1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
|
(** Finite maps associate data to keys. This file defines an interface for
finite maps and collects some theory on it. Most importantly, it proves useful
induction principles for finite maps and implements the tactic
[simplify_map_eq] to simplify goals involving finite maps. *)
From Coq Require Import Permutation.
From stdpp Require Export relations orders vector fin_sets.
From stdpp Require Import options.
(* FIXME: This file needs a 'Proof Using' hint, but they need to be set
locally (or things moved out of sections) as no default works well enough. *)
Unset Default Proof Using.
(** * Axiomatization of finite maps *)
(** We require Leibniz equality of finite maps to be extensional, i.e., to enjoy
[(∀ i, m1 !! i = m2 !! i) → m1 = m2]. This is a very useful property as it
avoids the need for setoid rewriting in proof. However, it comes at the cost of
restricting what map implementations we support. Since Coq does not have
quotient types, it rules out balanced search trees (AVL, red-black, etc.). We
do provide a reasonably efficient implementation of binary tries (see [gmap]
and [Pmap]). *)
(** Finiteness is axiomatized through a fold operation [map_fold f b m], which
folds a function [f] over each element of the map [m]. The order in which the
elements are passed to [f] is unspecified. *)
Class MapFold K A M := map_fold B : (K → A → B → B) → B → M → B.
Global Arguments map_fold {_ _ _ _ _} _ _ _.
Global Hint Mode MapFold - - ! : typeclass_instances.
Global Hint Mode MapFold ! - - : typeclass_instances.
(** Make sure that [map_fold] (and definitions based on it) are not unfolded
too eagerly by unification. See [only_evens_Some] in [tests/pmap_gmap] for an
example. We use level 1 because it is the least level for which the test works. *)
Global Strategy 1 [map_fold].
(** Finite map implementations are required to implement the [merge] function
which enables us to give a generic implementation of [union_with],
[intersection_with], and [difference_with].
The function [diag_None f] is used in the specification and lemmas of [merge f].
It lifts a function [f : option A → option B → option C] by returning
[None] if both arguments are [None], to make sure that in [merge f m1 m2], the
function [f] can only operate on elements that are in the domain of either [m1]
or [m2]. *)
Definition diag_None {A B C} (f : option A → option B → option C)
(mx : option A) (my : option B) : option C :=
match mx, my with None, None => None | _, _ => f mx my end.
(** We need the [insert] operation as part of the [map_fold_ind] rule in the
[FinMap] interface. Hence we define it before the other derived operations. *)
Global Instance map_insert `{PartialAlter K A M} : Insert K A M :=
λ i x, partial_alter (λ _, Some x) i.
Class FinMap K M `{FMap M, ∀ A, Lookup K A (M A), ∀ A, Empty (M A), ∀ A,
PartialAlter K A (M A), OMap M, Merge M, ∀ A, MapFold K A (M A),
EqDecision K} := {
map_eq {A} (m1 m2 : M A) : (∀ i, m1 !! i = m2 !! i) → m1 = m2;
lookup_empty {A} i : (∅ : M A) !! i = None;
lookup_partial_alter {A} f (m : M A) i :
partial_alter f i m !! i = f (m !! i);
lookup_partial_alter_ne {A} f (m : M A) i j :
i ≠ j → partial_alter f i m !! j = m !! j;
lookup_fmap {A B} (f : A → B) (m : M A) i : (f <$> m) !! i = f <$> m !! i;
lookup_omap {A B} (f : A → option B) (m : M A) i :
omap f m !! i = m !! i ≫= f;
lookup_merge {A B C} (f : option A → option B → option C) (m1 : M A) (m2 : M B) i :
merge f m1 m2 !! i = diag_None f (m1 !! i) (m2 !! i);
map_fold_empty {A B} (f : K → A → B → B) (b : B) :
map_fold f b ∅ = b;
(** The law [map_fold_fmap_ind] implies that all uses of [map_fold] and the
induction principle traverse the map in the same way. This also means that
[map_fold] enjoys parametricity, i.e., the order cannot depend on the choice
of [A], [B], [f], and [b]. To make sure it cannot depend on [A], we quantify
over a function [g : A → A')].
This law can be used with [induction m as ... using map_fold_fmap_ind], but
in practice [map_first_key_ind] is more convenient. *)
map_fold_fmap_ind {A} (P : M A → Prop) :
P ∅ →
(∀ i x m,
m !! i = None →
(∀ A' B (f : K → A' → B → B) (g : A → A') b x',
map_fold f b (<[i:=x']> (g <$> m)) = f i x' (map_fold f b (g <$> m))) →
P m →
P (<[i:=x]> m)) →
∀ m, P m;
}.
(** * Derived operations *)
(** All of the following functions are defined in a generic way for arbitrary
finite map implementations. These generic implementations do not cause a
significant performance loss, which justifies including them in the finite map
interface as primitive operations. *)
Global Instance map_alter `{PartialAlter K A M} : Alter K A M :=
λ f, partial_alter (fmap f).
Global Instance map_delete `{PartialAlter K A M} : Delete K M :=
partial_alter (λ _, None).
Global Instance map_singleton `{PartialAlter K A M, Empty M} :
SingletonM K A M := λ i x, <[i:=x]> ∅.
Definition list_to_map `{Insert K A M, Empty M} : list (K * A) → M :=
fold_right (λ p, <[p.1:=p.2]>) ∅.
Global Instance map_size `{MapFold K A M} : Size M :=
map_fold (λ _ _, S) 0.
Definition map_to_list `{MapFold K A M} : M → list (K * A) :=
map_fold (λ i x, ((i,x) ::.)) [].
(** The key [i] is the first to occur in the conversion to list/fold of [m].
This definition is useful in combination with [map_first_key_ind] and
[map_fold_insert_first_key]/[map_to_list_insert_first_key]. *)
Definition map_first_key `{MapFold K A M} (m : M) (i : K) :=
∃ x, map_to_list m !! 0 = Some (i,x).
Definition map_to_set `{MapFold K A M,
Singleton B C, Empty C, Union C} (f : K → A → B) (m : M) : C :=
list_to_set (uncurry f <$> map_to_list m).
Definition set_to_map `{Elements B C, Insert K A M, Empty M}
(f : B → K * A) (X : C) : M :=
list_to_map (f <$> elements X).
Global Instance map_union_with `{Merge M} {A} : UnionWith A (M A) :=
λ f, merge (union_with f).
Global Instance map_intersection_with `{Merge M} {A} : IntersectionWith A (M A) :=
λ f, merge (intersection_with f).
Global Instance map_difference_with `{Merge M} {A} : DifferenceWith A (M A) :=
λ f, merge (difference_with f).
(** Higher precedence to make sure it's not used for other types with a [Lookup]
instance, such as lists. *)
Global Instance map_equiv `{∀ A, Lookup K A (M A), Equiv A} : Equiv (M A) | 20 :=
λ m1 m2, ∀ i, m1 !! i ≡ m2 !! i.
Definition map_Forall `{Lookup K A M} (P : K → A → Prop) : M → Prop :=
λ m, ∀ i x, m !! i = Some x → P i x.
Definition map_Exists `{Lookup K A M} (P : K → A → Prop) : M → Prop :=
λ m, ∃ i x, m !! i = Some x ∧ P i x.
Definition map_relation `{∀ A, Lookup K A (M A)} {A B} (R : K → A → B → Prop)
(P : K → A → Prop) (Q : K → B → Prop) (m1 : M A) (m2 : M B) : Prop :=
∀ i, option_relation (R i) (P i) (Q i) (m1 !! i) (m2 !! i).
Definition map_Forall2 `{∀ A, Lookup K A (M A)} {A B}
(R : K → A → B → Prop) (m1 : M A) (m2 : M B) : Prop :=
∀ i, option_Forall2 (R i) (m1 !! i) (m2 !! i).
Definition map_included `{∀ A, Lookup K A (M A)} {A B}
(R : K → A → B → Prop) : M A → M B → Prop :=
map_relation R (λ _ _, False) (λ _ _, True).
Definition map_agree `{∀ A, Lookup K A (M A)} {A} : relation (M A) :=
map_relation (λ _, (=)) (λ _ _, True) (λ _ _, True).
Definition map_disjoint `{∀ A, Lookup K A (M A)} {A} : relation (M A) :=
map_relation (λ _ _ _, False) (λ _ _, True) (λ _ _, True).
Infix "##ₘ" := map_disjoint (at level 70) : stdpp_scope.
Global Hint Extern 0 (_ ##ₘ _) => symmetry; eassumption : core.
Notation "( m ##ₘ.)" := (map_disjoint m) (only parsing) : stdpp_scope.
Notation "(.##ₘ m )" := (λ m2, m2 ##ₘ m) (only parsing) : stdpp_scope.
Global Instance map_subseteq `{∀ A, Lookup K A (M A)} {A} : SubsetEq (M A) :=
map_included (λ _, (=)).
(** The union of two finite maps only has a meaningful definition for maps
that are disjoint. However, as working with partial functions is inconvenient
in Coq, we define the union as a total function. In case both finite maps
have a value at the same index, we take the value of the first map. *)
Global Instance map_union `{Merge M} {A} : Union (M A) := union_with (λ x _, Some x).
Global Instance map_intersection `{Merge M} {A} : Intersection (M A) :=
intersection_with (λ x _, Some x).
(** The difference operation removes all values from the first map whose
index contains a value in the second map as well. *)
Global Instance map_difference `{Merge M} {A} : Difference (M A) :=
difference_with (λ _ _, None).
(** A stronger variant of [fmap] that allows the mapped function to use the
index of the elements. Implemented by folding over the map, and repeatedly
inserting the new elements, so not very efficient. (For [gmap] this function is
[O (n log n)], while [fmap] is [O (n)] in the size [n] of the map. *)
Definition map_imap `{∀ A, Insert K A (M A), ∀ A, Empty (M A),
∀ A, MapFold K A (M A)} {A B} (f : K → A → option B) : M A → M B :=
map_fold (λ i x m, match f i x with Some y => <[i:=y]> m | None => m end) ∅.
(** Given a function [f : K1 → K2], the function [kmap f] turns a maps with
keys of type [K1] into a map with keys of type [K2]. The function [kmap f]
is only well-behaved if [f] is injective, as otherwise it could map multiple
entries into the same entry. All lemmas about [kmap f] thus have the premise
[Inj (=) (=) f]. *)
Definition kmap `{∀ A, Insert K2 A (M2 A), ∀ A, Empty (M2 A),
∀ A, MapFold K1 A (M1 A)} {A} (f : K1 → K2) (m : M1 A) : M2 A :=
list_to_map (fmap (prod_map f id) (map_to_list m)).
(* The zip operation on maps combines two maps key-wise. The keys of resulting
map correspond to the keys that are in both maps. *)
Definition map_zip_with `{Merge M} {A B C} (f : A → B → C) : M A → M B → M C :=
merge (λ mx my,
match mx, my with Some x, Some y => Some (f x y) | _, _ => None end).
Notation map_zip := (map_zip_with pair).
Global Instance map_filter
`{MapFold K A M, Insert K A M, Empty M} : Filter (K * A) M :=
λ P _, map_fold (λ k v m, if decide (P (k,v)) then <[k := v]>m else m) ∅.
Fixpoint map_seq `{Insert nat A M, Empty M} (start : nat) (xs : list A) : M :=
match xs with
| [] => ∅
| x :: xs => <[start:=x]> (map_seq (S start) xs)
end.
Fixpoint map_seqZ `{Insert Z A M, Empty M} (start : Z) (xs : list A) : M :=
match xs with
| [] => ∅
| x :: xs => <[start:=x]> (map_seqZ (Z.succ start) xs)
end.
Global Instance map_lookup_total `{!Lookup K A (M A), !Inhabited A} :
LookupTotal K A (M A) | 20 := λ i m, default inhabitant (m !! i).
Global Typeclasses Opaque map_lookup_total.
(** Given a finite map [m : M] with keys [K] and values [A], the image [map_img m]
gives a finite set containing with the values [A] of [m]. The type of [map_img]
is generic to support different map and set implementations. A possible instance
is [SA:=gset A]. *)
Definition map_img `{MapFold K A M,
Singleton A SA, Empty SA, Union SA} : M → SA := map_to_set (λ _ x, x).
Global Typeclasses Opaque map_img.
(** Given a finite map [m] with keys [K] and values [A], the preimage
[map_preimg m] gives a finite map with keys [A] and values being sets of [K].
The type of [map_preimg] is very generic to support different map and set
implementations. A possible instance is [MKA:=gmap K A], [MASK:=gmap A (gset K)],
and [SK:=gset K]. *)
Definition map_preimg `{MapFold K A MKA, Empty MASK,
PartialAlter A SK MASK, Empty SK, Singleton K SK, Union SK}
(m : MKA) : MASK :=
map_fold (λ i, partial_alter (λ mX, Some $ {[ i ]} ∪ default ∅ mX)) ∅ m.
Global Typeclasses Opaque map_preimg.
Definition map_compose `{OMap MA, Lookup B C MB}
(m : MB) (n : MA B) : MA C := omap (m !!.) n.
Infix "∘ₘ" := map_compose (at level 65, right associativity) : stdpp_scope.
Notation "(∘ₘ)" := map_compose (only parsing) : stdpp_scope.
Notation "( m ∘ₘ.)" := (map_compose m) (only parsing) : stdpp_scope.
Notation "(.∘ₘ m )" := (λ n, map_compose n m) (only parsing) : stdpp_scope.
(** * Theorems *)
Section theorems.
Context `{FinMap K M}.
(** ** General properties *)
Lemma map_eq_iff {A} (m1 m2 : M A) : m1 = m2 ↔ ∀ i, m1 !! i = m2 !! i.
Proof. split; [by intros ->|]. apply map_eq. Qed.
Lemma map_subseteq_spec {A} (m1 m2 : M A) :
m1 ⊆ m2 ↔ ∀ i x, m1 !! i = Some x → m2 !! i = Some x.
Proof.
unfold subseteq, map_subseteq, map_relation. split; intros Hm i;
specialize (Hm i); destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Global Instance map_included_preorder {A} (R : K → relation A) :
(∀ i, PreOrder (R i)) → PreOrder (map_included R : relation (M A)).
Proof.
split; [intros m i; by destruct (m !! i); simpl|].
intros m1 m2 m3 Hm12 Hm23 i; specialize (Hm12 i); specialize (Hm23 i).
destruct (m1 !! i), (m2 !! i), (m3 !! i); simplify_eq/=;
done || etrans; eauto.
Qed.
Global Instance map_subseteq_po {A} : PartialOrder (⊆@{M A}).
Proof.
split; [apply _|].
intros m1 m2; rewrite !map_subseteq_spec.
intros; apply map_eq; intros i; apply option_eq; naive_solver.
Qed.
Lemma lookup_total_alt `{!Inhabited A} (m : M A) i :
m !!! i = default inhabitant (m !! i).
Proof. reflexivity. Qed.
Lemma lookup_total_correct `{!Inhabited A} (m : M A) i x :
m !! i = Some x → m !!! i = x.
Proof. rewrite lookup_total_alt. by intros ->. Qed.
Lemma lookup_lookup_total `{!Inhabited A} (m : M A) i :
is_Some (m !! i) → m !! i = Some (m !!! i).
Proof. intros [x Hx]. by rewrite (lookup_total_correct m i x). Qed.
Lemma lookup_weaken {A} (m1 m2 : M A) i x :
m1 !! i = Some x → m1 ⊆ m2 → m2 !! i = Some x.
Proof. rewrite !map_subseteq_spec. auto. Qed.
Lemma lookup_weaken_is_Some {A} (m1 m2 : M A) i :
is_Some (m1 !! i) → m1 ⊆ m2 → is_Some (m2 !! i).
Proof. inv 1. eauto using lookup_weaken. Qed.
Lemma lookup_weaken_None {A} (m1 m2 : M A) i :
m2 !! i = None → m1 ⊆ m2 → m1 !! i = None.
Proof.
rewrite map_subseteq_spec, !eq_None_not_Some.
intros Hm2 Hm [??]; destruct Hm2; eauto.
Qed.
Lemma lookup_weaken_inv {A} (m1 m2 : M A) i x y :
m1 !! i = Some x → m1 ⊆ m2 → m2 !! i = Some y → x = y.
Proof. intros Hm1 ? Hm2. eapply lookup_weaken in Hm1; eauto. congruence. Qed.
Lemma lookup_ne {A} (m : M A) i j : m !! i ≠ m !! j → i ≠ j.
Proof. congruence. Qed.
Lemma map_empty {A} (m : M A) : m = ∅ ↔ ∀ i, m !! i = None.
Proof.
split.
- intros -> i. by rewrite lookup_empty.
- intros Hm. apply map_eq. intros i. by rewrite Hm, lookup_empty.
Qed.
Lemma lookup_empty_is_Some {A} i : ¬is_Some ((∅ : M A) !! i).
Proof. rewrite lookup_empty. by inv 1. Qed.
Lemma lookup_empty_Some {A} i (x : A) : ¬(∅ : M A) !! i = Some x.
Proof. by rewrite lookup_empty. Qed.
Lemma lookup_total_empty `{!Inhabited A} i : (∅ : M A) !!! i = inhabitant.
Proof. by rewrite lookup_total_alt, lookup_empty. Qed.
Lemma map_subset_empty {A} (m : M A) : m ⊄ ∅.
Proof.
intros [_ []]. rewrite map_subseteq_spec. intros ??. by rewrite lookup_empty.
Qed.
Lemma map_empty_subseteq {A} (m : M A) : ∅ ⊆ m.
Proof. apply map_subseteq_spec. intros k v []%lookup_empty_Some. Qed.
(** Induction principles for [map_fold] *)
(** Use [map_first_key_ind] instead. *)
Local Lemma map_fold_ind {A} (P : M A → Prop) :
P ∅ →
(∀ i x m,
m !! i = None →
(∀ B (f : K → A → B → B) b x',
map_fold f b (<[i:=x']> m) = f i x' (map_fold f b m)) →
P m →
P (<[i:=x]> m)) →
∀ m, P m.
Proof.
intros Hemp Hins m.
induction m as [|i x m ? Hfold IH] using map_fold_fmap_ind; [done|].
apply Hins; [done| |done]. intros B f b x'.
assert (m = id <$> m) as ->.
{ apply map_eq; intros j; by rewrite lookup_fmap, option_fmap_id. }
apply Hfold.
Qed.
(** Use as [induction m as ... using map_first_key_ind]. In the inductive case
[map_first_key (<[i:=x]> m) i] can be used in combination with the lemmas
[map_fold_insert_first_key] and [map_to_list_first_key]. *)
Lemma map_first_key_ind {A} (P : M A → Prop) :
P ∅ →
(∀ i x m,
m !! i = None → map_first_key (<[i:=x]> m) i →
P m →
P (<[i:=x]> m)) →
∀ m, P m.
Proof.
intros Hemp Hins m.
induction m as [|i x m ? Hfold IH] using map_fold_ind; first done.
apply Hins; [done| |done]. unfold map_first_key, map_to_list.
rewrite Hfold. eauto.
Qed.
(** The lemma [map_fold_weak_ind] exists for backwards compatibility; use
[map_first_key_ind] instead, which is much more convenient to use. *)
Lemma map_fold_weak_ind {A B} (P : B → M A → Prop) (f : K → A → B → B) (b : B) :
P b ∅ →
(∀ i x m r, m !! i = None → P r m → P (f i x r) (<[i:=x]> m)) →
∀ m, P (map_fold f b m) m.
Proof.
intros Hemp Hins m. induction m as [|i x m ? Hfold IH] using map_fold_ind.
- by rewrite map_fold_empty.
- rewrite Hfold. by apply Hins.
Qed.
(** [NoDup_map_to_list] and [NoDup_map_to_list] need to be proved mutually,
hence a [Local] helper lemma. *)
Local Lemma map_to_list_spec {A} (m : M A) :
NoDup (map_to_list m) ∧ (∀ i x, (i,x) ∈ map_to_list m ↔ m !! i = Some x).
Proof.
apply (map_fold_weak_ind (λ l m,
NoDup l ∧ ∀ i x, (i,x) ∈ l ↔ m !! i = Some x)); clear m.
{ split; [constructor|]. intros i x. by rewrite elem_of_nil, lookup_empty. }
intros i x m l ? [IH1 IH2]. split; [constructor; naive_solver|].
intros j y. rewrite elem_of_cons, IH2.
unfold insert, map_insert. destruct (decide (i = j)) as [->|].
- rewrite lookup_partial_alter. naive_solver.
- rewrite lookup_partial_alter_ne by done. naive_solver.
Qed.
Lemma NoDup_map_to_list {A} (m : M A) : NoDup (map_to_list m).
Proof. apply map_to_list_spec. Qed.
Lemma elem_of_map_to_list {A} (m : M A) i x :
(i,x) ∈ map_to_list m ↔ m !! i = Some x.
Proof. apply map_to_list_spec. Qed.
Lemma map_subset_alt {A} (m1 m2 : M A) :
m1 ⊂ m2 ↔ m1 ⊆ m2 ∧ ∃ i, m1 !! i = None ∧ is_Some (m2 !! i).
Proof.
rewrite strict_spec_alt. split.
- intros [? Heq]; split; [done|].
destruct (decide (Exists (λ ix, m1 !! ix.1 = None) (map_to_list m2)))
as [[[i x] [?%elem_of_map_to_list ?]]%Exists_exists
|Hm%(not_Exists_Forall _)]; [eauto|].
destruct Heq; apply (anti_symm (⊆)), map_subseteq_spec; [done|intros i x Hi].
assert (is_Some (m1 !! i)) as [x' ?].
{ by apply not_eq_None_Some,
(proj1 (Forall_forall _ _) Hm (i,x)), elem_of_map_to_list. }
by rewrite <-(lookup_weaken_inv m1 m2 i x' x).
- intros [? (i&?&x&?)]; split; [done|]. congruence.
Qed.
