File: countable.v

package info (click to toggle)
coq-stdpp 1.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,696 kB
  • sloc: makefile: 52; sh: 35; sed: 1
file content (375 lines) | stat: -rw-r--r-- 13,904 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
From Coq.QArith Require Import QArith_base Qcanon.
From stdpp Require Export list numbers list_numbers fin.
From stdpp Require Import well_founded.
From stdpp Require Import options.
Local Open Scope positive.

(** Note that [Countable A] gives rise to [EqDecision A] by checking equality of
the results of [encode]. This instance of [EqDecision A] is very inefficient, so
the native decider is typically preferred for actual computation. To avoid
overlapping instances, we include [EqDecision A] explicitly as a parameter of
[Countable A]. *)
Class Countable A `{EqDecision A} := {
  encode : A → positive;
  decode : positive → option A;
  decode_encode x : decode (encode x) = Some x
}.
Global Hint Mode Countable ! - : typeclass_instances.
Global Arguments encode : simpl never.
Global Arguments decode : simpl never.

Global Instance encode_inj `{Countable A} : Inj (=) (=) (encode (A:=A)).
Proof.
  intros x y Hxy; apply (inj Some).
  by rewrite <-(decode_encode x), Hxy, decode_encode.
Qed.

Definition encode_nat `{Countable A} (x : A) : nat :=
  pred (Pos.to_nat (encode x)).
Definition decode_nat `{Countable A} (i : nat) : option A :=
  decode (Pos.of_nat (S i)).
Global Instance encode_nat_inj `{Countable A} : Inj (=) (=) (encode_nat (A:=A)).
Proof. unfold encode_nat; intros x y Hxy; apply (inj encode); lia. Qed.
Lemma decode_encode_nat `{Countable A} (x : A) : decode_nat (encode_nat x) = Some x.
Proof.
  pose proof (Pos2Nat.is_pos (encode x)).
  unfold decode_nat, encode_nat. rewrite Nat.succ_pred by lia.
  by rewrite Pos2Nat.id, decode_encode.
Qed.

Definition encode_Z `{Countable A} (x : A) : Z :=
  Zpos (encode x).
Definition decode_Z `{Countable A} (i : Z) : option A :=
  match i with Zpos i => decode i | _ => None end.
Global Instance encode_Z_inj `{Countable A} : Inj (=) (=) (encode_Z (A:=A)).
Proof. unfold encode_Z; intros x y Hxy; apply (inj encode); lia. Qed.
Lemma decode_encode_Z `{Countable A} (x : A) : decode_Z (encode_Z x) = Some x.
Proof. apply decode_encode. Qed.

(** * Choice principles *)
Section choice.
  Context `{Countable A} (P : A → Prop).

  Inductive choose_step: relation positive :=
    | choose_step_None {p} : decode (A:=A) p = None → choose_step (Pos.succ p) p
    | choose_step_Some {p} {x : A} :
       decode p = Some x → ¬P x → choose_step (Pos.succ p) p.
  Lemma choose_step_acc : (∃ x, P x) → Acc choose_step 1%positive.
  Proof.
    intros [x Hx]. cut (∀ i p,
      i ≤ encode x → 1 + encode x = p + i → Acc choose_step p).
    { intros help. by apply (help (encode x)). }
    intros i. induction i as [|i IH] using Pos.peano_ind; intros p ??.
    { constructor. intros j. assert (p = encode x) by lia; subst.
      inv 1 as [? Hd|?? Hd]; rewrite decode_encode in Hd; congruence. }
    constructor. intros j.
    inv 1 as [? Hd|? y Hd]; auto with lia.
  Qed.

  Context `{∀ x, Decision (P x)}.

  Fixpoint choose_go {i} (acc : Acc choose_step i) : A :=
    match Some_dec (decode i) with
    | inleft (x↾Hx) =>
      match decide (P x) with
      | left _ => x | right H => choose_go (Acc_inv acc (choose_step_Some Hx H))
      end
    | inright H => choose_go (Acc_inv acc (choose_step_None H))
    end.
  Fixpoint choose_go_correct {i} (acc : Acc choose_step i) : P (choose_go acc).
  Proof. destruct acc; simpl. repeat case_match; auto. Qed.
  Fixpoint choose_go_pi {i} (acc1 acc2 : Acc choose_step i) :
    choose_go acc1 = choose_go acc2.
  Proof. destruct acc1, acc2; simpl; repeat case_match; auto. Qed.

