; split.
+ apply IHl; exists (omap (maybe (~0)) ll); intros i.
rewrite elem_of_list_omap; intros; exists (i~0); auto.
+ apply IHr; exists (omap (maybe (~1)) ll); intros i.
rewrite elem_of_list_omap; intros; exists (i~1); auto.
- induction t as [b|b l IHl r IHr]; simpl; [by exists []; destruct b|].
rewrite andb_True; intros [??]; destruct IHl as [ll ?], IHr as [rl ?]; auto.
exists ([1] ++ ((~0) <$> ll) ++ ((~1) <$> rl))%list; intros [i|i|]; simpl;
rewrite elem_of_cons, elem_of_app, !elem_of_list_fmap; naive_solver.
Qed.
Global Instance coPset_finite_dec (X : coPset) : Decision (set_finite X).
Proof.
refine (cast_if (decide (coPset_finite (`X)))); by rewrite coPset_finite_spec.
Defined.
(** * Pick element from infinite sets *)
(* The function [coPpick X] gives an element that is in the set [X], provided
that the set [X] is infinite. Note that [coPpick] function is implemented by
depth-first search, so using it repeatedly to obtain elements [x], and
inserting these elements [x] into the set [X], will give rise to a very
unbalanced tree. *)
Fixpoint coPpick_raw (t : coPset_raw) : option positive :=
match t with
| coPLeaf true | coPNode true _ _ => Some 1
| coPLeaf false => None
| coPNode false l r =>
match coPpick_raw l with
| Some i => Some (i~0) | None => (~1) <$> coPpick_raw r
end
end.
Definition coPpick (X : coPset) : positive := default 1 (coPpick_raw (`X)).
Lemma coPpick_raw_elem_of t i : coPpick_raw t = Some i → e_of i t.
Proof.
revert i; induction t as [[]|[] l ? r]; intros i ?; simplify_eq/=; auto.
destruct (coPpick_raw l); simplify_option_eq; auto.
Qed.
Lemma coPpick_raw_None t : coPpick_raw t = None → coPset_finite t.
Proof.
induction t as [[]|[] l ? r]; intros i; simplify_eq/=; auto.
destruct (coPpick_raw l); simplify_option_eq; auto.
Qed.
Lemma coPpick_elem_of X : ¬set_finite X → coPpick X ∈ X.
Proof.
destruct X as [t ?]; unfold coPpick; destruct (coPpick_raw _) as [j|] eqn:?.
- by intros; apply coPpick_raw_elem_of.
- by intros []; apply coPset_finite_spec, coPpick_raw_None.
Qed.
(** * Conversion to psets *)
Fixpoint coPset_to_Pset_raw (t : coPset_raw) : Pmap () :=
match t with
| coPLeaf _ => PEmpty
| coPNode false l r => pmap.PNode (coPset_to_Pset_raw l) None (coPset_to_Pset_raw r)
| coPNode true l r => pmap.PNode (coPset_to_Pset_raw l) (Some ()) (coPset_to_Pset_raw r)
end.
Definition coPset_to_Pset (X : coPset) : Pset :=
let (t,Ht) := X in Mapset (coPset_to_Pset_raw t).
Lemma elem_of_coPset_to_Pset X i : set_finite X → i ∈ coPset_to_Pset X ↔ i ∈ X.
Proof.
rewrite coPset_finite_spec; destruct X as [t Ht].
change (coPset_finite t → coPset_to_Pset_raw t !! i = Some () ↔ e_of i t).
clear Ht; revert i; induction t as [[]|[] l IHl r IHr]; intros [i|i|];
simpl; rewrite ?andb_True, ?pmap.Pmap_lookup_PNode; naive_solver.
Qed.
(** * Conversion from psets *)
Definition Pset_to_coPset_raw_aux (go : Pmap_ne () → coPset_raw)
(mt : Pmap ()) : coPset_raw :=
match mt with PNodes t => go t | PEmpty => coPLeaf false end.
Fixpoint Pset_ne_to_coPset_raw (t : Pmap_ne ()) : coPset_raw :=
pmap.Pmap_ne_case t $ λ ml mx mr,
coPNode match mx with Some _ => true | None => false end
(Pset_to_coPset_raw_aux Pset_ne_to_coPset_raw ml)
(Pset_to_coPset_raw_aux Pset_ne_to_coPset_raw mr).
Definition Pset_to_coPset_raw : Pmap () → coPset_raw :=
Pset_to_coPset_raw_aux Pset_ne_to_coPset_raw.