(** ** Properties of the [partial_alter] operation *)
Lemma partial_alter_ext {A} (f g : option A → option A) (m : M A) i :
(∀ x, m !! i = x → f x = g x) → partial_alter f i m = partial_alter g i m.
Proof.
intros. apply map_eq; intros j. by destruct (decide (i = j)) as [->|?];
rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne; auto.
Qed.
Lemma partial_alter_compose {A} f g (m : M A) i:
partial_alter (f ∘ g) i m = partial_alter f i (partial_alter g i m).
Proof.
intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|?];
rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
Qed.
Lemma partial_alter_commute {A} f g (m : M A) i j :
i ≠ j → partial_alter f i (partial_alter g j m) =
partial_alter g j (partial_alter f i m).
Proof.
intros. apply map_eq; intros jj. destruct (decide (jj = j)) as [->|?].
{ by rewrite lookup_partial_alter_ne,
!lookup_partial_alter, lookup_partial_alter_ne. }
destruct (decide (jj = i)) as [->|?].
- by rewrite lookup_partial_alter,
!lookup_partial_alter_ne, lookup_partial_alter by congruence.
- by rewrite !lookup_partial_alter_ne by congruence.
Qed.
Lemma partial_alter_self_alt {A} (m : M A) i x :
x = m !! i → partial_alter (λ _, x) i m = m.
Proof.
intros. apply map_eq. intros ii. by destruct (decide (i = ii)) as [->|];
rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne.
Qed.
Lemma partial_alter_self {A} (m : M A) i : partial_alter (λ _, m !! i) i m = m.
Proof. by apply partial_alter_self_alt. Qed.
Lemma partial_alter_subseteq {A} f (m : M A) i :
m !! i = None → m ⊆ partial_alter f i m.
Proof.
rewrite map_subseteq_spec. intros Hi j x Hj.
rewrite lookup_partial_alter_ne; congruence.
Qed.
Lemma partial_alter_subset {A} f (m : M A) i :
m !! i = None → is_Some (f (m !! i)) → m ⊂ partial_alter f i m.
Proof.
intros Hi Hfi. apply map_subset_alt; split; [by apply partial_alter_subseteq|].
exists i. by rewrite lookup_partial_alter.
Qed.
Lemma lookup_partial_alter_Some {A} (f : option A → option A) (m : M A) i j x :
partial_alter f i m !! j = Some x ↔
(i = j ∧ f (m !! i) = Some x) ∨ (i ≠ j ∧ m !! j = Some x).
Proof.
destruct (decide (i = j)); subst.
- rewrite lookup_partial_alter. naive_solver.
- rewrite lookup_partial_alter_ne; naive_solver.
Qed.
Lemma lookup_total_partial_alter {A} `{Inhabited A}
(f : option A → option A) (m : M A) i:
partial_alter f i m !!! i = default inhabitant (f (m !! i)).
Proof. by rewrite lookup_total_alt, lookup_partial_alter. Qed.
(** ** Properties of the [alter] operation *)
Lemma lookup_alter {A} (f : A → A) (m : M A) i : alter f i m !! i = f <$> m !! i.
Proof. unfold alter. apply lookup_partial_alter. Qed.
Lemma lookup_alter_ne {A} (f : A → A) (m : M A) i j :
i ≠ j → alter f i m !! j = m !! j.
Proof. unfold alter. apply lookup_partial_alter_ne. Qed.
Lemma alter_ext {A} (f g : A → A) (m : M A) i :
(∀ x, m !! i = Some x → f x = g x) → alter f i m = alter g i m.
Proof. intro. apply partial_alter_ext. intros [x|] ?; f_equal/=; auto. Qed.
Lemma alter_compose {A} (f g : A → A) (m : M A) i:
alter (f ∘ g) i m = alter f i (alter g i m).
Proof.
unfold alter, map_alter. rewrite <-partial_alter_compose.
apply partial_alter_ext. by intros [?|].
Qed.
Lemma alter_commute {A} (f g : A → A) (m : M A) i j :
i ≠ j → alter f i (alter g j m) = alter g j (alter f i m).
Proof. apply partial_alter_commute. Qed.
Lemma alter_insert {A} (m : M A) i f x :
alter f i (<[i := x]> m) = <[i := f x]> m.
Proof.
unfold alter, insert, map_alter, map_insert.
by rewrite <-partial_alter_compose.
Qed.
Lemma alter_insert_ne {A} (m : M A) i j f x :
i ≠ j →
alter f i (<[j := x]> m) = <[j := x]> (alter f i m).
Proof. intros. symmetry. by apply partial_alter_commute. Qed.
Lemma lookup_alter_Some {A} (f : A → A) (m : M A) i j y :
alter f i m !! j = Some y ↔
(i = j ∧ ∃ x, m !! j = Some x ∧ y = f x) ∨ (i ≠ j ∧ m !! j = Some y).
Proof.
destruct (decide (i = j)) as [->|?].
- rewrite lookup_alter. naive_solver (simplify_option_eq; eauto).
- rewrite lookup_alter_ne by done. naive_solver.
Qed.
Lemma lookup_alter_None {A} (f : A → A) (m : M A) i j :
alter f i m !! j = None ↔ m !! j = None.
Proof.
by destruct (decide (i = j)) as [->|?];
rewrite ?lookup_alter, ?fmap_None, ?lookup_alter_ne.
Qed.
Lemma lookup_alter_is_Some {A} (f : A → A) (m : M A) i j :
is_Some (alter f i m !! j) ↔ is_Some (m !! j).
Proof. by rewrite <-!not_eq_None_Some, lookup_alter_None. Qed.
Lemma alter_id {A} (f : A → A) (m : M A) i :
(∀ x, m !! i = Some x → f x = x) → alter f i m = m.
Proof.
intros Hi; apply map_eq; intros j; destruct (decide (i = j)) as [->|?].
{ rewrite lookup_alter; destruct (m !! j); f_equal/=; auto. }
by rewrite lookup_alter_ne by done.
Qed.
Lemma alter_mono {A} f (m1 m2 : M A) i : m1 ⊆ m2 → alter f i m1 ⊆ alter f i m2.
Proof.
rewrite !map_subseteq_spec. intros ? j x.
rewrite !lookup_alter_Some. naive_solver.
Qed.
Lemma alter_strict_mono {A} f (m1 m2 : M A) i :
m1 ⊂ m2 → alter f i m1 ⊂ alter f i m2.
Proof.
rewrite !map_subset_alt.
intros [? (j&?&?)]; split; auto using alter_mono.
exists j. by rewrite lookup_alter_None, lookup_alter_is_Some.
Qed.
(** ** Properties of the [delete] operation *)
Lemma lookup_delete {A} (m : M A) i : delete i m !! i = None.
Proof. apply lookup_partial_alter. Qed.
Lemma lookup_total_delete `{!Inhabited A} (m : M A) i :
delete i m !!! i = inhabitant.
Proof. by rewrite lookup_total_alt, lookup_delete. Qed.
Lemma lookup_delete_ne {A} (m : M A) i j : i ≠ j → delete i m !! j = m !! j.
Proof. apply lookup_partial_alter_ne. Qed.
Lemma lookup_total_delete_ne `{!Inhabited A} (m : M A) i j :
i ≠ j → delete i m !!! j = m !!! j.
Proof. intros. by rewrite lookup_total_alt, lookup_delete_ne. Qed.
Lemma lookup_delete_Some {A} (m : M A) i j y :
delete i m !! j = Some y ↔ i ≠ j ∧ m !! j = Some y.
Proof.
split.
- destruct (decide (i = j)) as [->|?];
rewrite ?lookup_delete, ?lookup_delete_ne; intuition congruence.
- intros [??]. by rewrite lookup_delete_ne.
Qed.
Lemma lookup_delete_is_Some {A} (m : M A) i j :
is_Some (delete i m !! j) ↔ i ≠ j ∧ is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_delete_Some; naive_solver. Qed.
Lemma lookup_delete_None {A} (m : M A) i j :
delete i m !! j = None ↔ i = j ∨ m !! j = None.
Proof.
destruct (decide (i = j)) as [->|?];
rewrite ?lookup_delete, ?lookup_delete_ne; tauto.
Qed.
Lemma delete_empty {A} i : delete i ∅ =@{M A} ∅.
Proof. rewrite <-(partial_alter_self ∅) at 2. by rewrite lookup_empty. Qed.
Lemma delete_commute {A} (m : M A) i j :
delete i (delete j m) = delete j (delete i m).
Proof.
destruct (decide (i = j)) as [->|]; [done|]. by apply partial_alter_commute.
Qed.
Lemma delete_notin {A} (m : M A) i : m !! i = None → delete i m = m.
Proof.
intros. apply map_eq. intros j. by destruct (decide (i = j)) as [->|?];
rewrite ?lookup_delete, ?lookup_delete_ne.
Qed.
Lemma delete_idemp {A} (m : M A) i :
delete i (delete i m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
Lemma delete_partial_alter {A} (m : M A) i f :
m !! i = None → delete i (partial_alter f i m) = m.
Proof.
intros. unfold delete, map_delete. rewrite <-partial_alter_compose.
unfold compose. by apply partial_alter_self_alt.
Qed.
Lemma delete_insert {A} (m : M A) i x :
m !! i = None → delete i (<[i:=x]>m) = m.
Proof. apply delete_partial_alter. Qed.
Lemma delete_insert_delete {A} (m : M A) i x :
delete i (<[i:=x]>m) = delete i m.
Proof. by setoid_rewrite <-partial_alter_compose. Qed.
Lemma delete_insert_ne {A} (m : M A) i j x :
i ≠ j → delete i (<[j:=x]>m) = <[j:=x]>(delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
Lemma delete_alter {A} (m : M A) i f :
delete i (alter f i m) = delete i m.
Proof.
unfold delete, alter, map_delete, map_alter.
by rewrite <-partial_alter_compose.
Qed.
Lemma delete_alter_ne {A} (m : M A) i j f :
i ≠ j → delete i (alter f j m) = alter f j (delete i m).
Proof. intro. by apply partial_alter_commute. Qed.
Lemma delete_subseteq {A} (m : M A) i : delete i m ⊆ m.
Proof.
rewrite !map_subseteq_spec. intros j x. rewrite lookup_delete_Some. tauto.
Qed.
Lemma delete_subset {A} (m : M A) i : is_Some (m !! i) → delete i m ⊂ m.
Proof.
intros [x ?]; apply map_subset_alt; split; [apply delete_subseteq|].
exists i. rewrite lookup_delete; eauto.
Qed.
Lemma delete_mono {A} (m1 m2 : M A) i : m1 ⊆ m2 → delete i m1 ⊆ delete i m2.
Proof.
rewrite !map_subseteq_spec. intros ? j x.
rewrite !lookup_delete_Some. intuition eauto.
Qed.
(** ** Properties of the [insert] operation *)
Lemma lookup_insert {A} (m : M A) i x : <[i:=x]>m !! i = Some x.
Proof. unfold insert. apply lookup_partial_alter. Qed.
Lemma lookup_total_insert `{!Inhabited A} (m : M A) i x : <[i:=x]>m !!! i = x.
Proof. by rewrite lookup_total_alt, lookup_insert. Qed.
Lemma lookup_insert_rev {A} (m : M A) i x y : <[i:=x]>m !! i = Some y → x = y.
Proof. rewrite lookup_insert. congruence. Qed.
Lemma lookup_insert_ne {A} (m : M A) i j x : i ≠ j → <[i:=x]>m !! j = m !! j.
Proof. unfold insert. apply lookup_partial_alter_ne. Qed.
Lemma lookup_total_insert_ne `{!Inhabited A} (m : M A) i j x :
i ≠ j → <[i:=x]>m !!! j = m !!! j.
Proof. intros. by rewrite lookup_total_alt, lookup_insert_ne. Qed.
Lemma insert_insert {A} (m : M A) i x y : <[i:=x]>(<[i:=y]>m) = <[i:=x]>m.
Proof. unfold insert, map_insert. by rewrite <-partial_alter_compose. Qed.
Lemma insert_commute {A} (m : M A) i j x y :
i ≠ j → <[i:=x]>(<[j:=y]>m) = <[j:=y]>(<[i:=x]>m).
Proof. apply partial_alter_commute. Qed.
Lemma lookup_insert_Some {A} (m : M A) i j x y :
<[i:=x]>m !! j = Some y ↔ (i = j ∧ x = y) ∨ (i ≠ j ∧ m !! j = Some y).
Proof.
split.
- destruct (decide (i = j)) as [->|?];
rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
- intros [[-> ->]|[??]]; [apply lookup_insert|]. by rewrite lookup_insert_ne.
Qed.
Lemma lookup_insert_is_Some {A} (m : M A) i j x :
is_Some (<[i:=x]>m !! j) ↔ i = j ∨ i ≠ j ∧ is_Some (m !! j).
Proof. unfold is_Some; setoid_rewrite lookup_insert_Some; naive_solver. Qed.
Lemma lookup_insert_is_Some' {A} (m : M A) i j x :
is_Some (<[i:=x]>m !! j) ↔ i = j ∨ is_Some (m !! j).
Proof. rewrite lookup_insert_is_Some. destruct (decide (i=j)); naive_solver. Qed.
Lemma lookup_insert_None {A} (m : M A) i j x :
<[i:=x]>m !! j = None ↔ m !! j = None ∧ i ≠ j.
Proof.
split; [|by intros [??]; rewrite lookup_insert_ne].
destruct (decide (i = j)) as [->|];
rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
Qed.
Lemma insert_id {A} (m : M A) i x : m !! i = Some x → <[i:=x]>m = m.
Proof.
intros; apply map_eq; intros j; destruct (decide (i = j)) as [->|];
by rewrite ?lookup_insert, ?lookup_insert_ne by done.
Qed.
Lemma insert_included {A} R `{!∀ i, Reflexive (R i)} (m : M A) i x :
(∀ y, m !! i = Some y → R i y x) → map_included R m (<[i:=x]>m).
Proof.
intros ? j; destruct (decide (i = j)) as [->|].
- rewrite lookup_insert. destruct (m !! j); simpl; eauto.
- rewrite lookup_insert_ne by done. by destruct (m !! j); simpl.
Qed.
Lemma insert_empty {A} i (x : A) : <[i:=x]> ∅ =@{M A} {[i := x]}.
Proof. done. Qed.
Lemma insert_non_empty {A} (m : M A) i x : <[i:=x]>m ≠ ∅.
Proof.
intros Hi%(f_equal (.!! i)). by rewrite lookup_insert, lookup_empty in Hi.
Qed.
Lemma insert_delete_insert {A} (m : M A) i x : <[i:=x]>(delete i m) = <[i:=x]> m.
Proof. symmetry; apply (partial_alter_compose (λ _, Some x)). Qed.
Lemma insert_delete {A} (m : M A) i x :
m !! i = Some x → <[i:=x]> (delete i m) = m.
Proof. intros. rewrite insert_delete_insert, insert_id; done. Qed.
Lemma insert_subseteq {A} (m : M A) i x : m !! i = None → m ⊆ <[i:=x]>m.
Proof. apply partial_alter_subseteq. Qed.
Lemma insert_subset {A} (m : M A) i x : m !! i = None → m ⊂ <[i:=x]>m.
Proof. intro. apply partial_alter_subset; eauto. Qed.
Lemma insert_mono {A} (m1 m2 : M A) i x : m1 ⊆ m2 → <[i:=x]> m1 ⊆ <[i:=x]>m2.
Proof.
rewrite !map_subseteq_spec.
intros Hm j y. rewrite !lookup_insert_Some. naive_solver.
Qed.
Lemma insert_subseteq_r {A} (m1 m2 : M A) i x :
m1 !! i = None → m1 ⊆ m2 → m1 ⊆ <[i:=x]>m2.
Proof.
intros. trans (<[i:=x]> m1); eauto using insert_subseteq, insert_mono.
Qed.
Lemma insert_subseteq_l {A} (m1 m2 : M A) i x :
m2 !! i = Some x → m1 ⊆ m2 → <[i:=x]> m1 ⊆ m2.
Proof.
intros Hi Hincl. etrans; [apply insert_mono, Hincl|]. by rewrite insert_id.
Qed.
Lemma insert_delete_subseteq {A} (m1 m2 : M A) i x :
m1 !! i = None → <[i:=x]> m1 ⊆ m2 → m1 ⊆ delete i m2.
Proof.
rewrite !map_subseteq_spec. intros Hi Hix j y Hj.
destruct (decide (i = j)) as [->|]; [congruence|].
rewrite lookup_delete_ne by done.
apply Hix; by rewrite lookup_insert_ne by done.
Qed.
Lemma delete_insert_subseteq {A} (m1 m2 : M A) i x :
m1 !! i = Some x → delete i m1 ⊆ m2 → m1 ⊆ <[i:=x]> m2.
Proof.
rewrite !map_subseteq_spec.
intros Hix Hi j y Hj. destruct (decide (i = j)) as [->|?].
- rewrite lookup_insert. congruence.
- rewrite lookup_insert_ne by done. apply Hi. by rewrite lookup_delete_ne.
Qed.
Lemma insert_delete_subset {A} (m1 m2 : M A) i x :
m1 !! i = None → <[i:=x]> m1 ⊂ m2 → m1 ⊂ delete i m2.
Proof.
intros ? [Hm12 Hm21]; split; [eauto using insert_delete_subseteq|].
contradict Hm21. apply delete_insert_subseteq; auto.
eapply lookup_weaken, Hm12. by rewrite lookup_insert.
Qed.
Lemma insert_subset_inv {A} (m1 m2 : M A) i x :
m1 !! i = None → <[i:=x]> m1 ⊂ m2 →
∃ m2', m2 = <[i:=x]>m2' ∧ m1 ⊂ m2' ∧ m2' !! i = None.
Proof.
intros Hi Hm1m2. exists (delete i m2). split_and?.
- rewrite insert_delete; [done|].
eapply lookup_weaken, strict_include; eauto. by rewrite lookup_insert.
- eauto using insert_delete_subset.
- by rewrite lookup_delete.
Qed.
(** ** Properties of the singleton maps *)
Lemma lookup_singleton_Some {A} i j (x y : A) :
({[i := x]} : M A) !! j = Some y ↔ i = j ∧ x = y.
Proof.
rewrite <-insert_empty,lookup_insert_Some, lookup_empty; intuition congruence.
Qed.
Lemma lookup_singleton_None {A} i j (x : A) :
({[i := x]} : M A) !! j = None ↔ i ≠ j.
Proof. rewrite <-insert_empty,lookup_insert_None, lookup_empty; tauto. Qed.
Lemma lookup_singleton {A} i (x : A) : ({[i := x]} : M A) !! i = Some x.
Proof. by rewrite lookup_singleton_Some. Qed.
Lemma lookup_total_singleton `{!Inhabited A} i (x : A) :
({[i := x]} : M A) !!! i = x.
Proof. by rewrite lookup_total_alt, lookup_singleton. Qed.
Lemma lookup_singleton_ne {A} i j (x : A) :
i ≠ j → ({[i := x]} : M A) !! j = None.
Proof. by rewrite lookup_singleton_None. Qed.
Lemma lookup_total_singleton_ne `{!Inhabited A} i j (x : A) :
i ≠ j → ({[i := x]} : M A) !!! j = inhabitant.
Proof. intros. by rewrite lookup_total_alt, lookup_singleton_ne. Qed.
Global Instance map_singleton_inj {A} : Inj2 (=) (=) (=) (singletonM (M:=M A)).
Proof.
intros i1 x1 i2 x2 Heq%(f_equal (lookup i1)).
rewrite lookup_singleton in Heq. destruct (decide (i1 = i2)) as [->|].
- rewrite lookup_singleton in Heq. naive_solver.
- rewrite lookup_singleton_ne in Heq by done. naive_solver.
Qed.
Lemma map_non_empty_singleton {A} i (x : A) : {[i := x]} ≠@{M A} ∅.
Proof.
intros Hix. apply (f_equal (.!! i)) in Hix.
by rewrite lookup_empty, lookup_singleton in Hix.
Qed.
Lemma insert_singleton {A} i (x y : A) : <[i:=y]> {[i := x]} =@{M A} {[i := y]}.
Proof.
unfold singletonM, map_singleton, insert, map_insert.
by rewrite <-partial_alter_compose.
Qed.
Lemma alter_singleton {A} (f : A → A) i x :
alter f i {[i := x]} =@{M A} {[i := f x]}.
Proof.
intros. apply map_eq. intros i'. destruct (decide (i = i')) as [->|?].
- by rewrite lookup_alter, !lookup_singleton.
- by rewrite lookup_alter_ne, !lookup_singleton_ne.
Qed.
Lemma alter_singleton_ne {A} (f : A → A) i j x :
i ≠ j → alter f i {[j := x]}=@{M A} {[j := x]}.
Proof.
intros. apply map_eq; intros i'. by destruct (decide (i = i')) as [->|?];
rewrite ?lookup_alter, ?lookup_singleton_ne, ?lookup_alter_ne by done.
Qed.
Lemma singleton_non_empty {A} i (x : A) : {[i:=x]} ≠@{M A} ∅.
Proof. apply insert_non_empty. Qed.
Lemma delete_singleton {A} i (x : A) : delete i {[i := x]} =@{M A} ∅.
Proof. setoid_rewrite <-partial_alter_compose. apply delete_empty. Qed.
Lemma delete_singleton_ne {A} i j (x : A) :
i ≠ j → delete i {[j := x]} =@{M A} {[j := x]}.
Proof. intro. apply delete_notin. by apply lookup_singleton_ne. Qed.
Lemma map_singleton_subseteq_l {A} i (x : A) (m : M A) :
{[i := x]} ⊆ m ↔ m !! i = Some x.
Proof.
rewrite map_subseteq_spec. setoid_rewrite lookup_singleton_Some. naive_solver.
Qed.
Lemma map_singleton_subseteq {A} i j (x y : A) :
{[i := x]} ⊆@{M A} {[j := y]} ↔ i = j ∧ x = y.
Proof.
rewrite map_subseteq_spec. setoid_rewrite lookup_singleton_Some. naive_solver.
Qed.