  Definition choose (H: ∃ x, P x) : A := choose_go (choose_step_acc H).
  Definition choose_correct (H: ∃ x, P x) : P (choose H) := choose_go_correct _.
  Definition choose_pi (H1 H2 : ∃ x, P x) :
    choose H1 = choose H2 := choose_go_pi _ _.
  Definition choice (HA : ∃ x, P x) : { x | P x } := _↾choose_correct HA.
End choice.

Section choice_proper.
  Context `{Countable A}.
  Context (P1 P2 : A → Prop) `{∀ x, Decision (P1 x)} `{∀ x, Decision (P2 x)}.
  Context (Heq : ∀ x, P1 x ↔ P2 x).

  Lemma choose_go_proper {i} (acc1 acc2 : Acc (choose_step _) i) :
    choose_go P1 acc1 = choose_go P2 acc2.
  Proof using Heq.
    induction acc1 as [i a1 IH] using Acc_dep_ind;
      destruct acc2 as [acc2]; simpl.
    destruct (Some_dec _) as [[x Hx]|]; [|done].
    do 2 case_decide; done || exfalso; naive_solver.
  Qed.

  Lemma choose_proper p1 p2 :
    choose P1 p1 = choose P2 p2.
  Proof using Heq. apply choose_go_proper. Qed.
End choice_proper.

Lemma surj_cancel `{Countable A} `{EqDecision B}
  (f : A → B) `{!Surj (=) f} : { g : B → A & Cancel (=) f g }.
Proof.
  exists (λ y, choose (λ x, f x = y) (surj f y)).
  intros y. by rewrite (choose_correct (λ x, f x = y) (surj f y)).
Qed.

(** * Instances *)
(** ** Injection *)
Section inj_countable.
  Context `{Countable A, EqDecision B}.
  Context (f : B → A) (g : A → option B) (fg : ∀ x, g (f x) = Some x).

  Program Definition inj_countable : Countable B :=
    {| encode y := encode (f y); decode p := x ← decode p; g x |}.
  Next Obligation. intros y; simpl; rewrite decode_encode; eauto. Qed.
End inj_countable.

Section inj_countable'.
  Context `{Countable A, EqDecision B}.
  Context (f : B → A) (g : A → B) (fg : ∀ x, g (f x) = x).

  Program Definition inj_countable' : Countable B := inj_countable f (Some ∘ g) _.
  Next Obligation. intros x. by f_equal/=. Qed.
End inj_countable'.

(** ** Empty *)
Global Program Instance Empty_set_countable : Countable Empty_set :=
  {| encode u := 1; decode p := None |}.
Next Obligation. by intros []. Qed.

(** ** Unit *)
Global Program Instance unit_countable : Countable unit :=
  {| encode u := 1; decode p := Some () |}.
Next Obligation. by intros []. Qed.

(** ** Bool *)
Global Program Instance bool_countable : Countable bool := {|
  encode b := if b then 1 else 2;
  decode p := Some match p return bool with 1 => true | _ => false end
|}.
Next Obligation. by intros []. Qed.

(** ** Option *)
Global Program Instance option_countable `{Countable A} : Countable (option A) := {|
  encode o := match o with None => 1 | Some x => Pos.succ (encode x) end;
  decode p := if decide (p = 1) then Some None else Some <$> decode (Pos.pred p)
|}.
Next Obligation.
  intros ??? [x|]; simpl; repeat case_decide; auto with lia.
  by rewrite Pos.pred_succ, decode_encode.
Qed.

(** ** Sums *)
Global Program Instance sum_countable `{Countable A} `{Countable B} :
  Countable (A + B)%type := {|
    encode xy :=
      match xy with inl x => (encode x)~0 | inr y => (encode y)~1 end;
    decode p :=
      match p with
      | 1 => None | p~0 => inl <$> decode p | p~1 => inr <$> decode p
      end
  |}.
Next Obligation. by intros ?????? [x|y]; simpl; rewrite decode_encode. Qed.