Lemma Pset_to_coPset_raw_PNode ml mx mr :
pmap.PNode_valid ml mx mr →
Pset_to_coPset_raw (pmap.PNode ml mx mr) =
coPNode match mx with Some _ => true | None => false end
(Pset_to_coPset_raw ml) (Pset_to_coPset_raw mr).
Proof. by destruct ml, mx, mr. Qed.
Lemma Pset_to_coPset_raw_wf t : coPset_wf (Pset_to_coPset_raw t).
Proof.
induction t as [|ml mx mr] using pmap.Pmap_ind; [done|].
rewrite Pset_to_coPset_raw_PNode by done.
apply coPNode_wf; [done|done|..];
destruct mx; destruct ml using pmap.Pmap_ind; destruct mr using pmap.Pmap_ind;
rewrite ?Pset_to_coPset_raw_PNode by done; naive_solver.
Qed.
Lemma elem_of_Pset_to_coPset_raw i t : e_of i (Pset_to_coPset_raw t) ↔ t !! i = Some ().
Proof.
revert i. induction t as [|ml mx mr] using pmap.Pmap_ind; [done|].
intros []; rewrite Pset_to_coPset_raw_PNode,
pmap.Pmap_lookup_PNode by done; destruct mx as [[]|]; naive_solver.
Qed.
Lemma Pset_to_coPset_raw_finite t : coPset_finite (Pset_to_coPset_raw t).
Proof.
induction t as [|ml mx mr] using pmap.Pmap_ind; [done|].
rewrite Pset_to_coPset_raw_PNode by done. destruct mx; naive_solver.
Qed.
Definition Pset_to_coPset (X : Pset) : coPset :=
let 'Mapset t := X in Pset_to_coPset_raw t ↾ Pset_to_coPset_raw_wf _.
Lemma elem_of_Pset_to_coPset X i : i ∈ Pset_to_coPset X ↔ i ∈ X.
Proof. destruct X; apply elem_of_Pset_to_coPset_raw. Qed.
Lemma Pset_to_coPset_finite X : set_finite (Pset_to_coPset X).
Proof. apply coPset_finite_spec; destruct X; apply Pset_to_coPset_raw_finite. Qed.
(** * Conversion to and from gsets of positives *)
Definition coPset_to_gset (X : coPset) : gset positive :=
let 'Mapset m := coPset_to_Pset X in
Mapset (pmap_to_gmap m).
Definition gset_to_coPset (X : gset positive) : coPset :=
let 'Mapset m := X in
Pset_to_coPset_raw (gmap_to_pmap m) ↾ Pset_to_coPset_raw_wf _.
Lemma elem_of_coPset_to_gset X i : set_finite X → i ∈ coPset_to_gset X ↔ i ∈ X.
Proof.
intros ?. rewrite <-elem_of_coPset_to_Pset by done. destruct X as [X ?].
unfold elem_of, gset_elem_of, mapset_elem_of, coPset_to_gset; simpl.
by rewrite lookup_pmap_to_gmap.
Qed.
Lemma elem_of_gset_to_coPset X i : i ∈ gset_to_coPset X ↔ i ∈ X.
Proof.
destruct X as [m]. unfold elem_of, coPset_elem_of; simpl.
by rewrite elem_of_Pset_to_coPset_raw, lookup_gmap_to_pmap.
Qed.
Lemma gset_to_coPset_finite X : set_finite (gset_to_coPset X).
Proof.
apply coPset_finite_spec; destruct X as [[?]]; apply Pset_to_coPset_raw_finite.
Qed.
(** * Infinite sets *)
Lemma coPset_infinite_finite (X : coPset) : set_infinite X ↔ ¬set_finite X.
Proof.
split; [intros ??; by apply (set_not_infinite_finite X)|].
intros Hfin xs. exists (coPpick (X ∖ list_to_set xs)).
cut (coPpick (X ∖ list_to_set xs) ∈ X ∖ list_to_set xs); [set_solver|].
apply coPpick_elem_of; intros Hfin'.
apply Hfin, (difference_finite_inv _ (list_to_set xs)), Hfin'.
apply list_to_set_finite.
Qed.
Lemma coPset_finite_infinite (X : coPset) : set_finite X ↔ ¬set_infinite X.
Proof. rewrite coPset_infinite_finite. split; [tauto|apply dec_stable]. Qed.
Global Instance coPset_infinite_dec (X : coPset) : Decision (set_infinite X).
Proof.
refine (cast_if (decide (¬set_finite X))); by rewrite coPset_infinite_finite.
Defined.