(** ** Properties of the map operations *)
Global Instance map_fmap_inj {A B} (f : A → B) :
Inj (=) (=) f → Inj (=@{M A}) (=@{M B}) (fmap f).
Proof.
intros ? m1 m2 Hm. apply map_eq; intros i.
apply (inj (fmap (M:=option) f)). by rewrite <-!lookup_fmap, Hm.
Qed.
Lemma lookup_fmap_Some {A B} (f : A → B) (m : M A) i y :
(f <$> m) !! i = Some y ↔ ∃ x, f x = y ∧ m !! i = Some x.
Proof. rewrite lookup_fmap, fmap_Some. naive_solver. Qed.
Lemma lookup_omap_Some {A B} (f : A → option B) (m : M A) i y :
omap f m !! i = Some y ↔ ∃ x, f x = Some y ∧ m !! i = Some x.
Proof. rewrite lookup_omap, bind_Some. naive_solver. Qed.
Lemma lookup_omap_id_Some {A} (m : M (option A)) i x :
omap id m !! i = Some x ↔ m !! i = Some (Some x).
Proof. rewrite lookup_omap_Some. naive_solver. Qed.
Lemma fmap_empty {A B} (f : A → B) : f <$> ∅ =@{M B} ∅.
Proof. apply map_empty; intros i. by rewrite lookup_fmap, lookup_empty. Qed.
Lemma omap_empty {A B} (f : A → option B) : omap f ∅ =@{M B} ∅.
Proof. apply map_empty; intros i. by rewrite lookup_omap, lookup_empty. Qed.
Lemma fmap_empty_iff {A B} (f : A → B) m : f <$> m =@{M B} ∅ ↔ m = ∅.
Proof.
split; [|intros ->; by rewrite fmap_empty].
intros Hm. apply map_eq; intros i. generalize (f_equal (lookup i) Hm).
by rewrite lookup_fmap, !lookup_empty, fmap_None.
Qed.
Lemma fmap_empty_inv {A B} (f : A → B) m : f <$> m =@{M B} ∅ → m = ∅.
Proof. apply fmap_empty_iff. Qed.
Lemma fmap_delete {A B} (f: A → B) (m : M A) i :
f <$> delete i m = delete i (f <$> m).
Proof.
apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
- by rewrite lookup_fmap, !lookup_delete.
- by rewrite lookup_fmap, !lookup_delete_ne, lookup_fmap by done.
Qed.
Lemma omap_delete {A B} (f: A → option B) (m : M A) i :
omap f (delete i m) = delete i (omap f m).
Proof.
apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
- by rewrite lookup_omap, !lookup_delete.
- by rewrite lookup_omap, !lookup_delete_ne, lookup_omap by done.
Qed.
Lemma fmap_insert {A B} (f : A → B) (m : M A) i x :
f <$> <[i:=x]> m = <[i:=f x]> (f <$> m).
Proof.
apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
- by rewrite lookup_fmap, !lookup_insert.
- by rewrite lookup_fmap, !lookup_insert_ne, lookup_fmap by done.
Qed.
Lemma fmap_insert_inv {A B} (f : A → B) (m1 : M A) (m2 : M B) i y :
m2 !! i = None →
f <$> m1 = <[i:=y]> m2 →
∃ x m1', y = f x ∧ m1' !! i = None ∧ m1 = <[i:=x]> m1' ∧ m2 = f <$> m1'.
Proof.
intros ? Hm. pose proof (f_equal (.!! i) Hm) as Hmi.
rewrite lookup_fmap, lookup_insert, fmap_Some in Hmi.
destruct Hmi as (x & ? & ->). exists x, (delete i m1). split; [done|].
split; [by rewrite lookup_delete|].
split; [by rewrite insert_delete|].
by rewrite fmap_delete, Hm, delete_insert by done.
Qed.
Lemma omap_insert {A B} (f : A → option B) (m : M A) i x :
omap f (<[i:=x]>m) =
(match f x with Some y => <[i:=y]> | None => delete i end) (omap f m).
Proof.
intros; apply map_eq; intros i'; destruct (decide (i' = i)) as [->|].
- rewrite lookup_omap, !lookup_insert. destruct (f x) as [y|] eqn:Hx; simpl.
+ by rewrite lookup_insert.
+ by rewrite lookup_delete, Hx.
- rewrite lookup_omap, !lookup_insert_ne by done.
destruct (f x) as [y|] eqn:Hx; simpl.
+ by rewrite lookup_insert_ne, lookup_omap by done.
+ by rewrite lookup_delete_ne, lookup_omap by done.
Qed.
Lemma omap_insert_Some {A B} (f : A → option B) (m : M A) i x y :
f x = Some y → omap f (<[i:=x]>m) = <[i:=y]>(omap f m).
Proof. intros Hx. by rewrite omap_insert, Hx. Qed.
Lemma omap_insert_None {A B} (f : A → option B) (m : M A) i x :
f x = None → omap f (<[i:=x]>m) = delete i (omap f m).
Proof. intros Hx. by rewrite omap_insert, Hx. Qed.
Lemma map_fmap_singleton {A B} (f : A → B) i x :
f <$> {[i := x]} =@{M B} {[i := f x]}.
Proof.
by unfold singletonM, map_singleton; rewrite fmap_insert, fmap_empty.
Qed.
Lemma map_fmap_singleton_inv {A B} (f : A → B) (m : M A) i y :
f <$> m = {[i := y]} → ∃ x, y = f x ∧ m = {[ i := x ]}.
Proof.
intros (x & m' & -> & ? & -> & Hm')%fmap_insert_inv; [|by apply lookup_empty].
apply symmetry in Hm' as ->%fmap_empty_inv. by exists x.
Qed.
Lemma omap_singleton {A B} (f : A → option B) i x :
omap f {[ i := x ]} =@{M B} match f x with Some y => {[ i:=y ]} | None => ∅ end.
Proof.
rewrite <-insert_empty, omap_insert, omap_empty. destruct (f x) as [y|]; simpl.
- by rewrite insert_empty.
- by rewrite delete_empty.
Qed.
Lemma omap_singleton_Some {A B} (f : A → option B) i x y :
f x = Some y → omap f {[ i := x ]} =@{M B} {[ i := y ]}.
Proof. intros Hx. by rewrite omap_singleton, Hx. Qed.
Lemma omap_singleton_None {A B} (f : A → option B) i x :
f x = None → omap f {[ i := x ]} =@{M B} ∅.
Proof. intros Hx. by rewrite omap_singleton, Hx. Qed.
Lemma map_fmap_id {A} (m : M A) : id <$> m = m.
Proof. apply map_eq; intros i; by rewrite lookup_fmap, option_fmap_id. Qed.
Lemma map_fmap_compose {A B C} (f : A → B) (g : B → C) (m : M A) :
g ∘ f <$> m = g <$> (f <$> m).
Proof. apply map_eq; intros i; by rewrite !lookup_fmap,option_fmap_compose. Qed.
Lemma map_fmap_ext {A B} (f1 f2 : A → B) (m : M A) :
(∀ i x, m !! i = Some x → f1 x = f2 x) → f1 <$> m = f2 <$> m.
Proof.
intros Hi; apply map_eq; intros i; rewrite !lookup_fmap.
by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Lemma omap_ext {A B} (f1 f2 : A → option B) (m : M A) :
(∀ i x, m !! i = Some x → f1 x = f2 x) → omap f1 m = omap f2 m.
Proof.
intros Hi; apply map_eq; intros i; rewrite !lookup_omap.
by destruct (m !! i) eqn:?; simpl; erewrite ?Hi by eauto.
Qed.
Lemma map_fmap_omap {A B C} (f : A → option B) (g : B → C) (m : M A) :
g <$> omap f m = omap (λ x, g <$> f x) m.
Proof.
apply map_eq. intros i.
rewrite !lookup_fmap, !lookup_omap. destruct (m !! i); done.
Qed.
Lemma map_fmap_alt {A B} (f : A → B) (m : M A) :
f <$> m = omap (λ x, Some (f x)) m.
Proof.
apply map_eq. intros i.
rewrite lookup_fmap, lookup_omap. destruct (m !! i); done.
Qed.
Lemma map_fmap_mono {A B} (f : A → B) (m1 m2 : M A) :
m1 ⊆ m2 → f <$> m1 ⊆ f <$> m2.
Proof.
rewrite !map_subseteq_spec; intros Hm i x.
rewrite !lookup_fmap, !fmap_Some. naive_solver.
Qed.
Lemma map_fmap_strict_mono {A B} (f : A → B) (m1 m2 : M A) :
m1 ⊂ m2 → f <$> m1 ⊂ f <$> m2.
Proof.
rewrite !map_subset_alt.
intros [? (j&?&?)]; split; auto using map_fmap_mono.
exists j. by rewrite !lookup_fmap, fmap_None, fmap_is_Some.
Qed.
Lemma map_omap_mono {A B} (f : A → option B) (m1 m2 : M A) :
m1 ⊆ m2 → omap f m1 ⊆ omap f m2.
Proof.
rewrite !map_subseteq_spec; intros Hm i x.
rewrite !lookup_omap, !bind_Some. naive_solver.
Qed.
(** ** Properties of conversion to lists *)
Lemma elem_of_map_to_list' {A} (m : M A) ix :
ix ∈ map_to_list m ↔ m !! ix.1 = Some (ix.2).
Proof. destruct ix as [i x]. apply elem_of_map_to_list. Qed.
Lemma map_to_list_unique {A} (m : M A) i x y :
(i,x) ∈ map_to_list m → (i,y) ∈ map_to_list m → x = y.
Proof. rewrite !elem_of_map_to_list. congruence. Qed.
Lemma NoDup_fst_map_to_list {A} (m : M A) : NoDup ((map_to_list m).*1).
Proof. eauto using NoDup_fmap_fst, map_to_list_unique, NoDup_map_to_list. Qed.
Lemma elem_of_list_to_map_1' {A} (l : list (K * A)) i x :
(∀ y, (i,y) ∈ l → x = y) → (i,x) ∈ l → (list_to_map l : M A) !! i = Some x.
Proof.
induction l as [|[j y] l IH]; csimpl; [by rewrite elem_of_nil|].
setoid_rewrite elem_of_cons.
intros Hdup [?|?]; simplify_eq; [by rewrite lookup_insert|].
destruct (decide (i = j)) as [->|].
- rewrite lookup_insert; f_equal; eauto using eq_sym.
- rewrite lookup_insert_ne by done; eauto.
Qed.
Lemma elem_of_list_to_map_1 {A} (l : list (K * A)) i x :
NoDup (l.*1) → (i,x) ∈ l → (list_to_map l : M A) !! i = Some x.
Proof.
intros ? Hx; apply elem_of_list_to_map_1'; eauto using NoDup_fmap_fst.
intros y; revert Hx. rewrite !elem_of_list_lookup; intros [i' Hi'] [j' Hj'].
cut (i' = j'); [naive_solver|]. apply NoDup_lookup with (l.*1) i;
by rewrite ?list_lookup_fmap, ?Hi', ?Hj'.
Qed.
Lemma elem_of_list_to_map_2 {A} (l : list (K * A)) i x :
(list_to_map l : M A) !! i = Some x → (i,x) ∈ l.
Proof.
induction l as [|[j y] l IH]; simpl; [by rewrite lookup_empty|].
rewrite elem_of_cons. destruct (decide (i = j)) as [->|];
rewrite ?lookup_insert, ?lookup_insert_ne; intuition congruence.
Qed.
Lemma elem_of_list_to_map' {A} (l : list (K * A)) i x :
(∀ x', (i,x) ∈ l → (i,x') ∈ l → x = x') →
(i,x) ∈ l ↔ (list_to_map l : M A) !! i = Some x.
Proof. split; auto using elem_of_list_to_map_1', elem_of_list_to_map_2. Qed.
Lemma elem_of_list_to_map {A} (l : list (K * A)) i x :
NoDup (l.*1) → (i,x) ∈ l ↔ (list_to_map l : M A) !! i = Some x.
Proof. split; auto using elem_of_list_to_map_1, elem_of_list_to_map_2. Qed.
Lemma not_elem_of_list_to_map_1 {A} (l : list (K * A)) i :
i ∉ l.*1 → (list_to_map l : M A) !! i = None.
Proof.
rewrite elem_of_list_fmap, eq_None_not_Some. intros Hi [x ?]; destruct Hi.
exists (i,x); simpl; auto using elem_of_list_to_map_2.
Qed.
Lemma not_elem_of_list_to_map_2 {A} (l : list (K * A)) i :
(list_to_map l : M A) !! i = None → i ∉ l.*1.
Proof.
induction l as [|[j y] l IH]; csimpl; [rewrite elem_of_nil; tauto|].
rewrite elem_of_cons. destruct (decide (i = j)); simplify_eq.
- by rewrite lookup_insert.
- by rewrite lookup_insert_ne; intuition.
Qed.
Lemma not_elem_of_list_to_map {A} (l : list (K * A)) i :
i ∉ l.*1 ↔ (list_to_map l : M A) !! i = None.
Proof. red; auto using not_elem_of_list_to_map_1,not_elem_of_list_to_map_2. Qed.
Lemma list_to_map_proper {A} (l1 l2 : list (K * A)) :
NoDup (l1.*1) → l1 ≡ₚ l2 → (list_to_map l1 : M A) = list_to_map l2.
Proof.
intros ? Hperm. apply map_eq. intros i. apply option_eq. intros x.
by rewrite <-!elem_of_list_to_map; rewrite <-?Hperm.
Qed.
Lemma list_to_map_inj {A} (l1 l2 : list (K * A)) :
NoDup (l1.*1) → NoDup (l2.*1) →
(list_to_map l1 : M A) = list_to_map l2 → l1 ≡ₚ l2.
Proof.
intros ?? Hl1l2. apply NoDup_Permutation; [by eauto using NoDup_fmap_1..|].
intros [i x]. by rewrite !elem_of_list_to_map, Hl1l2.
Qed.
Lemma list_to_map_to_list {A} (m : M A) : list_to_map (map_to_list m) = m.
Proof.
apply map_eq. intros i. apply option_eq. intros x.
by rewrite <-elem_of_list_to_map, elem_of_map_to_list
by auto using NoDup_fst_map_to_list.
Qed.
Lemma map_to_list_to_map {A} (l : list (K * A)) :
NoDup (l.*1) → map_to_list (list_to_map l) ≡ₚ l.
Proof. auto using list_to_map_inj, NoDup_fst_map_to_list, list_to_map_to_list. Qed.
Lemma map_to_list_inj {A} (m1 m2 : M A) :
map_to_list m1 ≡ₚ map_to_list m2 → m1 = m2.
Proof.
intros. rewrite <-(list_to_map_to_list m1), <-(list_to_map_to_list m2).
auto using list_to_map_proper, NoDup_fst_map_to_list.
Qed.
Lemma list_to_map_flip {A} (m1 : M A) l2 :
map_to_list m1 ≡ₚ l2 → m1 = list_to_map l2.
Proof.
intros. rewrite <-(list_to_map_to_list m1).
auto using list_to_map_proper, NoDup_fst_map_to_list.
Qed.
Lemma list_to_map_nil {A} : list_to_map [] =@{M A} ∅.
Proof. done. Qed.
Lemma list_to_map_cons {A} (l : list (K * A)) i x :
list_to_map ((i, x) :: l) =@{M A} <[i:=x]>(list_to_map l).
Proof. done. Qed.
Lemma list_to_map_snoc {A} (l : list (K * A)) i x :
i ∉ l.*1 → list_to_map (l ++ [(i, x)]) =@{M A} <[i:=x]>(list_to_map l).
Proof.
induction l as [|[k y] l IH]; [done|]. csimpl.
intros [Hneq Hni]%not_elem_of_cons.
by rewrite (IH Hni), insert_commute by done.
Qed.
Lemma list_to_map_fmap {A B} (f : A → B) l :
list_to_map (prod_map id f <$> l) = f <$> (list_to_map l : M A).
Proof.
induction l as [|[i x] l IH]; csimpl; rewrite ?fmap_empty; auto.
rewrite <-list_to_map_cons; simpl. by rewrite IH, <-fmap_insert.
Qed.
Lemma map_to_list_empty {A} : map_to_list ∅ = @nil (K * A).
Proof.
apply elem_of_nil_inv. intros [i x].
rewrite elem_of_map_to_list. apply lookup_empty_Some.
Qed.
Lemma map_to_list_insert {A} (m : M A) i x :
m !! i = None → map_to_list (<[i:=x]>m) ≡ₚ (i,x) :: map_to_list m.
Proof.
intros. apply list_to_map_inj; csimpl.
- apply NoDup_fst_map_to_list.
- constructor; [|by auto using NoDup_fst_map_to_list].
rewrite elem_of_list_fmap. intros [[??] [? Hlookup]]; subst; simpl in *.
rewrite elem_of_map_to_list in Hlookup. congruence.
- by rewrite !list_to_map_to_list.
Qed.
Lemma map_to_list_singleton {A} i (x : A) :
map_to_list ({[i:=x]} : M A) = [(i,x)].
Proof.
apply Permutation_singleton_r. unfold singletonM, map_singleton.
by rewrite map_to_list_insert, map_to_list_empty by eauto using lookup_empty.
Qed.
Lemma map_to_list_delete {A} (m : M A) i x :
m !! i = Some x → (i,x) :: map_to_list (delete i m) ≡ₚ map_to_list m.
Proof.
intros. rewrite <-map_to_list_insert by (by rewrite lookup_delete).
by rewrite insert_delete.
Qed.
Lemma map_to_list_submseteq {A} (m1 m2 : M A) :
m1 ⊆ m2 → map_to_list m1 ⊆+ map_to_list m2.
Proof.
intros; apply NoDup_submseteq; [by eauto using NoDup_map_to_list|].
intros [i x]. rewrite !elem_of_map_to_list; eauto using lookup_weaken.
Qed.
(** FIXME (improve structure): Remove in favor of [map_to_list_fmap] (proved
below), which gives [=] instead of [≡ₚ]. Moving requires a bunch of reordering
in this file. *)
Local Lemma map_to_list_fmap_weak {A B} (f : A → B) (m : M A) :
map_to_list (f <$> m) ≡ₚ prod_map id f <$> map_to_list m.
Proof.
assert (NoDup ((prod_map id f <$> map_to_list m).*1)).
{ erewrite <-list_fmap_compose, (list_fmap_ext _ fst) by done.
apply NoDup_fst_map_to_list. }
rewrite <-(list_to_map_to_list m) at 1.
by rewrite <-list_to_map_fmap, map_to_list_to_map.
Qed.
Lemma map_to_list_empty_iff {A} (m : M A) : map_to_list m = [] ↔ m = ∅.
Proof.
split.
- rewrite <-Permutation_nil_r, <-map_to_list_empty. apply map_to_list_inj.
- intros ->. apply map_to_list_empty.
Qed.
Lemma map_to_list_insert_inv {A} (m : M A) l i x :
map_to_list m ≡ₚ (i,x) :: l → m = <[i:=x]>(list_to_map l).
Proof.
intros Hperm. apply map_to_list_inj.
assert (i ∉ l.*1 ∧ NoDup (l.*1)) as [].
{ rewrite <-NoDup_cons. change (NoDup (((i,x)::l).*1)). rewrite <-Hperm.
auto using NoDup_fst_map_to_list. }
rewrite Hperm, map_to_list_insert, map_to_list_to_map;
auto using not_elem_of_list_to_map_1.
Qed.
Lemma length_map_to_list {A} (m : M A) :
length (map_to_list m) = size m.
Proof.
apply (map_fold_weak_ind (λ n m, length (map_to_list m) = n)); clear m.
{ by rewrite map_to_list_empty. }
intros i x m n ? IH. by rewrite map_to_list_insert, <-IH by done.
Qed.
Lemma map_choose {A} (m : M A) : m ≠ ∅ → ∃ i x, m !! i = Some x.
Proof.
rewrite <-map_to_list_empty_iff.
intros Hemp. destruct (map_to_list m) as [|[i x] l] eqn:Hm; [done|].
exists i, x. rewrite <-elem_of_map_to_list, Hm. by left.
Qed.
Global Instance map_eq_dec_empty {A} (m : M A) : Decision (m = ∅) | 20.
Proof.
refine (cast_if (decide (map_to_list m = [])));
by rewrite <-?map_to_list_empty_iff.
Defined.
Lemma map_choose_or_empty {A} (m : M A) : (∃ i x, m !! i = Some x) ∨ m = ∅.
Proof. destruct (decide (m = ∅)); [right|left]; auto using map_choose. Qed.
(** Properties of the imap function *)
Lemma map_lookup_imap {A B} (f : K → A → option B) (m : M A) i :
map_imap f m !! i = m !! i ≫= f i.
Proof.
unfold map_imap.
apply (map_fold_weak_ind (λ r m, r !! i = m !! i ≫= f i)); clear m.
{ by rewrite !lookup_empty. }
intros j y m m' Hj Hi. destruct (decide (i = j)) as [->|].
- rewrite lookup_insert; simpl. destruct (f j y).
+ by rewrite lookup_insert.
+ by rewrite Hi, Hj.
- rewrite lookup_insert_ne by done.
destruct (f j y); by rewrite ?lookup_insert_ne by done.
Qed.
Lemma map_imap_Some {A} (m : M A) : map_imap (λ _, Some) m = m.
Proof.
apply map_eq. intros i. rewrite map_lookup_imap. by destruct (m !! i).
Qed.
Lemma map_imap_insert {A B} (f : K → A → option B) i x (m : M A) :
map_imap f (<[i:=x]> m) =
(match f i x with Some y => <[i:=y]> | None => delete i end) (map_imap f m).
Proof.
destruct (f i x) as [y|] eqn:Hw; simpl.
- apply map_eq. intros k. rewrite map_lookup_imap.
destruct (decide (k = i)) as [->|Hk_not_i].
+ by rewrite lookup_insert, lookup_insert.
+ rewrite !lookup_insert_ne by done.
by rewrite map_lookup_imap.
- apply map_eq. intros k. rewrite map_lookup_imap.
destruct (decide (k = i)) as [->|Hk_not_i].