(** ** Products *)
Fixpoint prod_encode_fst (p : positive) : positive :=
  match p with
  | 1 => 1
  | p~0 => (prod_encode_fst p)~0~0
  | p~1 => (prod_encode_fst p)~0~1
  end.
Fixpoint prod_encode_snd (p : positive) : positive :=
  match p with
  | 1 => 1~0
  | p~0 => (prod_encode_snd p)~0~0
  | p~1 => (prod_encode_snd p)~1~0
  end.
Fixpoint prod_encode (p q : positive) : positive :=
  match p, q with
  | 1, 1 => 1~1
  | p~0, 1 => (prod_encode_fst p)~1~0
  | p~1, 1 => (prod_encode_fst p)~1~1
  | 1, q~0 => (prod_encode_snd q)~0~1
  | 1, q~1 => (prod_encode_snd q)~1~1
  | p~0, q~0 => (prod_encode p q)~0~0
  | p~0, q~1 => (prod_encode p q)~1~0
  | p~1, q~0 => (prod_encode p q)~0~1
  | p~1, q~1 => (prod_encode p q)~1~1
  end.
Fixpoint prod_decode_fst (p : positive) : option positive :=
  match p with
  | p~0~0 => (~0) <$> prod_decode_fst p
  | p~0~1 => Some match prod_decode_fst p with Some q => q~1 | _ => 1 end
  | p~1~0 => (~0) <$> prod_decode_fst p
  | p~1~1 => Some match prod_decode_fst p with Some q => q~1 | _ => 1 end
  | 1~0 => None
  | 1~1 => Some 1
  | 1 => Some 1
  end.
Fixpoint prod_decode_snd (p : positive) : option positive :=
  match p with
  | p~0~0 => (~0) <$> prod_decode_snd p
  | p~0~1 => (~0) <$> prod_decode_snd p
  | p~1~0 => Some match prod_decode_snd p with Some q => q~1 | _ => 1 end
  | p~1~1 => Some match prod_decode_snd p with Some q => q~1 | _ => 1 end
  | 1~0 => Some 1
  | 1~1 => Some 1
  | 1 => None
  end.

Lemma prod_decode_encode_fst p q : prod_decode_fst (prod_encode p q) = Some p.
Proof.
  assert (∀ p, prod_decode_fst (prod_encode_fst p) = Some p).
  { intros p'. by induction p'; simplify_option_eq. }
  assert (∀ p, prod_decode_fst (prod_encode_snd p) = None).
  { intros p'. by induction p'; simplify_option_eq. }
  revert q. by induction p; intros [?|?|]; simplify_option_eq.
Qed.
Lemma prod_decode_encode_snd p q : prod_decode_snd (prod_encode p q) = Some q.
Proof.
  assert (∀ p, prod_decode_snd (prod_encode_snd p) = Some p).
  { intros p'. by induction p'; simplify_option_eq. }
  assert (∀ p, prod_decode_snd (prod_encode_fst p) = None).
  { intros p'. by induction p'; simplify_option_eq. }
  revert q. by induction p; intros [?|?|]; simplify_option_eq.
Qed.
Global Program Instance prod_countable `{Countable A} `{Countable B} :
  Countable (A * B)%type := {|
    encode xy := prod_encode (encode (xy.1)) (encode (xy.2));
    decode p :=
     x ← prod_decode_fst p ≫= decode;
     y ← prod_decode_snd p ≫= decode; Some (x, y)
  |}.
Next Obligation.
  intros ?????? [x y]; simpl.
  rewrite prod_decode_encode_fst, prod_decode_encode_snd; simpl.
  by rewrite !decode_encode.
Qed.

(** ** Lists *)
Global Program Instance list_countable `{Countable A} : Countable (list A) :=
  {| encode xs := positives_flatten (encode <$> xs);
     decode p := positives ← positives_unflatten p;
                 mapM decode positives; |}.
Next Obligation.
  intros A EqA CA xs.
  simpl.
  rewrite positives_unflatten_flatten.
  simpl.
  apply (mapM_fmap_Some _ _ _ decode_encode).
Qed.

(** ** Numbers *)
Global Instance pos_countable : Countable positive :=
  {| encode := id; decode := Some; decode_encode x := eq_refl |}.
Global Program Instance N_countable : Countable N := {|
  encode x := match x with N0 => 1 | Npos p => Pos.succ p end;
  decode p := if decide (p = 1) then Some 0%N else Some (Npos (Pos.pred p))
|}.
Next Obligation.
  intros [|p]; simpl; [done|].
  by rewrite decide_False, Pos.pred_succ by (by destruct p).
Qed.
Global Program Instance Z_countable : Countable Z := {|
  encode x := match x with Z0 => 1 | Zpos p => p~0 | Zneg p => p~1 end;
  decode p := Some match p with 1 => Z0 | p~0 => Zpos p | p~1 => Zneg p end
|}.
Next Obligation. by intros [|p|p]. Qed.
Global Program Instance nat_countable : Countable nat :=
  {| encode x := encode (N.of_nat x); decode p := N.to_nat <$> decode p |}.
Next Obligation.
  by intros x; lazy beta; rewrite decode_encode; csimpl; rewrite Nat2N.id.
Qed.