(** * Suffix sets *)
Fixpoint coPset_suffixes_raw (p : positive) : coPset_raw :=
match p with
| 1 => coPLeaf true
| p~0 => coPNode' false (coPset_suffixes_raw p) (coPLeaf false)
| p~1 => coPNode' false (coPLeaf false) (coPset_suffixes_raw p)
end.
Lemma coPset_suffixes_wf p : coPset_wf (coPset_suffixes_raw p).
Proof. induction p; simpl; eauto. Qed.
Definition coPset_suffixes (p : positive) : coPset :=
coPset_suffixes_raw p ↾ coPset_suffixes_wf _.
Lemma elem_coPset_suffixes p q : p ∈ coPset_suffixes q ↔ ∃ q', p = q' ++ q.
Proof.
unfold elem_of, coPset_elem_of; simpl; split.
- revert p; induction q; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; naive_solver.
- by intros [q' ->]; induction q; simpl; rewrite ?coPset_elem_of_node.
Qed.
Lemma coPset_suffixes_infinite p : ¬set_finite (coPset_suffixes p).
Proof.
rewrite coPset_finite_spec; simpl.
induction p; simpl; rewrite ?coPset_finite_node, ?andb_True; naive_solver.
Qed.
(** * Splitting of infinite sets *)
Fixpoint coPset_l_raw (t : coPset_raw) : coPset_raw :=
match t with
| coPLeaf false => coPLeaf false
| coPLeaf true => coPNode true (coPLeaf true) (coPLeaf false)
| coPNode b l r => coPNode' b (coPset_l_raw l) (coPset_l_raw r)
end.
Fixpoint coPset_r_raw (t : coPset_raw) : coPset_raw :=
match t with
| coPLeaf false => coPLeaf false
| coPLeaf true => coPNode false (coPLeaf false) (coPLeaf true)
| coPNode b l r => coPNode' false (coPset_r_raw l) (coPset_r_raw r)
end.
Lemma coPset_l_wf t : coPset_wf (coPset_l_raw t).
Proof. induction t as [[]|]; simpl; auto. Qed.
Lemma coPset_r_wf t : coPset_wf (coPset_r_raw t).
Proof. induction t as [[]|]; simpl; auto. Qed.
Definition coPset_l (X : coPset) : coPset :=
let (t,Ht) := X in coPset_l_raw t ↾ coPset_l_wf _.
Definition coPset_r (X : coPset) : coPset :=
let (t,Ht) := X in coPset_r_raw t ↾ coPset_r_wf _.
Lemma coPset_lr_disjoint X : coPset_l X ∩ coPset_r X = ∅.
Proof.
apply elem_of_equiv_empty_L; intros p; apply Is_true_false.
destruct X as [t Ht]; simpl; clear Ht; rewrite coPset_elem_of_intersection.
revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl;
rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
Qed.
Lemma coPset_lr_union X : coPset_l X ∪ coPset_r X = X.
Proof.
apply set_eq; intros p; apply eq_bool_prop_elim.
destruct X as [t Ht]; simpl; clear Ht; rewrite coPset_elem_of_union.
revert p; induction t as [[]|[]]; intros [?|?|]; simpl;
rewrite ?coPset_elem_of_node; simpl;
rewrite ?orb_true_l, ?orb_false_l, ?orb_true_r, ?orb_false_r; auto.
Qed.
Lemma coPset_l_finite X : set_finite (coPset_l X) → set_finite X.
Proof.
rewrite !coPset_finite_spec; destruct X as [t Ht]; simpl; clear Ht.
induction t as [[]|]; simpl; rewrite ?coPset_finite_node, ?andb_True; tauto.
Qed.
Lemma coPset_r_finite X : set_finite (coPset_r X) → set_finite X.
Proof.
rewrite !coPset_finite_spec; destruct X as [t Ht]; simpl; clear Ht.
induction t as [[]|]; simpl; rewrite ?coPset_finite_node, ?andb_True; tauto.
Qed.
Lemma coPset_split (X : coPset) :
¬set_finite X →
∃ X1 X2, X = X1 ∪ X2 ∧ X1 ∩ X2 = ∅ ∧ ¬set_finite X1 ∧ ¬set_finite X2.
Proof.
exists (coPset_l X), (coPset_r X); eauto 10 using coPset_lr_union,
coPset_lr_disjoint, coPset_l_finite, coPset_r_finite.
Qed.
Lemma coPset_split_infinite (X : coPset) :
set_infinite X →
∃ X1 X2, X = X1 ∪ X2 ∧ X1 ∩ X2 = ∅ ∧ set_infinite X1 ∧ set_infinite X2.
Proof.
setoid_rewrite coPset_infinite_finite.
eapply coPset_split.
Qed.
|