+ by rewrite lookup_insert, lookup_delete.
+ rewrite lookup_insert_ne, lookup_delete_ne by done.
by rewrite map_lookup_imap.
Qed.
Lemma map_imap_insert_Some {A B} (f : K → A → option B) i x (m : M A) y :
f i x = Some y → map_imap f (<[i:=x]> m) = <[i:=y]> (map_imap f m).
Proof. intros Hi. by rewrite map_imap_insert, Hi. Qed.
Lemma map_imap_insert_None {A B} (f : K → A → option B) i x (m : M A) :
f i x = None → map_imap f (<[i:=x]> m) = delete i (map_imap f m).
Proof. intros Hi. by rewrite map_imap_insert, Hi. Qed.
Lemma map_imap_delete {A B} (f : K → A → option B) (m : M A) (i : K) :
map_imap f (delete i m) = delete i (map_imap f m).
Proof.
apply map_eq. intros k. rewrite map_lookup_imap.
destruct (decide (k = i)) as [->|Hk_not_i].
- by rewrite !lookup_delete.
- rewrite !lookup_delete_ne by done.
by rewrite map_lookup_imap.
Qed.
Lemma map_imap_ext {A1 A2 B} (f1 : K → A1 → option B)
(f2 : K → A2 → option B) (m1 : M A1) (m2 : M A2) :
(∀ k, f1 k <$> (m1 !! k) = f2 k <$> (m2 !! k)) →
map_imap f1 m1 = map_imap f2 m2.
Proof.
intros HExt. apply map_eq. intros i. rewrite !map_lookup_imap.
specialize (HExt i). destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_imap_compose {A1 A2 B} (f1 : K → A1 → option B)
(f2 : K → A2 → option A1) (m : M A2) :
map_imap f1 (map_imap f2 m) = map_imap (λ k x, f2 k x ≫= f1 k) m.
Proof.
apply map_eq. intros i. rewrite !map_lookup_imap. by destruct (m !! i).
Qed.
Lemma map_imap_empty {A B} (f : K → A → option B) :
map_imap f ∅ =@{M B} ∅.
Proof. apply map_eq; intros i. by rewrite map_lookup_imap, !lookup_empty. Qed.
(** ** Properties of the size operation *)
Lemma map_size_empty {A} : size (∅ : M A) = 0.
Proof. by rewrite <-length_map_to_list, map_to_list_empty. Qed.
Lemma map_size_empty_iff {A} (m : M A) : size m = 0 ↔ m = ∅.
Proof.
by rewrite <-length_map_to_list, length_zero_iff_nil, map_to_list_empty_iff.
Qed.
Lemma map_size_empty_inv {A} (m : M A) : size m = 0 → m = ∅.
Proof. apply map_size_empty_iff. Qed.
Lemma map_size_non_empty_iff {A} (m : M A) : size m ≠ 0 ↔ m ≠ ∅.
Proof. by rewrite map_size_empty_iff. Qed.
Lemma map_size_singleton {A} i (x : A) : size ({[ i := x ]} : M A) = 1.
Proof. by rewrite <-length_map_to_list, map_to_list_singleton. Qed.
Lemma map_size_ne_0_lookup {A} (m : M A) :
size m ≠ 0 ↔ ∃ i, is_Some (m !! i).
Proof.
rewrite map_size_non_empty_iff. split.
- intros Hsz. apply map_choose. intros Hemp. done.
- intros [i [k Hi]] ->. rewrite lookup_empty in Hi. done.
Qed.
Lemma map_size_ne_0_lookup_1 {A} (m : M A) :
size m ≠ 0 → ∃ i, is_Some (m !! i).
Proof. intros. by eapply map_size_ne_0_lookup. Qed.
Lemma map_size_ne_0_lookup_2 {A} (m : M A) i :
is_Some (m !! i) → size m ≠ 0.
Proof. intros. eapply map_size_ne_0_lookup. eauto. Qed.
Lemma map_size_insert {A} i x (m : M A) :
size (<[i:=x]> m) = (match m !! i with Some _ => id | None => S end) (size m).
Proof.
destruct (m !! i) as [y|] eqn:?; simpl.
- rewrite <-(insert_id m i y) at 2 by done. rewrite <-!(insert_delete_insert m).
rewrite <-!length_map_to_list.
by rewrite !map_to_list_insert by (by rewrite lookup_delete).
- by rewrite <-!length_map_to_list, map_to_list_insert.
Qed.
Lemma map_size_insert_Some {A} i x (m : M A) :
is_Some (m !! i) → size (<[i:=x]> m) = size m.
Proof. intros [y Hi]. by rewrite map_size_insert, Hi. Qed.
Lemma map_size_insert_None {A} i x (m : M A) :
m !! i = None → size (<[i:=x]> m) = S (size m).
Proof. intros Hi. by rewrite map_size_insert, Hi. Qed.
Lemma map_size_delete {A} i (m : M A) :
size (delete i m) = (match m !! i with Some _ => pred | None => id end) (size m).
Proof.
destruct (m !! i) as [y|] eqn:?; simpl.
- by rewrite <-!length_map_to_list, <-(map_to_list_delete m).
- by rewrite delete_notin.
Qed.
Lemma map_size_delete_Some {A} i (m : M A) :
is_Some (m !! i) → size (delete i m) = pred (size m).
Proof. intros [y Hi]. by rewrite map_size_delete, Hi. Qed.
Lemma map_size_delete_None {A} i (m : M A) :
m !! i = None → size (delete i m) = size m.
Proof. intros Hi. by rewrite map_size_delete, Hi. Qed.
Lemma map_size_fmap {A B} (f : A -> B) (m : M A) : size (f <$> m) = size m.
Proof.
intros. by rewrite <-!length_map_to_list, map_to_list_fmap_weak, length_fmap.
Qed.
Lemma map_size_list_to_map {A} (l : list (K * A)) :
NoDup l.*1 →
size (list_to_map l : M A) = length l.
Proof.
induction l; csimpl; inv 1; simplify_eq/=; [by rewrite map_size_empty|].
rewrite map_size_insert_None by eauto using not_elem_of_list_to_map_1.
eauto with f_equal.
Qed.
Lemma map_subseteq_size_eq {A} (m1 m2 : M A) :
m1 ⊆ m2 → size m2 ≤ size m1 → m1 = m2.
Proof.
intros. apply map_to_list_inj, submseteq_length_Permutation.
- by apply map_to_list_submseteq.
- by rewrite !length_map_to_list.
Qed.
Lemma map_subseteq_size {A} (m1 m2 : M A) : m1 ⊆ m2 → size m1 ≤ size m2.
Proof.
intros. rewrite <-!length_map_to_list.
by apply submseteq_length, map_to_list_submseteq.
Qed.
Lemma map_subset_size {A} (m1 m2 : M A) : m1 ⊂ m2 → size m1 < size m2.
Proof.
intros [Hm12 Hm21]. apply Nat.le_neq. split.
- by apply map_subseteq_size.
- intros Hsize. destruct Hm21.
apply reflexive_eq, symmetry, map_subseteq_size_eq; auto with lia.
Qed.
(** ** Induction principles *)
Lemma map_wf {A} : well_founded (⊂@{M A}).
Proof. apply (wf_projected (<) size); auto using map_subset_size, lt_wf. Qed.
Lemma map_ind {A} (P : M A → Prop) :
P ∅ → (∀ i x m, m !! i = None → P m → P (<[i:=x]>m)) → ∀ m, P m.
Proof.
intros ? Hins m. induction (map_wf m) as [m _ IH].
destruct (map_choose_or_empty m) as [(i&x&?)| ->]; [|done].
rewrite <-(insert_delete m i x) by done.
apply Hins; [by rewrite lookup_delete|]. by apply IH, delete_subset.
Qed.
(** ** Properties of conversion from sets *)
Section set_to_map.
Context {A : Type} `{FinSet B C}.
Lemma lookup_set_to_map (f : B → K * A) (Y : C) i x :
(∀ y y', y ∈ Y → y' ∈ Y → (f y).1 = (f y').1 → y = y') →
(set_to_map f Y : M A) !! i = Some x ↔ ∃ y, y ∈ Y ∧ f y = (i,x).
Proof.
intros Hinj. assert (∀ x',
(i, x) ∈ f <$> elements Y → (i, x') ∈ f <$> elements Y → x = x').
{ intros x'. intros (y&Hx&Hy)%elem_of_list_fmap (y'&Hx'&Hy')%elem_of_list_fmap.
rewrite elem_of_elements in Hy, Hy'.
cut (y = y'); [congruence|]. apply Hinj; auto. by rewrite <-Hx, <-Hx'. }
unfold set_to_map; rewrite <-elem_of_list_to_map' by done.
rewrite elem_of_list_fmap. setoid_rewrite elem_of_elements; naive_solver.
Qed.
End set_to_map.
Lemma lookup_set_to_map_id `{FinSet (K * A) C} (X : C) i x :
(∀ i y y', (i,y) ∈ X → (i,y') ∈ X → y = y') →
(set_to_map id X : M A) !! i = Some x ↔ (i,x) ∈ X.
Proof.
intros. etrans; [apply lookup_set_to_map|naive_solver].
intros [] [] ???; simplify_eq/=; eauto with f_equal.
Qed.
Section map_to_set.
Context {A : Type} `{SemiSet B C}.
Lemma elem_of_map_to_set (f : K → A → B) (m : M A) (y : B) :
y ∈ map_to_set (C:=C) f m ↔ ∃ i x, m !! i = Some x ∧ f i x = y.
Proof.
unfold map_to_set; simpl.
rewrite elem_of_list_to_set, elem_of_list_fmap. split.
- intros ([i x] & ? & ?%elem_of_map_to_list); eauto.
- intros (i&x&?&?). exists (i,x). by rewrite elem_of_map_to_list.
Qed.
Lemma map_to_set_empty (f : K → A → B) :
map_to_set f (∅ : M A) = (∅ : C).
Proof. unfold map_to_set; simpl. by rewrite map_to_list_empty. Qed.
Lemma map_to_set_insert (f : K → A → B)(m : M A) i x :
m !! i = None →
map_to_set f (<[i:=x]>m) ≡@{C} {[f i x]} ∪ map_to_set f m.
Proof.
intros. unfold map_to_set; simpl. by rewrite map_to_list_insert.
Qed.
Lemma map_to_set_insert_L `{!LeibnizEquiv C} (f : K → A → B) (m : M A) i x :
m !! i = None →
map_to_set f (<[i:=x]>m) =@{C} {[f i x]} ∪ map_to_set f m.
Proof. unfold_leibniz. apply map_to_set_insert. Qed.
End map_to_set.
Lemma elem_of_map_to_set_pair `{SemiSet (K * A) C} (m : M A) i x :
(i,x) ∈@{C} map_to_set pair m ↔ m !! i = Some x.
Proof. rewrite elem_of_map_to_set. naive_solver. Qed.
(** ** The fold operation *)
Lemma map_fold_foldr {A B} (f : K → A → B → B) b (m : M A) :
map_fold f b m = foldr (uncurry f) b (map_to_list m).
Proof.
unfold map_to_list. induction m as [|i x m ? Hfold IH] using map_fold_ind.
- by rewrite !map_fold_empty.
- by rewrite !Hfold, IH.
Qed.
Lemma map_fold_fmap {A A' B} (f : K → A' → B → B) (g : A → A') b (m : M A) :
map_fold f b (g <$> m) = map_fold (λ i, f i ∘ g) b m.
Proof.
induction m as [|i x m ? Hfold IH] using map_fold_fmap_ind.
{ by rewrite fmap_empty, !map_fold_empty. }
rewrite fmap_insert. rewrite <-(map_fmap_id m) at 2. rewrite !Hfold.
by rewrite IH, map_fmap_id.
Qed.
(** FIXME (Improve order): Move to [map_to_list] section. Moving requires a
bunch of reordering in this file. *)
Lemma map_to_list_fmap {A B} (f : A → B) (m : M A) :
map_to_list (f <$> m) = prod_map id f <$> map_to_list m.
Proof.
unfold map_to_list. rewrite map_fold_fmap, !map_fold_foldr.
induction (map_to_list m) as [|[]]; f_equal/=; auto.
Qed.
Lemma map_fold_singleton {A B} (f : K → A → B → B) (b : B) i x :
map_fold f b {[i:=x]} = f i x b.
Proof. by rewrite map_fold_foldr, map_to_list_singleton. Qed.
Lemma map_fold_delete_first_key {A B} (f : K → A → B → B) b (m : M A) i x :
m !! i = Some x →
map_first_key m i →
map_fold f b m = f i x (map_fold f b (delete i m)).
Proof.
intros Hi [x' ([] & ixs & Hixs & ?)%elem_of_list_split_length]; simplify_eq/=.
destruct m as [|j y m ? Hfold _] using map_fold_ind.
{ by rewrite map_to_list_empty in Hixs. }
unfold map_to_list in Hixs. rewrite Hfold in Hixs. simplify_eq.
rewrite lookup_insert in Hi. simplify_eq.
by rewrite Hfold, delete_insert by done.
Qed.
Lemma map_fold_insert_first_key {A B} (f : K → A → B → B) b (m : M A) i x :
m !! i = None →
map_first_key (<[i:=x]> m) i →
map_fold f b (<[i:=x]> m) = f i x (map_fold f b m).
Proof.
intros. rewrite <-(delete_insert m i x) at 2 by done.
apply map_fold_delete_first_key; auto using lookup_insert.
Qed.
(** FIXME (Improve order): Move to [map_to_list] section. Moving requires a
bunch of reordering in this file. *)
Lemma map_to_list_delete_first_key {A} (m : M A) i x :
m !! i = Some x →
map_first_key m i →
map_to_list m = (i,x) :: map_to_list (delete i m).
Proof.
intros. unfold map_to_list. by erewrite map_fold_delete_first_key by done.
Qed.
(** FIXME (Improve order): Move to [map_to_list] section. Moving requires a
bunch of reordering in this file. *)
Lemma map_to_list_insert_first_key {A} (m : M A) i x :
m !! i = None →
map_first_key (<[i:=x]> m) i →
map_to_list (<[i:=x]> m) = (i,x) :: map_to_list m.
Proof.
intros. unfold map_to_list. by rewrite map_fold_insert_first_key by done.
Qed.
Lemma map_first_key_fmap {A B} (f : A → B) (m : M A) i :
map_first_key (f <$> m) i ↔ map_first_key m i.
Proof.
split.
- intros [x Hm]. rewrite map_to_list_fmap, list_lookup_fmap, fmap_Some in Hm.
destruct Hm as ([i' x'] & Hm & ?); simplify_eq/=. by exists x'.
- intros [x Hm]. exists (f x).
by rewrite map_to_list_fmap, list_lookup_fmap, Hm.
Qed.
(** We do not have [dom] here, [map_first_key_same_dom] from [fin_map_dom] is
typically more convenient. *)
Lemma map_first_key_dom' {A B} (m1 : M A) (m2 : M B) i :
(∀ j, is_Some (m1 !! j) ↔ is_Some (m2 !! j)) →
map_first_key m1 i ↔ map_first_key m2 i.
Proof.
intros Hm. rewrite <-(map_first_key_fmap (λ _, ()) m1).
rewrite <-(map_first_key_fmap (λ _, ()) m2). f_equiv. apply map_eq; intros j.
specialize (Hm j). rewrite !lookup_fmap. unfold is_Some in *.
destruct (m1 !! j), (m2 !! j); naive_solver.
Qed.
Lemma map_fold_insert {A B} (R : relation B) `{!PreOrder R}
(f : K → A → B → B) (b : B) (i : K) (x : A) (m : M A) :
(∀ j z, Proper (R ==> R) (f j z)) →
(∀ j1 j2 z1 z2 y,
j1 ≠ j2 → <[i:=x]> m !! j1 = Some z1 → <[i:=x]> m !! j2 = Some z2 →
R (f j1 z1 (f j2 z2 y)) (f j2 z2 (f j1 z1 y))) →
m !! i = None →
R (map_fold f b (<[i:=x]> m)) (f i x (map_fold f b m)).
Proof.
intros Hf_proper Hf Hi. rewrite !map_fold_foldr.
change (f i x) with (uncurry f (i,x)). rewrite <-foldr_cons.
assert (∀ kz, Proper (R ==> R) (uncurry f kz)) by (intros []; solve_proper).
eapply (foldr_permutation R (uncurry f) b), map_to_list_insert; [|done].
intros j1 [k1 y1] j2 [k2 y2] c Hj Hj1 Hj2. apply Hf.
- intros ->.
eapply Hj, NoDup_lookup; [apply (NoDup_fst_map_to_list (<[i:=x]> m))| | ].
+ by rewrite list_lookup_fmap, Hj1.
+ by rewrite list_lookup_fmap, Hj2.
- by eapply elem_of_map_to_list, elem_of_list_lookup_2.
- by eapply elem_of_map_to_list, elem_of_list_lookup_2.
Qed.
Lemma map_fold_insert_L {A B} (f : K → A → B → B) (b : B) (i : K) (x : A) (m : M A) :
(∀ j1 j2 z1 z2 y,
j1 ≠ j2 → <[i:=x]> m !! j1 = Some z1 → <[i:=x]> m !! j2 = Some z2 →
f j1 z1 (f j2 z2 y) = f j2 z2 (f j1 z1 y)) →
m !! i = None →
map_fold f b (<[i:=x]> m) = f i x (map_fold f b m).
Proof. apply map_fold_insert; apply _. Qed.
Lemma map_fold_delete {A B} (R : relation B) `{!PreOrder R}
(f : K → A → B → B) (b : B) (i : K) (x : A) (m : M A) :
(∀ j z, Proper (R ==> R) (f j z)) →
(∀ j1 j2 z1 z2 y,
j1 ≠ j2 → m !! j1 = Some z1 → m !! j2 = Some z2 →
R (f j1 z1 (f j2 z2 y)) (f j2 z2 (f j1 z1 y))) →
m !! i = Some x →
R (map_fold f b m) (f i x (map_fold f b (delete i m))).
Proof.
intros Hf_proper Hf Hi.
rewrite <-map_fold_insert; [|done|done| |].
- rewrite insert_delete; done.
- intros j1 j2 z1 z2 y. rewrite insert_delete_insert, insert_id by done. auto.
- rewrite lookup_delete; done.
Qed.
Lemma map_fold_delete_L {A B} (f : K → A → B → B) (b : B) (i : K) (x : A) (m : M A) :
(∀ j1 j2 z1 z2 y,
j1 ≠ j2 → m !! j1 = Some z1 → m !! j2 = Some z2 →
f j1 z1 (f j2 z2 y) = f j2 z2 (f j1 z1 y)) →
m !! i = Some x →
map_fold f b m = f i x (map_fold f b (delete i m)).
Proof. apply map_fold_delete; apply _. Qed.
Lemma map_fold_comm_acc_strong {A B} (R : relation B) `{!PreOrder R}
(f : K → A → B → B) (g : B → B) (x : B) (m : M A) :
(∀ j z, Proper (R ==> R) (f j z)) →
(∀ j z y, m !! j = Some z → R (f j z (g y)) (g (f j z y))) →
R (map_fold f (g x) m) (g (map_fold f x m)).
Proof.
intros ? Hg. induction m as [|i x' m ? Hfold IH] using map_fold_ind.
{ by rewrite !map_fold_empty. }
rewrite !Hfold.
rewrite <-Hg by (by rewrite lookup_insert). f_equiv. apply IH.
intros j z y Hj. apply Hg. rewrite lookup_insert_ne by naive_solver. done.
Qed.
Lemma map_fold_comm_acc {A B} (f : K → A → B → B) (g : B → B) (x : B) (m : M A) :
(∀ j z y, f j z (g y) = g (f j z y)) →
map_fold f (g x) m = g (map_fold f x m).
Proof. intros. apply (map_fold_comm_acc_strong _); [solve_proper|done..]. Qed.
(** Not written using [Instance .. Proper] because it is ambigious to apply due
to the arbitrary [R]. *)
Lemma map_fold_proper {A B} (R : relation B) `{!PreOrder R}
(f : K → A → B → B) (b1 b2 : B) (m : M A) :
(∀ j z, Proper (R ==> R) (f j z)) →
R b1 b2 →
R (map_fold f b1 m) (map_fold f b2 m).
Proof.
intros Hf Hb. induction m as [|i x m ?? IH] using map_first_key_ind.
{ by rewrite !map_fold_empty. }
rewrite !map_fold_insert_first_key by done. by f_equiv.
Qed.
(** ** Properties of the [map_Forall] predicate *)
Section map_Forall.
Context {A} (P : K → A → Prop).
Implicit Types m : M A.
Lemma map_Forall_to_list m : map_Forall P m ↔ Forall (uncurry P) (map_to_list m).
Proof.
rewrite Forall_forall. split.
- intros Hforall [i x]. rewrite elem_of_map_to_list. by apply (Hforall i x).
- intros Hforall i x. rewrite <-elem_of_map_to_list. by apply (Hforall (i,x)).
Qed.
Lemma map_Forall_empty : map_Forall P (∅ : M A).
Proof. intros i x. by rewrite lookup_empty. Qed.
Lemma map_Forall_impl (Q : K → A → Prop) m :
map_Forall P m → (∀ i x, P i x → Q i x) → map_Forall Q m.
Proof. unfold map_Forall; naive_solver. Qed.
Lemma map_Forall_insert_1_1 m i x : map_Forall P (<[i:=x]>m) → P i x.
Proof. intros Hm. by apply Hm; rewrite lookup_insert. Qed.
Lemma map_Forall_insert_1_2 m i x :
m !! i = None → map_Forall P (<[i:=x]>m) → map_Forall P m.
Proof.
intros ? Hm j y ?; apply Hm. by rewrite lookup_insert_ne by congruence.
Qed.
Lemma map_Forall_insert_2 m i x :
P i x → map_Forall P m → map_Forall P (<[i:=x]>m).
Proof. intros ?? j y; rewrite lookup_insert_Some; naive_solver. Qed.