Global Program Instance Qc_countable : Countable Qc :=
  inj_countable
    (λ p : Qc, let 'Qcmake (x # y) _ := p return _ in (x,y))
    (λ q : Z * positive, let '(x,y) := q return _ in Some (Q2Qc (x # y))) _.
Next Obligation.
  intros [[x y] Hcan]. f_equal. apply Qc_is_canon. simpl. by rewrite Hcan.
Qed.

Global Program Instance Qp_countable : Countable Qp :=
  inj_countable
    Qp_to_Qc
    (λ p : Qc, Hp ← guard (0 < p)%Qc; Some (mk_Qp p Hp)) _.
Next Obligation.
  intros [p Hp]. case_guard; simplify_eq/=; [|done].
  f_equal. by apply Qp.to_Qc_inj_iff.
Qed.

Global Program Instance fin_countable n : Countable (fin n) :=
  inj_countable
    fin_to_nat
    (λ m : nat, Hm ← guard (m < n)%nat; Some (nat_to_fin Hm)) _.
Next Obligation.
  intros n i; simplify_option_eq.
  - by rewrite nat_to_fin_to_nat.
  - by pose proof (fin_to_nat_lt i).
Qed.

(** ** Generic trees *)
Local Close Scope positive.

Inductive gen_tree (T : Type) : Type :=
  | GenLeaf : T → gen_tree T
  | GenNode : nat → list (gen_tree T) → gen_tree T.
Global Arguments GenLeaf {_} _ : assert.
Global Arguments GenNode {_} _ _ : assert.

Global Instance gen_tree_dec `{EqDecision T} : EqDecision (gen_tree T).
Proof.
 refine (
  fix go t1 t2 := let _ : EqDecision _ := @go in
  match t1, t2 with
  | GenLeaf x1, GenLeaf x2 => cast_if (decide (x1 = x2))
  | GenNode n1 ts1, GenNode n2 ts2 =>
     cast_if_and (decide (n1 = n2)) (decide (ts1 = ts2))
  | _, _ => right _
  end); abstract congruence.
Defined.

Fixpoint gen_tree_to_list {T} (t : gen_tree T) : list (nat * nat + T) :=
  match t with
  | GenLeaf x => [inr x]
  | GenNode n ts => (ts ≫= gen_tree_to_list) ++ [inl (length ts, n)]
  end.

Fixpoint gen_tree_of_list {T}
    (k : list (gen_tree T)) (l : list (nat * nat + T)) : option (gen_tree T) :=
  match l with
  | [] => head k
  | inr x :: l => gen_tree_of_list (GenLeaf x :: k) l
  | inl (len,n) :: l =>
     gen_tree_of_list (GenNode n (reverse (take len k)) :: drop len k) l
  end.

Lemma gen_tree_of_to_list {T} k l (t : gen_tree T) :
  gen_tree_of_list k (gen_tree_to_list t ++ l) = gen_tree_of_list (t :: k) l.
Proof.
  revert t k l; fix FIX 1; intros [|n ts] k l; simpl; auto.
  trans (gen_tree_of_list (reverse ts ++ k) ([inl (length ts, n)] ++ l)).
  - rewrite <-(assoc_L _). revert k. generalize ([inl (length ts, n)] ++ l).
    induction ts as [|t ts'' IH]; intros k ts'''; csimpl; auto.
    rewrite reverse_cons, <-!(assoc_L _), FIX; simpl; auto.
  - simpl. by rewrite take_app_length', drop_app_length', reverse_involutive
      by (by rewrite length_reverse).
Qed.

Global Program Instance gen_tree_countable `{Countable T} : Countable (gen_tree T) :=
  inj_countable gen_tree_to_list (gen_tree_of_list []) _.
Next Obligation.
  intros T ?? t.
  by rewrite <-(right_id_L [] _ (gen_tree_to_list _)), gen_tree_of_to_list.
Qed.

(** ** Sigma *)
Global Program Instance countable_sig `{Countable A} (P : A → Prop)
        `{!∀ x, Decision (P x), !∀ x, ProofIrrel (P x)} :
  Countable { x : A | P x } :=
  inj_countable proj1_sig (λ x, Hx ← guard (P x); Some (x ↾ Hx)) _.
Next Obligation.
  intros A ?? P ?? [x Hx]. by erewrite (option_guard_True_pi (P x)).
Qed.