Lemma map_Forall_insert m i x :
m !! i = None → map_Forall P (<[i:=x]>m) ↔ P i x ∧ map_Forall P m.
Proof.
naive_solver eauto using map_Forall_insert_1_1,
map_Forall_insert_1_2, map_Forall_insert_2.
Qed.
Lemma map_Forall_singleton (i : K) (x : A) :
map_Forall P ({[i := x]} : M A) ↔ P i x.
Proof.
unfold map_Forall. setoid_rewrite lookup_singleton_Some. naive_solver.
Qed.
Lemma map_Forall_delete m i : map_Forall P m → map_Forall P (delete i m).
Proof. intros Hm j x; rewrite lookup_delete_Some. naive_solver. Qed.
Lemma map_Forall_lookup m :
map_Forall P m ↔ ∀ i x, m !! i = Some x → P i x.
Proof. done. Qed.
Lemma map_Forall_lookup_1 m i x :
map_Forall P m → m !! i = Some x → P i x.
Proof. intros ?. by apply map_Forall_lookup. Qed.
Lemma map_Forall_lookup_2 m :
(∀ i x, m !! i = Some x → P i x) → map_Forall P m.
Proof. intros ?. by apply map_Forall_lookup. Qed.
Lemma map_Forall_fmap {B} (f : B → A) (m : M B) :
map_Forall P (f <$> m) ↔ map_Forall (λ k, (P k ∘ f)) m.
Proof.
unfold map_Forall. setoid_rewrite lookup_fmap.
setoid_rewrite fmap_Some. naive_solver.
Qed.
Lemma map_Forall_foldr_delete m is :
map_Forall P m → map_Forall P (foldr delete m is).
Proof. induction is; eauto using map_Forall_delete. Qed.
Lemma map_Forall_ind (Q : M A → Prop) :
Q ∅ →
(∀ m i x, m !! i = None → P i x → map_Forall P m → Q m → Q (<[i:=x]>m)) →
∀ m, map_Forall P m → Q m.
Proof.
intros Hnil Hinsert m. induction m using map_ind; auto.
rewrite map_Forall_insert by done; intros [??]; eauto.
Qed.
Context `{∀ i x, Decision (P i x)}.
Global Instance map_Forall_dec m : Decision (map_Forall P m).
Proof.
refine (cast_if (decide (Forall (uncurry P) (map_to_list m))));
by rewrite map_Forall_to_list.
Defined.
Lemma map_not_Forall (m : M A) :
¬map_Forall P m ↔ ∃ i x, m !! i = Some x ∧ ¬P i x.
Proof.
split; [|intros (i&x&?&?) Hm; specialize (Hm i x); tauto].
rewrite map_Forall_to_list. intros Hm.
apply (not_Forall_Exists _), Exists_exists in Hm.
destruct Hm as ([i x]&?&?). exists i, x. by rewrite <-elem_of_map_to_list.
Qed.
End map_Forall.
(** ** Properties of the [map_Exists] predicate *)
Section map_Exists.
Context {A} (P : K → A → Prop).
Implicit Types m : M A.
Lemma map_Exists_to_list m : map_Exists P m ↔ Exists (uncurry P) (map_to_list m).
Proof.
rewrite Exists_exists. split.
- intros [? [? [? ?]]]. eexists (_, _). by rewrite elem_of_map_to_list.
- intros [[??] [??]]. eexists _, _. by rewrite <-elem_of_map_to_list.
Qed.
Lemma map_Exists_empty : ¬ map_Exists P (∅ : M A).
Proof. intros [?[?[Hm ?]]]. by rewrite lookup_empty in Hm. Qed.
Lemma map_Exists_impl (Q : K → A → Prop) m :
map_Exists P m → (∀ i x, P i x → Q i x) → map_Exists Q m.
Proof. unfold map_Exists; naive_solver. Qed.
Lemma map_Exists_insert_1 m i x :
map_Exists P (<[i:=x]>m) → P i x ∨ map_Exists P m.
Proof. intros [j[y[?%lookup_insert_Some ?]]]. unfold map_Exists. naive_solver. Qed.
Lemma map_Exists_insert_2_1 m i x : P i x → map_Exists P (<[i:=x]>m).
Proof. intros Hm. exists i, x. by rewrite lookup_insert. Qed.
Lemma map_Exists_insert_2_2 m i x :
m !! i = None → map_Exists P m → map_Exists P (<[i:=x]>m).
Proof.
intros Hm [j[y[??]]]. exists j, y. by rewrite lookup_insert_ne by congruence.
Qed.
Lemma map_Exists_insert m i x :
m !! i = None → map_Exists P (<[i:=x]>m) ↔ P i x ∨ map_Exists P m.
Proof.
naive_solver eauto using map_Exists_insert_1,
map_Exists_insert_2_1, map_Exists_insert_2_2.
Qed.
Lemma map_Exists_singleton (i : K) (x : A) :
map_Exists P ({[i := x]} : M A) ↔ P i x.
Proof.
unfold map_Exists. setoid_rewrite lookup_singleton_Some. naive_solver.
Qed.
Lemma map_Exists_delete m i : map_Exists P (delete i m) → map_Exists P m.
Proof.
intros [j [y [Hm ?]]]. rewrite lookup_delete_Some in Hm.
unfold map_Exists. naive_solver.
Qed.
Lemma map_Exists_lookup m :
map_Exists P m ↔ ∃ i x, m !! i = Some x ∧ P i x.
Proof. done. Qed.
Lemma map_Exists_lookup_1 m :
map_Exists P m → ∃ i x, m !! i = Some x ∧ P i x.
Proof. by rewrite map_Exists_lookup. Qed.
Lemma map_Exists_lookup_2 m i x :
m !! i = Some x → P i x → map_Exists P m.
Proof. rewrite map_Exists_lookup. by eauto. Qed.
Lemma map_Exists_foldr_delete m is :
map_Exists P (foldr delete m is) → map_Exists P m.
Proof. induction is; eauto using map_Exists_delete. Qed.
Lemma map_Exists_ind (Q : M A → Prop) :
(∀ i x, P i x → Q {[ i := x ]}) →
(∀ m i x, m !! i = None → map_Exists P m → Q m → Q (<[i:=x]>m)) →
∀ m, map_Exists P m → Q m.
Proof.
intros Hsingleton Hinsert m Hm. induction m as [|i x m Hi IH] using map_ind.
{ by destruct map_Exists_empty. }
apply map_Exists_insert in Hm as [?|?]; [|by eauto..].
clear IH. induction m as [|j y m Hj IH] using map_ind; [by eauto|].
apply lookup_insert_None in Hi as [??].
rewrite insert_commute by done. apply Hinsert.
- by apply lookup_insert_None.
- apply map_Exists_insert; by eauto.
- eauto.
Qed.
Lemma map_not_Exists (m : M A) :
¬map_Exists P m ↔ map_Forall (λ i x, ¬ P i x) m.
Proof. unfold map_Exists, map_Forall; naive_solver. Qed.
Context `{∀ i x, Decision (P i x)}.
Global Instance map_Exists_dec m : Decision (map_Exists P m).
Proof.
refine (cast_if (decide (Exists (uncurry P) (map_to_list m))));
by rewrite map_Exists_to_list.
Defined.
End map_Exists.
(** ** The filter operation *)
Section map_lookup_filter.
Context {A} (P : K * A → Prop) `{!∀ x, Decision (P x)}.
Implicit Types m : M A.
Lemma map_lookup_filter m i :
filter P m !! i = x ← m !! i; guard (P (i,x));; Some x.
Proof.
revert m i. apply (map_fold_weak_ind (λ m1 m2,
∀ i, m1 !! i = x ← m2 !! i; guard (P (i,x));; Some x)); intros i.
{ by rewrite lookup_empty. }
intros y m m' Hm IH j. case (decide (j = i))as [->|?].
- case_decide.
+ rewrite !lookup_insert. simpl. by rewrite option_guard_True.
+ rewrite lookup_insert. simpl. by rewrite option_guard_False, IH, Hm.
- case_decide.
+ by rewrite !lookup_insert_ne by done.
+ by rewrite !lookup_insert_ne.
Qed.
Lemma map_lookup_filter_Some m i x :
filter P m !! i = Some x ↔ m !! i = Some x ∧ P (i, x).
Proof.
rewrite map_lookup_filter.
destruct (m !! i); simpl; repeat case_guard; naive_solver.
Qed.
Lemma map_lookup_filter_Some_1_1 m i x :
filter P m !! i = Some x → m !! i = Some x.
Proof. apply map_lookup_filter_Some. Qed.
Lemma map_lookup_filter_Some_1_2 m i x :
filter P m !! i = Some x → P (i, x).
Proof. apply map_lookup_filter_Some. Qed.
Lemma map_lookup_filter_Some_2 m i x :
m !! i = Some x →
P (i, x) →
filter P m !! i = Some x.
Proof. intros. by apply map_lookup_filter_Some. Qed.
Lemma map_lookup_filter_None m i :
filter P m !! i = None ↔ m !! i = None ∨ ∀ x, m !! i = Some x → ¬ P (i, x).
Proof.
rewrite eq_None_not_Some. unfold is_Some.
setoid_rewrite map_lookup_filter_Some. naive_solver.
Qed.
Lemma map_lookup_filter_None_1 m i :
filter P m !! i = None →
m !! i = None ∨ ∀ x, m !! i = Some x → ¬ P (i, x).
Proof. apply map_lookup_filter_None. Qed.
Lemma map_lookup_filter_None_2 m i :
m !! i = None ∨ (∀ x : A, m !! i = Some x → ¬ P (i, x)) →
filter P m !! i = None.
Proof. apply map_lookup_filter_None. Qed.
Lemma map_filter_empty_not_lookup m i x :
filter P m = ∅ → P (i,x) → m !! i ≠ Some x.
Proof.
rewrite map_empty. setoid_rewrite map_lookup_filter_None. intros Hm ?.
destruct (Hm i); naive_solver.
Qed.
End map_lookup_filter.
Section map_filter_ext.
Context {A} (P Q : K * A → Prop) `{!∀ x, Decision (P x), !∀ x, Decision (Q x)}.
Lemma map_filter_strong_ext (m1 m2 : M A) :
filter P m1 = filter Q m2 ↔
(∀ i x, (P (i, x) ∧ m1 !! i = Some x) ↔ (Q (i, x) ∧ m2 !! i = Some x)).
Proof.
intros. rewrite map_eq_iff. setoid_rewrite option_eq.
setoid_rewrite map_lookup_filter_Some. naive_solver.
Qed.
Lemma map_filter_strong_ext_1 (m1 m2 : M A) :
(∀ i x, (P (i, x) ∧ m1 !! i = Some x) ↔ (Q (i, x) ∧ m2 !! i = Some x)) →
filter P m1 = filter Q m2.
Proof. by rewrite map_filter_strong_ext. Qed.
Lemma map_filter_strong_ext_2 (m1 m2 : M A) i x :
filter P m1 = filter Q m2 →
(P (i, x) ∧ m1 !! i = Some x) ↔ (Q (i, x) ∧ m2 !! i = Some x).
Proof. by rewrite map_filter_strong_ext. Qed.
Lemma map_filter_ext (m : M A) :
(∀ i x, m !! i = Some x → P (i, x) ↔ Q (i, x)) ↔
filter P m = filter Q m.
Proof. rewrite map_filter_strong_ext. naive_solver. Qed.
Lemma map_filter_strong_subseteq_ext (m1 m2 : M A) :
filter P m1 ⊆ filter Q m2 ↔
(∀ i x, (P (i, x) ∧ m1 !! i = Some x) → (Q (i, x) ∧ m2 !! i = Some x)).
Proof.
rewrite map_subseteq_spec.
setoid_rewrite map_lookup_filter_Some. naive_solver.
Qed.
Lemma map_filter_subseteq_ext (m : M A) :
filter P m ⊆ filter Q m ↔
(∀ i x, m !! i = Some x → P (i, x) → Q (i, x)).
Proof. rewrite map_filter_strong_subseteq_ext. naive_solver. Qed.
End map_filter_ext.
Section map_filter.
Context {A} (P : K * A → Prop) `{!∀ x, Decision (P x)}.
Implicit Types m : M A.
Lemma map_filter_empty : filter P ∅ =@{M A} ∅.
Proof. apply map_fold_empty. Qed.
Lemma map_filter_empty_iff m :
filter P m = ∅ ↔ map_Forall (λ i x, ¬P (i,x)) m.
Proof.
rewrite map_empty. setoid_rewrite map_lookup_filter_None. split.
- intros Hm i x Hi. destruct (Hm i); naive_solver.
- intros Hm i. destruct (m !! i) as [x|] eqn:?; [|by auto].
right; intros ? [= <-]. by apply Hm.
Qed.
Lemma map_filter_delete m i : filter P (delete i m) = delete i (filter P m).
Proof.
apply map_eq. intros j. apply option_eq; intros y.
destruct (decide (j = i)) as [->|?].
- rewrite map_lookup_filter_Some, !lookup_delete. naive_solver.
- rewrite lookup_delete_ne, !map_lookup_filter_Some, lookup_delete_ne by done.
naive_solver.
Qed.
Lemma map_filter_delete_not m i:
(∀ y, m !! i = Some y → ¬ P (i, y)) →
filter P (delete i m) = filter P m.
Proof.
intros. apply map_filter_strong_ext. intros j y.
rewrite lookup_delete_Some. naive_solver.
Qed.
Lemma map_filter_insert m i x :
filter P (<[i:=x]> m)
= if decide (P (i, x)) then <[i:=x]> (filter P m) else filter P (delete i m).
Proof.
apply map_eq. intros j. apply option_eq; intros y.
rewrite map_lookup_filter_Some, lookup_insert_Some. case_decide.
- rewrite lookup_insert_Some, map_lookup_filter_Some. naive_solver.
- rewrite map_lookup_filter_Some, lookup_delete_Some. naive_solver.
Qed.
Lemma map_filter_insert_True m i x :
P (i, x) → filter P (<[i:=x]> m) = <[i:=x]> (filter P m).
Proof. intros. by rewrite map_filter_insert, decide_True. Qed.
Lemma map_filter_insert_False m i x :
¬ P (i, x) → filter P (<[i:=x]> m) = filter P (delete i m).
Proof. intros. by rewrite map_filter_insert, decide_False. Qed.
Lemma map_filter_insert_not' m i x :
¬ P (i, x) → (∀ y, m !! i = Some y → ¬ P (i, y)) →
filter P (<[i:=x]> m) = filter P m.
Proof.
intros. rewrite map_filter_insert, decide_False by done.
by rewrite map_filter_delete_not.
Qed.
Lemma map_filter_insert_not m i x :
(∀ y, ¬ P (i, y)) → filter P (<[i:=x]> m) = filter P m.
Proof. intros. by apply map_filter_insert_not'. Qed.
Lemma map_filter_singleton i x :
filter P {[i := x]} =@{M A} if decide (P (i, x)) then {[i := x]} else ∅.
Proof.
by rewrite <-!insert_empty, map_filter_insert, delete_empty, map_filter_empty.
Qed.
Lemma map_filter_singleton_True i x :
P (i, x) → filter P {[i := x]} =@{M A} {[i := x]}.
Proof. intros. by rewrite map_filter_singleton, decide_True. Qed.
Lemma map_filter_singleton_False i x :
¬ P (i, x) → filter P {[i := x]} =@{M A} ∅.
Proof. intros. by rewrite map_filter_singleton, decide_False. Qed.
Lemma map_filter_alt m : filter P m = list_to_map (filter P (map_to_list m)).
Proof.
apply list_to_map_flip. induction m as [|k x m ? IH] using map_ind.
{ by rewrite map_to_list_empty, map_filter_empty, map_to_list_empty. }
rewrite map_to_list_insert, filter_cons by done. destruct (decide (P _)).
- rewrite map_filter_insert_True by done.
by rewrite map_to_list_insert, IH by (rewrite map_lookup_filter_None; auto).
- by rewrite map_filter_insert_not' by naive_solver.
Qed.
Lemma map_filter_fmap {B} (f : B → A) (m : M B) :
filter P (f <$> m) = f <$> filter (λ '(i, x), P (i, (f x))) m.
Proof.
apply map_eq. intros i. apply option_eq; intros x.
repeat (rewrite lookup_fmap, fmap_Some || setoid_rewrite map_lookup_filter_Some).
naive_solver.
Qed.
Lemma map_filter_filter Q `{!∀ x, Decision (Q x)} m :
filter P (filter Q m) = filter (λ '(i, x), P (i, x) ∧ Q (i, x)) m.
Proof.
apply map_filter_strong_ext. intros ??.
rewrite map_lookup_filter_Some. naive_solver.
Qed.
Lemma map_filter_filter_l Q `{!∀ x, Decision (Q x)} m :
(∀ i x, m !! i = Some x → P (i, x) → Q (i, x)) →
filter P (filter Q m) = filter P m.
Proof. intros ?. rewrite map_filter_filter. apply map_filter_ext. naive_solver. Qed.
Lemma map_filter_filter_r Q `{!∀ x, Decision (Q x)} m :
(∀ i x, m !! i = Some x → Q (i, x) → P (i, x)) →
filter P (filter Q m) = filter Q m.
Proof. intros ?. rewrite map_filter_filter. apply map_filter_ext. naive_solver. Qed.
Lemma map_filter_id m :
(∀ i x, m !! i = Some x → P (i, x)) → filter P m = m.
Proof.
intros Hi. apply map_eq. intros i. rewrite map_lookup_filter.
destruct (m !! i) eqn:Hlook; [|done].
apply option_guard_True, Hi, Hlook.
Qed.
Lemma map_filter_subseteq m : filter P m ⊆ m.
Proof. apply map_subseteq_spec, map_lookup_filter_Some_1_1. Qed.
Lemma map_filter_subseteq_mono m1 m2 : m1 ⊆ m2 → filter P m1 ⊆ filter P m2.
Proof.
rewrite map_subseteq_spec. intros Hm1m2.
apply map_filter_strong_subseteq_ext. naive_solver.
Qed.
Lemma map_size_filter m :
size (filter P m) ≤ size m.
Proof. apply map_subseteq_size. apply map_filter_subseteq. Qed.
End map_filter.
Lemma map_filter_comm {A}
(P Q : K * A → Prop) `{!∀ x, Decision (P x), !∀ x, Decision (Q x)} (m : M A) :
filter P (filter Q m) = filter Q (filter P m).
Proof. rewrite !map_filter_filter. apply map_filter_ext. naive_solver. Qed.
(** ** Properties of the [merge] operation *)
Section merge.
Context {A} (f : option A → option A → option A).
Implicit Types m : M A.
(** These instances can in many cases not be applied automatically due to Coq
unification bug #6294. Hence there are many explicit derived instances for
specific operations such as union or difference in the rest of this file. *)
Global Instance: LeftId (=) None f → LeftId (=@{M A}) ∅ (merge f).
Proof.
intros ? m. apply map_eq; intros i.
rewrite !lookup_merge, lookup_empty. destruct (m !! i); by simpl.
Qed.
Global Instance: RightId (=) None f → RightId (=@{M A}) ∅ (merge f).
Proof.
intros ? m. apply map_eq; intros i.
rewrite !lookup_merge, lookup_empty. destruct (m !! i); by simpl.
Qed.
Global Instance: LeftAbsorb (=) None f → LeftAbsorb (=@{M A}) ∅ (merge f).
Proof.
intros ? m. apply map_eq; intros i.
rewrite !lookup_merge, lookup_empty. destruct (m !! i); by simpl.
Qed.
Global Instance: RightAbsorb (=) None f → RightAbsorb (=@{M A}) ∅ (merge f).
Proof.
intros ? m. apply map_eq; intros i.
rewrite !lookup_merge, lookup_empty. destruct (m !! i); by simpl.
Qed.
Lemma merge_comm m1 m2 :
(∀ i, f (m1 !! i) (m2 !! i) = f (m2 !! i) (m1 !! i)) →
merge f m1 m2 = merge f m2 m1.
Proof.
intros Hm. apply map_eq; intros i. specialize (Hm i).
rewrite !lookup_merge. by destruct (m1 !! i), (m2 !! i).
Qed.
Global Instance merge_comm' : Comm (=) f → Comm (=@{M A}) (merge f).
Proof. intros ???. apply merge_comm. intros. by apply (comm f). Qed.
Lemma merge_assoc m1 m2 m3 :
(∀ i, diag_None f (m1 !! i) (diag_None f (m2 !! i) (m3 !! i)) =
diag_None f (diag_None f (m1 !! i) (m2 !! i)) (m3 !! i)) →
merge f m1 (merge f m2 m3) = merge f (merge f m1 m2) m3.
Proof.
intros Hm. apply map_eq; intros i. specialize (Hm i).
by rewrite !lookup_merge.
Qed.
Lemma merge_idemp m1 :
(∀ i, f (m1 !! i) (m1 !! i) = m1 !! i) → merge f m1 m1 = m1.
Proof.
intros Hm. apply map_eq; intros i. specialize (Hm i).
rewrite !lookup_merge. by destruct (m1 !! i).
Qed.
Global Instance merge_idemp' : IdemP (=) f → IdemP (=@{M A}) (merge f).
Proof. intros ??. apply merge_idemp. intros. by apply (idemp f). Qed.
End merge.
Section more_merge.
Context {A B C} (f : option A → option B → option C).
Lemma merge_Some (m1 : M A) (m2 : M B) (m : M C) :
f None None = None →
(∀ i, m !! i = f (m1 !! i) (m2 !! i)) ↔ merge f m1 m2 = m.
Proof.
intros. rewrite map_eq_iff. apply forall_proper; intros i.
rewrite lookup_merge. destruct (m1 !! i), (m2 !! i); naive_solver congruence.
Qed.
Lemma merge_empty : merge f ∅ ∅ =@{M C} ∅.
Proof. apply map_eq. intros. by rewrite !lookup_merge, !lookup_empty. Qed.
Lemma partial_alter_merge g g1 g2 (m1 : M A) (m2 : M B) i :
g (diag_None f (m1 !! i) (m2 !! i)) = diag_None f (g1 (m1 !! i)) (g2 (m2 !! i)) →
partial_alter g i (merge f m1 m2) =
merge f (partial_alter g1 i m1) (partial_alter g2 i m2).
Proof.
intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
- by rewrite lookup_merge, !lookup_partial_alter, !lookup_merge.
- by rewrite lookup_merge, !lookup_partial_alter_ne, lookup_merge.
Qed.
Lemma partial_alter_merge_l g g1 (m1 : M A) (m2 : M B) i :
g (diag_None f (m1 !! i) (m2 !! i)) = diag_None f (g1 (m1 !! i)) (m2 !! i) →
partial_alter g i (merge f m1 m2) = merge f (partial_alter g1 i m1) m2.
Proof.
intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
- by rewrite lookup_merge, !lookup_partial_alter, !lookup_merge.
- by rewrite lookup_merge, !lookup_partial_alter_ne, lookup_merge.
Qed.
Lemma partial_alter_merge_r g g2 (m1 : M A) (m2 : M B) i :
g (diag_None f (m1 !! i) (m2 !! i)) = diag_None f (m1 !! i) (g2 (m2 !! i)) →
partial_alter g i (merge f m1 m2) = merge f m1 (partial_alter g2 i m2).
Proof.
intro. apply map_eq. intros j. destruct (decide (i = j)); subst.
- by rewrite lookup_merge, !lookup_partial_alter, !lookup_merge.
- by rewrite lookup_merge, !lookup_partial_alter_ne, lookup_merge.
Qed.
Lemma insert_merge (m1 : M A) (m2 : M B) i x y z :
f (Some y) (Some z) = Some x →
<[i:=x]>(merge f m1 m2) = merge f (<[i:=y]>m1) (<[i:=z]>m2).
Proof. intros; by apply partial_alter_merge. Qed.
Lemma delete_merge (m1 : M A) (m2 : M B) i :
delete i (merge f m1 m2) = merge f (delete i m1) (delete i m2).
Proof. intros; by apply partial_alter_merge. Qed.
Lemma merge_singleton i x y z :
f (Some y) (Some z) = Some x →
merge f {[i := y]} {[i := z]} =@{M C} {[i := x]}.
Proof.
intros. by erewrite <-!insert_empty, <-insert_merge, merge_empty by eauto.
Qed.
Lemma insert_merge_l (m1 : M A) (m2 : M B) i x y :
f (Some y) (m2 !! i) = Some x →
<[i:=x]>(merge f m1 m2) = merge f (<[i:=y]>m1) m2.
Proof. by intros; apply partial_alter_merge_l. Qed.
Lemma insert_merge_r (m1 : M A) (m2 : M B) i x z :
f (m1 !! i) (Some z) = Some x →
<[i:=x]>(merge f m1 m2) = merge f m1 (<[i:=z]>m2).
Proof. intros; apply partial_alter_merge_r. by destruct (m1 !! i). Qed.
Lemma fmap_merge {D} (g : C → D) (m1 : M A) (m2 : M B) :
g <$> merge f m1 m2 = merge (λ mx1 mx2, g <$> f mx1 mx2) m1 m2.
Proof.
apply map_eq; intros i. rewrite lookup_fmap, !lookup_merge.
by destruct (m1 !! i), (m2 !! i).
Qed.
Lemma omap_merge {D} (g : C → option D) (m1 : M A) (m2 : M B) :
omap g (merge f m1 m2) = merge (λ mx1 mx2, f mx1 mx2 ≫= g) m1 m2.
Proof.
apply map_eq; intros i. rewrite lookup_omap, !lookup_merge.
by destruct (m1 !! i), (m2 !! i).
Qed.
End more_merge.
Lemma merge_empty_l {A B C} (f : option A → option B → option C) (m2 : M B) :
merge f ∅ m2 = omap (f None ∘ Some) m2.
Proof.
apply map_eq; intros i. rewrite lookup_merge, lookup_omap, lookup_empty.
by destruct (m2 !! i).
Qed.
Lemma merge_empty_r {A B C} (f : option A → option B → option C) (m1 : M A) :
merge f m1 ∅ = omap (flip f None ∘ Some) m1.
Proof.
apply map_eq; intros i. rewrite lookup_merge, lookup_omap, lookup_empty.
by destruct (m1 !! i).
Qed.
Lemma merge_diag {A C} (f : option A → option A → option C) (m : M A) :
merge f m m = omap (λ x, f (Some x) (Some x)) m.
Proof.
apply map_eq. intros i.
rewrite lookup_merge, lookup_omap. by destruct (m !! i).
Qed.
(** Properties of the [map_zip_with] and [map_zip] functions *)
Lemma map_lookup_zip_with {A B C} (f : A → B → C) (m1 : M A) (m2 : M B) i :
map_zip_with f m1 m2 !! i = (x ← m1 !! i; y ← m2 !! i; Some (f x y)).
Proof.
unfold map_zip_with. rewrite lookup_merge.
by destruct (m1 !! i), (m2 !! i).
Qed.
Lemma map_lookup_zip_with_Some {A B C} (f : A → B → C) (m1 : M A) (m2 : M B) i z :
map_zip_with f m1 m2 !! i = Some z ↔
∃ x y, z = f x y ∧ m1 !! i = Some x ∧ m2 !! i = Some y.
Proof. rewrite map_lookup_zip_with. destruct (m1 !! i), (m2 !! i); naive_solver. Qed.
Lemma map_lookup_zip_with_None {A B C} (f : A → B → C) (m1 : M A) (m2 : M B) i :
map_zip_with f m1 m2 !! i = None ↔ m1 !! i = None ∨ m2 !! i = None.
Proof. rewrite map_lookup_zip_with. destruct (m1 !! i), (m2 !! i); naive_solver. Qed.
Lemma map_lookup_zip_Some {A B} (m1 : M A) (m2 : M B) i p :
map_zip m1 m2 !! i = Some p ↔ m1 !! i = Some p.1 ∧ m2 !! i = Some p.2.
Proof. rewrite map_lookup_zip_with_Some. destruct p. naive_solver. Qed.
Lemma map_zip_with_empty {A B C} (f : A → B → C) :
map_zip_with f ∅ ∅ =@{M C} ∅.
Proof. unfold map_zip_with. by rewrite merge_empty by done. Qed.
Lemma map_zip_with_empty_l {A B C} (f : A → B → C) m2 :
map_zip_with f ∅ m2 =@{M C} ∅.
Proof.
unfold map_zip_with. apply map_eq; intros i.
rewrite lookup_merge, !lookup_empty. destruct (m2 !! i); done.
Qed.
Lemma map_zip_with_empty_r {A B C} (f : A → B → C) m1 :
map_zip_with f m1 ∅ =@{M C} ∅.
Proof.
unfold map_zip_with. apply map_eq; intros i.
rewrite lookup_merge, !lookup_empty. destruct (m1 !! i); done.
Qed.
Lemma map_insert_zip_with {A B C} (f : A → B → C) (m1 : M A) (m2 : M B) i y z :
<[i:=f y z]>(map_zip_with f m1 m2) = map_zip_with f (<[i:=y]>m1) (<[i:=z]>m2).
Proof. unfold map_zip_with. by erewrite insert_merge by done. Qed.
Lemma map_delete_zip_with {A B C} (f : A → B → C) (m1 : M A) (m2 : M B) i :
delete i (map_zip_with f m1 m2) = map_zip_with f (delete i m1) (delete i m2).
Proof. unfold map_zip_with. by rewrite delete_merge. Qed.
Lemma map_zip_with_singleton {A B C} (f : A → B → C) i x y :
map_zip_with f {[ i := x ]} {[ i := y ]} =@{M C} {[ i := f x y ]}.
Proof. unfold map_zip_with. by erewrite merge_singleton. Qed.
Lemma map_zip_with_fmap {A' A B' B C} (f : A → B → C)
(g1 : A' → A) (g2 : B' → B) (m1 : M A') (m2 : M B') :
map_zip_with f (g1 <$> m1) (g2 <$> m2) = map_zip_with (λ x y, f (g1 x) (g2 y)) m1 m2.
Proof.
apply map_eq; intro i. rewrite !map_lookup_zip_with, !lookup_fmap.
by destruct (m1 !! i), (m2 !! i).
Qed.
Lemma map_zip_with_fmap_1 {A' A B C} (f : A → B → C)
(g : A' → A) (m1 : M A') (m2 : M B) :
map_zip_with f (g <$> m1) m2 = map_zip_with (λ x y, f (g x) y) m1 m2.
Proof.
rewrite <- (map_fmap_id m2) at 1. by rewrite map_zip_with_fmap.
Qed.
Lemma map_zip_with_fmap_2 {A B' B C} (f : A → B → C)
(g : B' → B) (m1 : M A) (m2 : M B') :
map_zip_with f m1 (g <$> m2) = map_zip_with (λ x y, f x (g y)) m1 m2.
Proof.
rewrite <-(map_fmap_id m1) at 1. by rewrite map_zip_with_fmap.
Qed.
Lemma map_fmap_zip_with {A B C D} (f : A → B → C) (g : C → D)
(m1 : M A) (m2 : M B) :
g <$> map_zip_with f m1 m2 = map_zip_with (λ x y, g (f x y)) m1 m2.
Proof.
apply map_eq; intro i. rewrite lookup_fmap, !map_lookup_zip_with.
by destruct (m1 !! i), (m2 !! i).
Qed.
Lemma map_zip_with_flip {A B C} (f : A → B → C) (m1 : M A) (m2 : M B) :
map_zip_with (flip f) m2 m1 = map_zip_with f m1 m2.
Proof.
apply map_eq; intro i. rewrite !map_lookup_zip_with.
by destruct (m1 !! i), (m2 !! i).
Qed.
Lemma map_zip_with_map_zip {A B C} (f : A → B → C) (m1 : M A) (m2 : M B) :
map_zip_with f m1 m2 = uncurry f <$> map_zip m1 m2.
Proof.
apply map_eq; intro i. rewrite lookup_fmap, !map_lookup_zip_with.
by destruct (m1 !! i), (m2 !! i).
Qed.
Lemma map_fmap_zip {A' A B' B} (g1 : A' → A)
(g2 : B' → B) (m1 : M A') (m2 : M B') :
map_zip (fmap g1 m1) (fmap g2 m2) = prod_map g1 g2 <$> map_zip m1 m2.
Proof.
rewrite map_zip_with_fmap, map_zip_with_map_zip.
generalize (map_zip m1 m2); intro m. apply map_eq; intro i.
by rewrite !lookup_fmap; destruct (m !! i) as [[x1 x2]|].
Qed.
Lemma map_fmap_zip_with_l
{A B C} (f : A → B → C) (g : C → A) (m1 : M A) (m2 : M B) :
(∀ x y, g (f x y) = x) →
(∀ k, is_Some (m1 !! k) → is_Some (m2 !! k)) →
g <$> map_zip_with f m1 m2 = m1.
Proof.
intros ? Hm. apply map_eq; intros k. rewrite lookup_fmap, map_lookup_zip_with.
destruct (m1 !! _) as [x|] eqn:?; simpl; [|done].
destruct (Hm k) as [y ->]; [by eauto|]. by f_equal/=.
Qed.
Lemma map_fmap_zip_with_r
{A B C} (f : A → B → C) (g : C → B) (m1 : M A) (m2 : M B) :
(∀ x y, g (f x y) = y) →
(∀ k, is_Some (m2 !! k) → is_Some (m1 !! k)) →
g <$> map_zip_with f m1 m2 = m2.
Proof.
intros ? Hm. apply map_eq; intros k. rewrite lookup_fmap, map_lookup_zip_with.
destruct (m2 !! _) as [x|] eqn:?; simpl; [|by destruct (m1 !! _)].
destruct (Hm k) as [y ->]; [by eauto|]. by f_equal/=.
Qed.
Lemma map_zip_with_diag {A C} (f : A → A → C) (m : M A) :
map_zip_with f m m = (λ x, f x x) <$> m.
Proof. unfold map_zip_with. by rewrite merge_diag, map_fmap_alt. Qed.
Lemma map_zip_diag {A} (m : M A) :
map_zip m m = (λ x, (x, x)) <$> m.
Proof. apply map_zip_with_diag. Qed.
Lemma fst_map_zip {A B} (m1 : M A) (m2 : M B) :
(∀ k : K, is_Some (m1 !! k) → is_Some (m2 !! k)) →
fst <$> map_zip m1 m2 = m1.
Proof. intros ?. by apply map_fmap_zip_with_l. Qed.
Lemma snd_map_zip {A B} (m1 : M A) (m2 : M B) :
(∀ k : K, is_Some (m2 !! k) → is_Some (m1 !! k)) →
snd <$> map_zip m1 m2 = m2.
Proof. intros ?. by apply map_fmap_zip_with_r. Qed.
Lemma map_zip_fst_snd {A B} (m : M (A * B)) :
map_zip (fst <$> m) (snd <$> m) = m.
Proof.
apply map_eq; intros k.
rewrite map_lookup_zip_with, !lookup_fmap. by destruct (m !! k) as [[]|].
Qed.
(** ** Properties on the [map_relation] relation *)
Section map_relation.
Context {A B} (R : K → A → B → Prop) (P : K → A → Prop) (Q : K → B → Prop).
Context `{!∀ i x y, Decision (R i x y),
!∀ i x, Decision (P i x), !∀ i y, Decision (Q i y)}.
(** The function [f] and lemma [map_relation_alt] are helpers to prove the
[Decision] instance. These should not be used elsewhere. *)
Let f (mx : option A) (my : option B) : option (K → bool) :=
match mx, my with
| Some x, Some y => Some (λ i, bool_decide (R i x y))
| Some x, None => Some (λ i, bool_decide (P i x))
| None, Some y => Some (λ i, bool_decide (Q i y))
| None, None => None
end.
Local Lemma map_relation_alt (m1 : M A) (m2 : M B) :
map_relation R P Q m1 m2 ↔ map_Forall (λ i b, Is_true (b i)) (merge f m1 m2).
Proof.
split.
- intros Hm i P'; rewrite lookup_merge; intros.
specialize (Hm i). destruct (m1 !! i), (m2 !! i);
simplify_eq/=; auto using bool_decide_pack.
- intros Hm i. specialize (Hm i). rewrite lookup_merge in Hm.
destruct (m1 !! i), (m2 !! i); simplify_eq/=; auto;
eapply bool_decide_unpack, (Hm _ eq_refl).
Qed.
Global Instance map_relation_dec : RelDecision (map_relation (M:=M) R P Q).
Proof.
refine (λ m1 m2,
cast_if (decide (map_Forall (λ i b, Is_true (b i)) (merge f m1 m2))));
abstract by rewrite map_relation_alt.
Defined.
(** Due to the finiteness of finite maps, we can extract a witness if the
relation does not hold. *)
Lemma map_not_relation (m1 : M A) (m2 : M B) :
¬map_relation R P Q m1 m2 ↔ ∃ i,
(∃ x y, m1 !! i = Some x ∧ m2 !! i = Some y ∧ ¬R i x y)
∨ (∃ x, m1 !! i = Some x ∧ m2 !! i = None ∧ ¬P i x)
∨ (∃ y, m1 !! i = None ∧ m2 !! i = Some y ∧ ¬Q i y).
Proof.
split.
- rewrite map_relation_alt, (map_not_Forall _). intros (i&?&Hm&?); exists i.
rewrite lookup_merge in Hm.
destruct (m1 !! i), (m2 !! i); naive_solver auto 2 using bool_decide_pack.
- unfold map_relation, option_relation.
by intros [i[(x&y&?&?&?)|[(x&?&?&?)|(y&?&?&?)]]] Hm;
specialize (Hm i); simplify_option_eq.
Qed.
End map_relation.
(** ** Properties of the [map_Forall2] relation *)
Section map_Forall2.
Context {A B} (R : K → A → B → Prop).
Lemma map_Forall2_impl (R' : K → A → B → Prop) (m1 : M A) (m2 : M B) :
map_Forall2 R m1 m2 →
(∀ i x1 x2, R i x1 x2 → R' i x1 x2) →
map_Forall2 R' m1 m2.
Proof. intros Hm ? i. destruct (Hm i); constructor; eauto. Qed.
Lemma map_Forall2_empty : map_Forall2 R (∅ : M A) ∅.
Proof. intros i. rewrite !lookup_empty. constructor. Qed.
Lemma map_Forall2_empty_inv_l (m2 : M B) : map_Forall2 R ∅ m2 → m2 = ∅.
Proof.
intros Hm. apply map_eq; intros i. rewrite lookup_empty, eq_None_not_Some.
intros [x Hi]. specialize (Hm i). rewrite lookup_empty, Hi in Hm. inv Hm.
Qed.
Lemma map_Forall2_empty_inv_r (m1 : M A) : map_Forall2 R m1 ∅ → m1 = ∅.
Proof.
intros Hm. apply map_eq; intros i. rewrite lookup_empty, eq_None_not_Some.
intros [x Hi]. specialize (Hm i). rewrite lookup_empty, Hi in Hm. inv Hm.
Qed.
Lemma map_Forall2_delete (m1 : M A) (m2 : M B) i :
map_Forall2 R m1 m2 → map_Forall2 R (delete i m1) (delete i m2).
Proof.
intros Hm j. destruct (decide (i = j)) as [->|].
- rewrite !lookup_delete. constructor.
- by rewrite !lookup_delete_ne by done.
Qed.
Lemma map_Forall2_insert_2 (m1 : M A) (m2 : M B) i x1 x2 :
R i x1 x2 → map_Forall2 R m1 m2 → map_Forall2 R (<[i:=x1]> m1) (<[i:=x2]> m2).
Proof.
intros Hx Hm j. destruct (decide (i = j)) as [->|].
- rewrite !lookup_insert. by constructor.
- by rewrite !lookup_insert_ne by done.
Qed.
Lemma map_Forall2_insert (m1 : M A) (m2 : M B) i x1 x2 :
m1 !! i = None → m2 !! i = None →
map_Forall2 R (<[i:=x1]> m1) (<[i:=x2]> m2) ↔ R i x1 x2 ∧ map_Forall2 R m1 m2.
Proof.
intros Hi1 Hi2. split; [|naive_solver eauto using map_Forall2_insert_2].
intros Hm. split.
- specialize (Hm i). rewrite !lookup_insert in Hm. by inv Hm.
- intros j. destruct (decide (i = j)) as [->|].
+ rewrite Hi1, Hi2. constructor.
+ specialize (Hm j). by rewrite !lookup_insert_ne in Hm by done.
Qed.
Lemma map_Forall2_insert_inv_l (m1 : M A) (m2 : M B) i x1 :
m1 !! i = None →
map_Forall2 R (<[i:=x1]> m1) m2 →
∃ x2 m2', m2 = <[i:=x2]> m2' ∧ m2' !! i = None ∧ R i x1 x2 ∧ map_Forall2 R m1 m2'.
Proof.
intros ? Hm. pose proof (Hm i) as Hi. rewrite lookup_insert in Hi.
destruct (m2 !! i) as [x2|] eqn:?; inv Hi.
exists x2, (delete i m2). split; [by rewrite insert_delete|].
split; [by rewrite lookup_delete|]. split; [done|].
rewrite <-(delete_insert m1 i x1) by done. by apply map_Forall2_delete.
Qed.
Lemma map_Forall2_insert_inv_r (m1 : M A) (m2 : M B) i x2 :
m2 !! i = None →
map_Forall2 R m1 (<[i:=x2]> m2) →
∃ x1 m1', m1 = <[i:=x1]> m1' ∧ m1' !! i = None ∧ R i x1 x2 ∧ map_Forall2 R m1' m2.
Proof.
intros ? Hm. pose proof (Hm i) as Hi. rewrite lookup_insert in Hi.
destruct (m1 !! i) as [x1|] eqn:?; inv Hi.
exists x1, (delete i m1). split; [by rewrite insert_delete|].
split; [by rewrite lookup_delete|]. split; [done|].
rewrite <-(delete_insert m2 i x2) by done. by apply map_Forall2_delete.
Qed.
Lemma map_Forall2_singleton i x1 x2 :
map_Forall2 R ({[ i := x1 ]} : M A) {[ i := x2 ]} ↔ R i x1 x2.
Proof.
rewrite <-!insert_empty, map_Forall2_insert by (by rewrite lookup_empty).
naive_solver eauto using map_Forall2_empty.
Qed.
End map_Forall2.
(** ** Properties of the [map_agree] relation *)
Lemma map_agree_spec {A} (m1 m2 : M A) :
map_agree m1 m2 ↔ ∀ i x y, m1 !! i = Some x → m2 !! i = Some y → x = y.
Proof.
apply forall_proper; intros i; destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_agree_alt {A} (m1 m2 : M A) :
map_agree m1 m2 ↔ ∀ i, m1 !! i = None ∨ m2 !! i = None ∨ m1 !! i = m2 !! i.
Proof.
apply forall_proper; intros i; destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_not_agree {A} (m1 m2 : M A) `{!EqDecision A}:
¬map_agree m1 m2 ↔ ∃ i x1 x2, m1 !! i = Some x1 ∧ m2 !! i = Some x2 ∧ x1 ≠ x2.
Proof.
unfold map_agree. rewrite map_not_relation by solve_decision. naive_solver.
Qed.
Global Instance map_agree_refl {A} : Reflexive (map_agree : relation (M A)).
Proof. intros ?. rewrite !map_agree_spec. naive_solver. Qed.
Global Instance map_agree_sym {A} : Symmetric (map_agree : relation (M A)).
Proof.
intros m1 m2. rewrite !map_agree_spec.
intros Hm i x y Hm1 Hm2. symmetry. naive_solver.
Qed.
Lemma map_agree_empty_l {A} (m : M A) : map_agree ∅ m.
Proof. rewrite !map_agree_spec. intros i x y. by rewrite lookup_empty. Qed.
Lemma map_agree_empty_r {A} (m : M A) : map_agree m ∅.
Proof. rewrite !map_agree_spec. intros i x y. by rewrite lookup_empty. Qed.
Lemma map_agree_weaken {A} (m1 m1' m2 m2' : M A) :
map_agree m1' m2' → m1 ⊆ m1' → m2 ⊆ m2' → map_agree m1 m2.
Proof. rewrite !map_subseteq_spec, !map_agree_spec. eauto. Qed.
Lemma map_agree_weaken_l {A} (m1 m1' m2 : M A) :
map_agree m1' m2 → m1 ⊆ m1' → map_agree m1 m2.
Proof. eauto using map_agree_weaken. Qed.
Lemma map_agree_weaken_r {A} (m1 m2 m2' : M A) :
map_agree m1 m2' → m2 ⊆ m2' → map_agree m1 m2.
Proof. eauto using map_agree_weaken. Qed.
Lemma map_agree_Some_l {A} (m1 m2 : M A) i x:
map_agree m1 m2 → m1 !! i = Some x → m2 !! i = Some x ∨ m2 !! i = None.
Proof. rewrite map_agree_spec. destruct (m2 !! i) eqn: ?; naive_solver. Qed.
Lemma map_agree_Some_r {A} (m1 m2 : M A) i x:
map_agree m1 m2 → m2 !! i = Some x → m1 !! i = Some x ∨ m1 !! i = None.
Proof. rewrite (symmetry_iff map_agree). apply map_agree_Some_l. Qed.
Lemma map_agree_singleton_l {A} (m: M A) i x :
map_agree {[i:=x]} m ↔ m !! i = Some x ∨ m !! i = None.
Proof.
rewrite map_agree_spec. setoid_rewrite lookup_singleton_Some.
destruct (m !! i) eqn:?; naive_solver.
Qed.
Lemma map_agree_singleton_r {A} (m : M A) i x :
map_agree m {[i := x]} ↔ m !! i = Some x ∨ m !! i = None.
Proof. by rewrite (symmetry_iff map_agree), map_agree_singleton_l. Qed.
Lemma map_agree_delete_l {A} (m1 m2 : M A) i :
map_agree m1 m2 → map_agree (delete i m1) m2.
Proof.
rewrite !map_agree_alt. intros Hagree j. rewrite lookup_delete_None.
destruct (Hagree j) as [|[|<-]]; auto.
destruct (decide (i = j)); [naive_solver|].
rewrite lookup_delete_ne; naive_solver.
Qed.
Lemma map_agree_delete_r {A} (m1 m2 : M A) i :
map_agree m1 m2 → map_agree m1 (delete i m2).
Proof. symmetry. by apply map_agree_delete_l. Qed.
Lemma map_agree_filter {A} (P : K * A → Prop)
`{!∀ x, Decision (P x)} (m1 m2 : M A) :
map_agree m1 m2 → map_agree (filter P m1) (filter P m2).
Proof.
rewrite !map_agree_spec. intros ? i x y.
rewrite !map_lookup_filter_Some. naive_solver.
Qed.
Lemma map_agree_fmap_1 {A B} (f : A → B) (m1 m2 : M A) `{!Inj (=) (=) f}:
map_agree (f <$> m1) (f <$> m2) → map_agree m1 m2.
Proof.
rewrite !map_agree_spec. setoid_rewrite lookup_fmap_Some. naive_solver.
Qed.
Lemma map_agree_fmap_2 {A B} (f : A → B) (m1 m2 : M A):
map_agree m1 m2 → map_agree (f <$> m1) (f <$> m2).
Proof.
rewrite !map_agree_spec. setoid_rewrite lookup_fmap_Some. naive_solver.
Qed.
Lemma map_agree_fmap {A B} (f : A → B) (m1 m2 : M A) `{!Inj (=) (=) f}:
map_agree (f <$> m1) (f <$> m2) ↔ map_agree m1 m2.
Proof. naive_solver eauto using map_agree_fmap_1, map_agree_fmap_2. Qed.
Lemma map_agree_omap {A B} (f : A → option B) (m1 m2 : M A) :
map_agree m1 m2 → map_agree (omap f m1) (omap f m2).
Proof. rewrite !map_agree_spec. setoid_rewrite lookup_omap_Some. naive_solver. Qed.
(** ** Properties on the disjoint maps *)
Lemma map_disjoint_spec {A} (m1 m2 : M A) :
m1 ##ₘ m2 ↔ ∀ i x y, m1 !! i = Some x → m2 !! i = Some y → False.
Proof.
apply forall_proper; intros i; destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_disjoint_alt {A} (m1 m2 : M A) :
m1 ##ₘ m2 ↔ ∀ i, m1 !! i = None ∨ m2 !! i = None.
Proof.
apply forall_proper; intros i; destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_not_disjoint {A} (m1 m2 : M A) :
¬m1 ##ₘ m2 ↔ ∃ i x1 x2, m1 !! i = Some x1 ∧ m2 !! i = Some x2.
Proof.
unfold disjoint, map_disjoint. rewrite map_not_relation by solve_decision.
naive_solver.
Qed.
Global Instance map_disjoint_sym {A} : Symmetric (map_disjoint : relation (M A)).
Proof. intros m1 m2. rewrite !map_disjoint_spec. naive_solver. Qed.
Lemma map_disjoint_empty_l {A} (m : M A) : ∅ ##ₘ m.
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
Lemma map_disjoint_empty_r {A} (m : M A) : m ##ₘ ∅.
Proof. rewrite !map_disjoint_spec. intros i x y. by rewrite lookup_empty. Qed.
Lemma map_disjoint_weaken {A} (m1 m1' m2 m2' : M A) :
m1' ##ₘ m2' → m1 ⊆ m1' → m2 ⊆ m2' → m1 ##ₘ m2.
Proof. rewrite !map_subseteq_spec, !map_disjoint_spec. eauto. Qed.
Lemma map_disjoint_weaken_l {A} (m1 m1' m2 : M A) :
m1' ##ₘ m2 → m1 ⊆ m1' → m1 ##ₘ m2.
Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_weaken_r {A} (m1 m2 m2' : M A) :
m1 ##ₘ m2' → m2 ⊆ m2' → m1 ##ₘ m2.
Proof. eauto using map_disjoint_weaken. Qed.
Lemma map_disjoint_Some_l {A} (m1 m2 : M A) i x:
m1 ##ₘ m2 → m1 !! i = Some x → m2 !! i = None.
Proof. rewrite map_disjoint_spec, eq_None_not_Some. intros ?? [??]; eauto. Qed.
Lemma map_disjoint_Some_r {A} (m1 m2 : M A) i x:
m1 ##ₘ m2 → m2 !! i = Some x → m1 !! i = None.
Proof. rewrite (symmetry_iff map_disjoint). apply map_disjoint_Some_l. Qed.
Lemma map_disjoint_singleton_l {A} (m: M A) i x : {[i:=x]} ##ₘ m ↔ m !! i = None.
Proof.
rewrite !map_disjoint_spec. setoid_rewrite lookup_singleton_Some.
destruct (m !! i) eqn:?; naive_solver.
Qed.
Lemma map_disjoint_singleton_r {A} (m : M A) i x :
m ##ₘ {[i := x]} ↔ m !! i = None.
Proof. by rewrite (symmetry_iff map_disjoint), map_disjoint_singleton_l. Qed.
Lemma map_disjoint_singleton_l_2 {A} (m : M A) i x :
m !! i = None → {[i := x]} ##ₘ m.
Proof. by rewrite map_disjoint_singleton_l. Qed.
Lemma map_disjoint_singleton_r_2 {A} (m : M A) i x :
m !! i = None → m ##ₘ {[i := x]}.
Proof. by rewrite map_disjoint_singleton_r. Qed.
Lemma map_disjoint_delete_l {A} (m1 m2 : M A) i : m1 ##ₘ m2 → delete i m1 ##ₘ m2.
Proof.
rewrite !map_disjoint_alt. intros Hdisjoint j. destruct (Hdisjoint j); auto.
rewrite lookup_delete_None. tauto.
Qed.
Lemma map_disjoint_delete_r {A} (m1 m2 : M A) i : m1 ##ₘ m2 → m1 ##ₘ delete i m2.
Proof. symmetry. by apply map_disjoint_delete_l. Qed.
Lemma map_disjoint_filter {A} (P : K * A → Prop)
`{!∀ x, Decision (P x)} (m1 m2 : M A) :
m1 ##ₘ m2 → filter P m1 ##ₘ filter P m2.
Proof.
rewrite !map_disjoint_spec. intros ? i x y.
rewrite !map_lookup_filter_Some. naive_solver.
Qed.
Lemma map_disjoint_filter_complement {A} (P : K * A → Prop)
`{!∀ x, Decision (P x)} (m : M A) :
filter P m ##ₘ filter (λ v, ¬ P v) m.
Proof.
apply map_disjoint_spec. intros i x y.
rewrite !map_lookup_filter_Some. naive_solver.
Qed.
Lemma map_disjoint_fmap {A B} (f1 f2 : A → B) (m1 m2 : M A) :
f1 <$> m1 ##ₘ f2 <$> m2 ↔ m1 ##ₘ m2.
Proof.
rewrite !map_disjoint_spec. setoid_rewrite lookup_fmap_Some. naive_solver.
Qed.
Lemma map_disjoint_omap {A B} (f1 f2 : A → option B) (m1 m2 : M A) :
m1 ##ₘ m2 → omap f1 m1 ##ₘ omap f2 m2.
Proof.
rewrite !map_disjoint_spec. setoid_rewrite lookup_omap_Some. naive_solver.
Qed.
Lemma map_disjoint_agree {A} (m1 m2 : M A) :
m1 ##ₘ m2 → map_agree m1 m2.
Proof. rewrite !map_disjoint_spec, !map_agree_spec. naive_solver. Qed.
(** ** Properties of the [union_with] operation *)
Section union_with.
Context {A} (f : A → A → option A).
Implicit Types m : M A.
Lemma lookup_union_with m1 m2 i :
union_with f m1 m2 !! i = union_with f (m1 !! i) (m2 !! i).
Proof.
unfold union_with, map_union_with. rewrite lookup_merge.
by destruct (m1 !! i), (m2 !! i).
Qed.
Lemma lookup_union_with_Some m1 m2 i z :
union_with f m1 m2 !! i = Some z ↔
(m1 !! i = Some z ∧ m2 !! i = None) ∨
(m1 !! i = None ∧ m2 !! i = Some z) ∨
(∃ x y, m1 !! i = Some x ∧ m2 !! i = Some y ∧ f x y = Some z).
Proof.
rewrite lookup_union_with.
destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.
Global Instance: LeftId (=@{M A}) ∅ (union_with f).
Proof. unfold union_with, map_union_with. apply _. Qed.
Global Instance: RightId (=@{M A}) ∅ (union_with f).
Proof. unfold union_with, map_union_with. apply _. Qed.
Lemma union_with_comm m1 m2 :
(∀ i x y, m1 !! i = Some x → m2 !! i = Some y → f x y = f y x) →
union_with f m1 m2 = union_with f m2 m1.
Proof.
intros. apply merge_comm. intros i.
destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; simpl; eauto.
Qed.
Global Instance: Comm (=) f → Comm (=@{M A}) (union_with f).
Proof. intros ???. apply union_with_comm. eauto. Qed.
Lemma union_with_idemp m :
(∀ i x, m !! i = Some x → f x x = Some x) → union_with f m m = m.
Proof.
intros. apply merge_idemp. intros i.
destruct (m !! i) eqn:?; simpl; eauto.
Qed.
Lemma alter_union_with (g : A → A) m1 m2 i :
(∀ x y, m1 !! i = Some x → m2 !! i = Some y → g <$> f x y = f (g x) (g y)) →
alter g i (union_with f m1 m2) =
union_with f (alter g i m1) (alter g i m2).
Proof.
intros. apply partial_alter_merge.
destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; simpl; eauto.
Qed.
Lemma alter_union_with_l (g : A → A) m1 m2 i :
(∀ x y, m1 !! i = Some x → m2 !! i = Some y → g <$> f x y = f (g x) y) →
(∀ y, m1 !! i = None → m2 !! i = Some y → g y = y) →
alter g i (union_with f m1 m2) = union_with f (alter g i m1) m2.
Proof.
intros. apply partial_alter_merge_l.
destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; f_equal/=; auto.
Qed.
Lemma alter_union_with_r (g : A → A) m1 m2 i :
(∀ x y, m1 !! i = Some x → m2 !! i = Some y → g <$> f x y = f x (g y)) →
(∀ x, m1 !! i = Some x → m2 !! i = None → g x = x) →
alter g i (union_with f m1 m2) = union_with f m1 (alter g i m2).
Proof.
intros. apply partial_alter_merge_r.
destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; f_equal/=; auto.
Qed.
Lemma delete_union_with m1 m2 i :
delete i (union_with f m1 m2) = union_with f (delete i m1) (delete i m2).
Proof. by apply partial_alter_merge. Qed.
Lemma foldr_delete_union_with (m1 m2 : M A) is :
foldr delete (union_with f m1 m2) is =
union_with f (foldr delete m1 is) (foldr delete m2 is).
Proof.
induction is as [|?? IHis]; simpl; [done|].
by rewrite IHis, delete_union_with.
Qed.
Lemma insert_union_with m1 m2 i x y z :
f x y = Some z →
<[i:=z]>(union_with f m1 m2) = union_with f (<[i:=x]>m1) (<[i:=y]>m2).
Proof. by intros; apply (partial_alter_merge _). Qed.
Lemma insert_union_with_l m1 m2 i x :
m2 !! i = None → <[i:=x]>(union_with f m1 m2) = union_with f (<[i:=x]>m1) m2.
Proof.
intros Hm2. unfold union_with, map_union_with.
by erewrite insert_merge_l by (by rewrite Hm2).
Qed.
Lemma insert_union_with_r m1 m2 i x :
m1 !! i = None → <[i:=x]>(union_with f m1 m2) = union_with f m1 (<[i:=x]>m2).
Proof.
intros Hm1. unfold union_with, map_union_with.
by erewrite insert_merge_r by (by rewrite Hm1).
Qed.
End union_with.
(** ** Properties of the [union] operation *)
Global Instance map_empty_union {A} : LeftId (=@{M A}) ∅ (∪) := _.
Global Instance map_union_empty {A} : RightId (=@{M A}) ∅ (∪) := _.
Global Instance map_union_assoc {A} : Assoc (=@{M A}) (∪).
Proof.
intros m1 m2 m3. unfold union, map_union, union_with, map_union_with.
apply merge_assoc. intros i.
by destruct (m1 !! i), (m2 !! i), (m3 !! i).
Qed.
Global Instance map_union_idemp {A} : IdemP (=@{M A}) (∪).
Proof. intros ?. by apply union_with_idemp. Qed.
Lemma lookup_union {A} (m1 m2 : M A) i :
(m1 ∪ m2) !! i = (m1 !! i) ∪ (m2 !! i).
Proof. apply lookup_union_with. Qed.
Lemma lookup_union_r {A} (m1 m2 : M A) i :
m1 !! i = None → (m1 ∪ m2) !! i = m2 !! i.
Proof. intros Hi. by rewrite lookup_union, Hi, (left_id_L _ _). Qed.
Lemma lookup_union_l {A} (m1 m2 : M A) i :
m2 !! i = None → (m1 ∪ m2) !! i = m1 !! i.
Proof. intros Hi. rewrite lookup_union, Hi. by destruct (m1 !! i). Qed.
Lemma lookup_union_l' {A} (m1 m2 : M A) i :
is_Some (m1 !! i) → (m1 ∪ m2) !! i = m1 !! i.
Proof. intros [x Hi]. rewrite lookup_union, Hi. by destruct (m2 !! i). Qed.
Lemma lookup_union_Some_raw {A} (m1 m2 : M A) i x :
(m1 ∪ m2) !! i = Some x ↔
m1 !! i = Some x ∨ (m1 !! i = None ∧ m2 !! i = Some x).
Proof. rewrite lookup_union. destruct (m1 !! i), (m2 !! i); naive_solver. Qed.
Lemma lookup_union_None {A} (m1 m2 : M A) i :
(m1 ∪ m2) !! i = None ↔ m1 !! i = None ∧ m2 !! i = None.
Proof. rewrite lookup_union. destruct (m1 !! i), (m2 !! i); naive_solver. Qed.
Lemma lookup_union_None_1 {A} (m1 m2 : M A) i :
(m1 ∪ m2) !! i = None → m1 !! i = None ∧ m2 !! i = None.
Proof. apply lookup_union_None. Qed.
Lemma lookup_union_None_2 {A} (m1 m2 : M A) i :
m1 !! i = None → m2 !! i = None → (m1 ∪ m2) !! i = None.
Proof. intros. by apply lookup_union_None. Qed.
Lemma lookup_union_Some {A} (m1 m2 : M A) i x :
m1 ##ₘ m2 → (m1 ∪ m2) !! i = Some x ↔ m1 !! i = Some x ∨ m2 !! i = Some x.
Proof.
intros Hdisjoint. rewrite lookup_union_Some_raw.
intuition eauto using map_disjoint_Some_r.
Qed.
Lemma lookup_union_Some_l {A} (m1 m2 : M A) i x :
m1 !! i = Some x → (m1 ∪ m2) !! i = Some x.
Proof. intro. rewrite lookup_union_Some_raw; intuition. Qed.
Lemma lookup_union_Some_r {A} (m1 m2 : M A) i x :
m1 ##ₘ m2 → m2 !! i = Some x → (m1 ∪ m2) !! i = Some x.
Proof. intro. rewrite lookup_union_Some; intuition. Qed.
Lemma lookup_union_Some_inv_l {A} (m1 m2 : M A) i x :
(m1 ∪ m2) !! i = Some x → m2 !! i = None → m1 !! i = Some x.
Proof. rewrite lookup_union_Some_raw. naive_solver. Qed.
Lemma lookup_union_Some_inv_r {A} (m1 m2 : M A) i x :
(m1 ∪ m2) !! i = Some x → m1 !! i = None → m2 !! i = Some x.
Proof. rewrite lookup_union_Some_raw. naive_solver. Qed.
Lemma lookup_union_is_Some {A} (m1 m2 : M A) i :
is_Some ((m1 ∪ m2) !! i) ↔ is_Some (m1 !! i) ∨ is_Some (m2 !! i).
Proof.
rewrite <-!not_eq_None_Some, !lookup_union_None.
destruct (m1 !! i); naive_solver.
Qed.
Lemma map_union_comm {A} (m1 m2 : M A) : m1 ##ₘ m2 → m1 ∪ m2 = m2 ∪ m1.
Proof.
intros Hdisjoint. apply (merge_comm (union_with (λ x _, Some x))).
intros i. specialize (Hdisjoint i).
destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.
Lemma map_positive_l {A} (m1 m2 : M A) : m1 ∪ m2 = ∅ → m1 = ∅.
Proof.
intros Hm. apply map_empty. intros i. apply (f_equal (.!! i)) in Hm.
rewrite lookup_empty, lookup_union_None in Hm; tauto.
Qed.
Lemma map_positive_l_alt {A} (m1 m2 : M A) : m1 ≠ ∅ → m1 ∪ m2 ≠ ∅.
Proof. eauto using map_positive_l. Qed.
Lemma map_subseteq_union {A} (m1 m2 : M A) : m1 ⊆ m2 → m1 ∪ m2 = m2.
Proof.
rewrite map_subseteq_spec.
intros Hm1m2. apply map_eq. intros i. apply option_eq. intros x.
rewrite lookup_union_Some_raw. split; [by intuition |].
intros Hm2. specialize (Hm1m2 i). destruct (m1 !! i) as [y|]; [| by auto].
rewrite (Hm1m2 y eq_refl) in Hm2. intuition congruence.
Qed.
Lemma map_union_subseteq_l {A} (m1 m2 : M A) : m1 ⊆ m1 ∪ m2.
Proof.
rewrite map_subseteq_spec. intros ? i x. rewrite lookup_union_Some_raw. tauto.
Qed.
Lemma map_union_subseteq_r {A} (m1 m2 : M A) : m1 ##ₘ m2 → m2 ⊆ m1 ∪ m2.
Proof.
intros. rewrite map_union_comm by done. by apply map_union_subseteq_l.
Qed.
Lemma map_union_subseteq_l' {A} (m1 m2 m3 : M A) : m1 ⊆ m2 → m1 ⊆ m2 ∪ m3.
Proof. intros. trans m2; auto using map_union_subseteq_l. Qed.
Lemma map_union_subseteq_r' {A} (m1 m2 m3 : M A) :
m2 ##ₘ m3 → m1 ⊆ m3 → m1 ⊆ m2 ∪ m3.
Proof. intros. trans m3; auto using map_union_subseteq_r. Qed.
Lemma map_union_least {A} (m1 m2 m3 : M A) :
m1 ⊆ m3 → m2 ⊆ m3 → m1 ∪ m2 ⊆ m3.
Proof.
intros ??. apply map_subseteq_spec.
intros ?? [?|[_ ?]]%lookup_union_Some_raw; by eapply lookup_weaken.
Qed.
Lemma map_union_mono_l {A} (m1 m2 m3 : M A) : m1 ⊆ m2 → m3 ∪ m1 ⊆ m3 ∪ m2.
Proof.
rewrite !map_subseteq_spec. intros ???.
rewrite !lookup_union_Some_raw. naive_solver.
Qed.
Lemma map_union_mono_r {A} (m1 m2 m3 : M A) :
m2 ##ₘ m3 → m1 ⊆ m2 → m1 ∪ m3 ⊆ m2 ∪ m3.
Proof.
intros. rewrite !(map_union_comm _ m3)
by eauto using map_disjoint_weaken_l.
by apply map_union_mono_l.
Qed.
Lemma map_union_reflecting_l {A} (m1 m2 m3 : M A) :
m3 ##ₘ m1 → m3 ##ₘ m2 → m3 ∪ m1 ⊆ m3 ∪ m2 → m1 ⊆ m2.
Proof.
rewrite !map_subseteq_spec. intros Hm31 Hm32 Hm i x ?. specialize (Hm i x).
rewrite !lookup_union_Some in Hm by done. destruct Hm; auto.
by rewrite map_disjoint_spec in Hm31; destruct (Hm31 i x x).
Qed.
Lemma map_union_reflecting_r {A} (m1 m2 m3 : M A) :
m1 ##ₘ m3 → m2 ##ₘ m3 → m1 ∪ m3 ⊆ m2 ∪ m3 → m1 ⊆ m2.
Proof.
intros ??. rewrite !(map_union_comm _ m3) by done.
by apply map_union_reflecting_l.
Qed.
Lemma map_union_cancel_l {A} (m1 m2 m3 : M A) :
m1 ##ₘ m3 → m2 ##ₘ m3 → m3 ∪ m1 = m3 ∪ m2 → m1 = m2.
Proof.
intros. apply (anti_symm (⊆)); apply map_union_reflecting_l with m3;
by try apply reflexive_eq.
Qed.
Lemma map_union_cancel_r {A} (m1 m2 m3 : M A) :
m1 ##ₘ m3 → m2 ##ₘ m3 → m1 ∪ m3 = m2 ∪ m3 → m1 = m2.
Proof.
intros. apply (anti_symm (⊆)); apply map_union_reflecting_r with m3;
by try apply reflexive_eq.
Qed.
Lemma map_disjoint_union_l {A} (m1 m2 m3 : M A) :
m1 ∪ m2 ##ₘ m3 ↔ m1 ##ₘ m3 ∧ m2 ##ₘ m3.
Proof.
rewrite !map_disjoint_alt. setoid_rewrite lookup_union_None. naive_solver.
Qed.
Lemma map_disjoint_union_r {A} (m1 m2 m3 : M A) :
m1 ##ₘ m2 ∪ m3 ↔ m1 ##ₘ m2 ∧ m1 ##ₘ m3.
Proof.
rewrite !map_disjoint_alt. setoid_rewrite lookup_union_None. naive_solver.
Qed.
Lemma map_disjoint_union_l_2 {A} (m1 m2 m3 : M A) :
m1 ##ₘ m3 → m2 ##ₘ m3 → m1 ∪ m2 ##ₘ m3.
Proof. by rewrite map_disjoint_union_l. Qed.
Lemma map_disjoint_union_r_2 {A} (m1 m2 m3 : M A) :
m1 ##ₘ m2 → m1 ##ₘ m3 → m1 ##ₘ m2 ∪ m3.
Proof. by rewrite map_disjoint_union_r. Qed.
Lemma insert_union_singleton_l {A} (m : M A) i x : <[i:=x]>m = {[i := x]} ∪ m.
Proof.
apply map_eq. intros j. apply option_eq. intros y.
rewrite lookup_union_Some_raw.
destruct (decide (i = j)); subst.
- rewrite !lookup_singleton, lookup_insert. intuition congruence.
- rewrite !lookup_singleton_ne, lookup_insert_ne; intuition congruence.
Qed.
Lemma insert_union_singleton_r {A} (m : M A) i x :
m !! i = None → <[i:=x]>m = m ∪ {[i := x]}.
Proof.
intro. rewrite insert_union_singleton_l, map_union_comm; [done |].
by apply map_disjoint_singleton_l.
Qed.
Lemma union_singleton_r {A} (m : M A) i x y :
m !! i = Some x → m ∪ {[i := y]} = m.
Proof.
intro Hlkup. apply map_eq. intros j. rewrite lookup_union.
destruct (decide (i = j)); subst.
- by rewrite !lookup_singleton, Hlkup.
- rewrite lookup_singleton_ne by done.
by destruct (m !! j).
Qed.
Lemma map_disjoint_insert_l {A} (m1 m2 : M A) i x :
<[i:=x]>m1 ##ₘ m2 ↔ m2 !! i = None ∧ m1 ##ₘ m2.
Proof.
rewrite insert_union_singleton_l.
by rewrite map_disjoint_union_l, map_disjoint_singleton_l.
Qed.
Lemma map_disjoint_insert_r {A} (m1 m2 : M A) i x :
m1 ##ₘ <[i:=x]>m2 ↔ m1 !! i = None ∧ m1 ##ₘ m2.
Proof.
rewrite insert_union_singleton_l.
by rewrite map_disjoint_union_r, map_disjoint_singleton_r.
Qed.
Lemma map_disjoint_insert_l_2 {A} (m1 m2 : M A) i x :
m2 !! i = None → m1 ##ₘ m2 → <[i:=x]>m1 ##ₘ m2.
Proof. by rewrite map_disjoint_insert_l. Qed.
Lemma map_disjoint_insert_r_2 {A} (m1 m2 : M A) i x :
m1 !! i = None → m1 ##ₘ m2 → m1 ##ₘ <[i:=x]>m2.
Proof. by rewrite map_disjoint_insert_r. Qed.
Lemma insert_union_l {A} (m1 m2 : M A) i x :
<[i:=x]>(m1 ∪ m2) = <[i:=x]>m1 ∪ m2.
Proof. by rewrite !insert_union_singleton_l, (assoc_L (∪)). Qed.
Lemma insert_union_r {A} (m1 m2 : M A) i x :
m1 !! i = None → <[i:=x]>(m1 ∪ m2) = m1 ∪ <[i:=x]>m2.
Proof.
intro. rewrite !insert_union_singleton_l, !(assoc_L (∪)).
rewrite (map_union_comm m1); [done |].
by apply map_disjoint_singleton_r.
Qed.
Lemma foldr_insert_union {A} (m : M A) l :
foldr (λ p, <[p.1:=p.2]>) m l = list_to_map l ∪ m.
Proof.
induction l as [|i l IH]; simpl; [by rewrite (left_id_L _ _)|].
by rewrite IH, insert_union_l.
Qed.
Lemma delete_union {A} (m1 m2 : M A) i :
delete i (m1 ∪ m2) = delete i m1 ∪ delete i m2.
Proof. apply delete_union_with. Qed.
Lemma union_delete_insert {A} (m1 m2 : M A) i x :
m1 !! i = Some x →
delete i m1 ∪ <[i:=x]> m2 = m1 ∪ m2.
Proof.
intros. rewrite <-insert_union_r by apply lookup_delete.
by rewrite insert_union_l, insert_delete by done.
Qed.
Lemma union_insert_delete {A} (m1 m2 : M A) i x :
m1 !! i = None → m2 !! i = Some x →
<[i:=x]> m1 ∪ delete i m2 = m1 ∪ m2.
Proof.
intros. rewrite <-insert_union_l by apply lookup_delete.
by rewrite insert_union_r, insert_delete by done.
Qed.
Lemma map_Forall_union_1_1 {A} (m1 m2 : M A) P :
map_Forall P (m1 ∪ m2) → map_Forall P m1.
Proof. intros HP i x ?. apply HP, lookup_union_Some_raw; auto. Qed.
Lemma map_Forall_union_1_2 {A} (m1 m2 : M A) P :
m1 ##ₘ m2 → map_Forall P (m1 ∪ m2) → map_Forall P m2.
Proof. intros ? HP i x ?. apply HP, lookup_union_Some; auto. Qed.
Lemma map_Forall_union_2 {A} (m1 m2 : M A) P :
map_Forall P m1 → map_Forall P m2 → map_Forall P (m1 ∪ m2).
Proof. intros ???? [|[]]%lookup_union_Some_raw; eauto. Qed.
Lemma map_Forall_union {A} (m1 m2 : M A) P :
m1 ##ₘ m2 →
map_Forall P (m1 ∪ m2) ↔ map_Forall P m1 ∧ map_Forall P m2.
Proof.
naive_solver eauto using map_Forall_union_1_1,
map_Forall_union_1_2, map_Forall_union_2.
Qed.
Lemma map_filter_union {A} (P : K * A → Prop) `{!∀ x, Decision (P x)} (m1 m2 : M A) :
m1 ##ₘ m2 →
filter P (m1 ∪ m2) = filter P m1 ∪ filter P m2.
Proof.
intros. apply map_eq; intros i. apply option_eq; intros x.
rewrite lookup_union_Some, !map_lookup_filter_Some,
lookup_union_Some by auto using map_disjoint_filter.
naive_solver.
Qed.
Lemma map_filter_union_complement {A} (P : K * A → Prop)
`{!∀ x, Decision (P x)} (m : M A) :
filter P m ∪ filter (λ v, ¬ P v) m = m.
Proof.
apply map_eq; intros i. apply option_eq; intros x.
rewrite lookup_union_Some, !map_lookup_filter_Some
by auto using map_disjoint_filter_complement.
destruct (decide (P (i,x))); naive_solver.
Qed.
Lemma map_filter_or {A} (P Q : K * A → Prop)
`{!∀ x, Decision (P x), !∀ x, Decision (Q x)} (m : M A) :
filter (λ x, P x ∨ Q x) m = filter P m ∪ filter Q m.
Proof.
apply map_eq. intros k. rewrite lookup_union. rewrite !map_lookup_filter.
destruct (m !! k); simpl; repeat case_guard; naive_solver.
Qed.
Lemma map_fmap_union {A B} (f : A → B) (m1 m2 : M A) :
f <$> (m1 ∪ m2) = (f <$> m1) ∪ (f <$> m2).
Proof.
apply map_eq; intros i. apply option_eq; intros x.
rewrite lookup_fmap, !lookup_union, !lookup_fmap.
destruct (m1 !! i), (m2 !! i); auto.
Qed.
Lemma map_omap_union {A B} (f : A → option B) (m1 m2 : M A) :
m1 ##ₘ m2 →
omap f (m1 ∪ m2) = omap f m1 ∪ omap f m2.
Proof.
intros Hdisj. apply map_eq; intros i. specialize (Hdisj i).
apply option_eq; intros x.
rewrite lookup_omap, !lookup_union, !lookup_omap.
destruct (m1 !! i), (m2 !! i); simpl; repeat (destruct (f _)); naive_solver.
Qed.
Lemma map_size_disj_union {A} (m1 m2 : M A) :
m1 ##ₘ m2 → size (m1 ∪ m2) = size m1 + size m2.
Proof.
intros Hdisj. induction m1 as [|k x m1 Hm1 IH] using map_ind.
{ rewrite (left_id _ _), map_size_empty. done. }
rewrite <-insert_union_l.
rewrite map_size_insert.
rewrite lookup_union_r by done.
apply map_disjoint_insert_l in Hdisj as [-> Hdisj].
rewrite map_size_insert, Hm1.
rewrite IH by done. done.
Qed.
Lemma map_cross_split {A} (ma mb mc md : M A) :
ma ##ₘ mb → mc ##ₘ md →
ma ∪ mb = mc ∪ md →
∃ mac mad mbc mbd,
mac ##ₘ mad ∧ mbc ##ₘ mbd ∧
mac ##ₘ mbc ∧ mad ##ₘ mbd ∧
mac ∪ mad = ma ∧ mbc ∪ mbd = mb ∧ mac ∪ mbc = mc ∧ mad ∪ mbd = md.
Proof.
intros Hab_disj Hcd_disj Hab.
exists (filter (λ kx, is_Some (mc !! kx.1)) ma),
(filter (λ kx, ¬is_Some (mc !! kx.1)) ma),
(filter (λ kx, is_Some (mc !! kx.1)) mb),
(filter (λ kx, ¬is_Some (mc !! kx.1)) mb).
split_and!; [auto using map_disjoint_filter_complement, map_disjoint_filter,
map_filter_union_complement..| |].
- rewrite <-map_filter_union, Hab by done.
apply map_eq; intros k. apply option_eq; intros x.
rewrite map_lookup_filter_Some, lookup_union_Some, <-not_eq_None_Some by done.
rewrite map_disjoint_alt in Hcd_disj; naive_solver.
- rewrite <-map_filter_union, Hab by done.
apply map_eq; intros k. apply option_eq; intros x.
rewrite map_lookup_filter_Some, lookup_union_Some, <-not_eq_None_Some by done.
rewrite map_disjoint_alt in Hcd_disj; naive_solver.
Qed.
(** The following lemma shows that folding over two maps separately (using the
result of the first fold as input for the second fold) is equivalent to folding
over the union, *if* the function is idempotent for the elements that will be
processed twice ([m1 ∩ m2]) and does not care about the order in which elements
are processed.
This is a generalization of [map_fold_union] (below) with a.) a relation [R]
instead of equality b.) premises that ensure the elements are in [m1 ∪ m2]. *)
Lemma map_fold_union_strong {A B} (R : relation B) `{!PreOrder R}
(f : K → A → B → B) (b : B) (m1 m2 : M A) :
(∀ j z, Proper (R ==> R) (f j z)) →
(∀ j z1 z2 y,
(** This is morally idempotence for elements of [m1 ∩ m2] *)
m1 !! j = Some z1 → m2 !! j = Some z2 →
(** We cannot write this in the usual direction of idempotence properties
(i.e., [R (f j z1 (f j z2 y)) (f j z1 y)]) because [R] is not symmetric. *)
R (f j z1 y) (f j z1 (f j z2 y))) →
(∀ j1 j2 z1 z2 y,
(** This is morally commutativity + associativity for elements of [m1 ∪ m2] *)
j1 ≠ j2 →
m1 !! j1 = Some z1 ∨ m2 !! j1 = Some z1 →
m1 !! j2 = Some z2 ∨ m2 !! j2 = Some z2 →
R (f j1 z1 (f j2 z2 y)) (f j2 z2 (f j1 z1 y))) →
R (map_fold f b (m1 ∪ m2)) (map_fold f (map_fold f b m2) m1).
Proof.
intros Hf. revert m2.
induction m1 as [|j x m Hmj IH] using map_ind; intros m2 Hf_idemp Hf_assoc.
{ by rewrite (left_id_L _ _), map_fold_empty. }
setoid_rewrite lookup_insert_Some in Hf_assoc.
setoid_rewrite lookup_insert_Some in Hf_idemp.
rewrite <-insert_union_l, insert_union_r,
<-insert_delete_insert, <-insert_union_r by done.
trans (f j x (map_fold f b (m ∪ delete j m2))).
{ apply (map_fold_insert R f); [solve_proper|..].
- intros j1 j2 z1 z2 y ? Hj1 Hj2.
apply Hf_assoc; [done|revert Hj1|revert Hj2];
rewrite lookup_insert_Some, !lookup_union_Some_raw, lookup_delete_Some;
naive_solver.
- by rewrite lookup_union, Hmj, lookup_delete. }
trans (f j x (map_fold f (map_fold f b (delete j m2)) m)).
{ apply Hf, IH.
- intros j' z1 z2 y ? Hj'. apply Hf_idemp; revert Hj';
rewrite lookup_delete_Some, ?lookup_insert_Some; naive_solver.
- intros j1 j2 z1 z2 y ? Hj1 Hj2.
apply Hf_assoc; [done|revert Hj1|revert Hj2];
rewrite lookup_delete_Some; clear Hf_idemp Hf_assoc; naive_solver. }
trans (f j x (map_fold f (map_fold f b m2) m)).
- destruct (m2 !! j) as [x'|] eqn:?; [|by rewrite delete_notin by done].
trans (f j x (f j x' (map_fold f (map_fold f b (delete j m2)) m))); [by auto|].
f_equiv. trans (map_fold f (f j x' (map_fold f b (delete j m2))) m).
+ apply (map_fold_comm_acc_strong (flip R)); [solve_proper|].
intros; apply Hf_assoc;
rewrite ?lookup_union_Some_raw, ?lookup_insert_Some; naive_solver.
+ apply map_fold_proper; [solve_proper..|].
apply (map_fold_delete (flip R)); [solve_proper|naive_solver..].
- apply (map_fold_insert (flip R)); [solve_proper| |done].
intros j1 j2 z1 z2 y ? Hj1 Hj2.
apply Hf_assoc; [done|revert Hj2|revert Hj1];
rewrite !lookup_insert_Some; naive_solver.
Qed.
Lemma map_fold_union {A B} (f : K → A → B → B) (b : B) m1 m2 :
(∀ j z1 z2 y, f j z1 (f j z2 y) = f j z1 y) →
(∀ j1 j2 z1 z2 y, f j1 z1 (f j2 z2 y) = f j2 z2 (f j1 z1 y)) →
map_fold f b (m1 ∪ m2) = map_fold f (map_fold f b m2) m1.
Proof. intros. apply (map_fold_union_strong _); [solve_proper|auto..]. Qed.
Lemma map_fold_disj_union_strong {A B} (R : relation B) `{!PreOrder R}
(f : K → A → B → B) (b : B) (m1 m2 : M A) :
(∀ j z, Proper (R ==> R) (f j z)) →
m1 ##ₘ m2 →
(∀ j1 j2 z1 z2 y,
j1 ≠ j2 →
m1 !! j1 = Some z1 ∨ m2 !! j1 = Some z1 →
m1 !! j2 = Some z2 ∨ m2 !! j2 = Some z2 →
R (f j1 z1 (f j2 z2 y)) (f j2 z2 (f j1 z1 y))) →
R (map_fold f b (m1 ∪ m2)) (map_fold f (map_fold f b m2) m1).
Proof.
rewrite map_disjoint_spec. intros ??.
apply (map_fold_union_strong _); [solve_proper|naive_solver].
Qed.
Lemma map_fold_disj_union {A B} (f : K → A → B → B) (b : B) m1 m2 :
m1 ##ₘ m2 →
(∀ j1 j2 z1 z2 y, f j1 z1 (f j2 z2 y) = f j2 z2 (f j1 z1 y)) →
map_fold f b (m1 ∪ m2) = map_fold f (map_fold f b m2) m1.
Proof. intros. apply (map_fold_disj_union_strong _); [solve_proper|auto..]. Qed.
(** ** Properties of the [union_list] operation *)
Lemma map_disjoint_union_list_l {A} (ms : list (M A)) (m : M A) :
⋃ ms ##ₘ m ↔ Forall (.##ₘ m) ms.
Proof.
split.
- induction ms; simpl; rewrite ?map_disjoint_union_l; intuition.
- induction 1; simpl; [apply map_disjoint_empty_l |].
by rewrite map_disjoint_union_l.
Qed.
Lemma map_disjoint_union_list_r {A} (ms : list (M A)) (m : M A) :
m ##ₘ ⋃ ms ↔ Forall (.##ₘ m) ms.
Proof. by rewrite (symmetry_iff map_disjoint), map_disjoint_union_list_l. Qed.
Lemma map_disjoint_union_list_l_2 {A} (ms : list (M A)) (m : M A) :
Forall (.##ₘ m) ms → ⋃ ms ##ₘ m.
Proof. by rewrite map_disjoint_union_list_l. Qed.
Lemma map_disjoint_union_list_r_2 {A} (ms : list (M A)) (m : M A) :
Forall (.##ₘ m) ms → m ##ₘ ⋃ ms.
Proof. by rewrite map_disjoint_union_list_r. Qed.
(** ** Properties of the folding the [delete] function *)
Lemma lookup_foldr_delete {A} (m : M A) is j :
j ∈ is → foldr delete m is !! j = None.
Proof.
induction 1 as [|i j is]; simpl; [by rewrite lookup_delete|].
by destruct (decide (i = j)) as [->|?];
rewrite ?lookup_delete, ?lookup_delete_ne by done.
Qed.
Lemma lookup_foldr_delete_not_elem_of {A} (m : M A) is j :
j ∉ is → foldr delete m is !! j = m !! j.
Proof.
induction is; simpl; [done |]. rewrite elem_of_cons; intros.
rewrite lookup_delete_ne; intuition.
Qed.
Lemma lookup_foldr_delete_Some {A} (m : M A) is j y :
foldr delete m is !! j = Some y ↔ j ∉ is ∧ m !! j = Some y.
Proof. induction is; simpl; rewrite ?lookup_delete_Some; set_solver. Qed.
Lemma foldr_delete_notin {A} (m : M A) is :
Forall (λ i, m !! i = None) is → foldr delete m is = m.
Proof. induction 1; simpl; [done |]. rewrite delete_notin; congruence. Qed.
Lemma foldr_delete_commute {A} (m : M A) is j :
delete j (foldr delete m is) = foldr delete (delete j m) is.
Proof. induction is as [|?? IH]; [done| ]. simpl. by rewrite delete_commute, IH. Qed.
Lemma foldr_delete_insert {A} (m : M A) is j x :
j ∈ is → foldr delete (<[j:=x]>m) is = foldr delete m is.
Proof.
induction 1 as [i is|j i is ? IH]; simpl; [|by rewrite IH].
by rewrite !foldr_delete_commute, delete_insert_delete.
Qed.
Lemma foldr_delete_insert_ne {A} (m : M A) is j x :
j ∉ is → foldr delete (<[j:=x]>m) is = <[j:=x]>(foldr delete m is).
Proof.
induction is as [|?? IHis]; simpl; [done |]. rewrite elem_of_cons. intros.
rewrite IHis, delete_insert_ne; intuition.
Qed.
Lemma map_disjoint_foldr_delete_l {A} (m1 m2 : M A) is :
m1 ##ₘ m2 → foldr delete m1 is ##ₘ m2.
Proof. induction is; simpl; auto using map_disjoint_delete_l. Qed.
Lemma map_disjoint_foldr_delete_r {A} (m1 m2 : M A) is :
m1 ##ₘ m2 → m1 ##ₘ foldr delete m2 is.
Proof. induction is; simpl; auto using map_disjoint_delete_r. Qed.
Lemma map_agree_foldr_delete_l {A} (m1 m2 : M A) is :
map_agree m1 m2 → map_agree (foldr delete m1 is) m2.
Proof. induction is; simpl; auto using map_agree_delete_l. Qed.
Lemma map_agree_foldr_delete_r {A} (m1 m2 : M A) is :
map_agree m1 m2 → map_agree m1 (foldr delete m2 is).
Proof. induction is; simpl; auto using map_agree_delete_r. Qed.
Lemma foldr_delete_union {A} (m1 m2 : M A) is :
foldr delete (m1 ∪ m2) is = foldr delete m1 is ∪ foldr delete m2 is.
Proof. apply foldr_delete_union_with. Qed.
(** ** Properties on conversion to lists that depend on [∪] and [##ₘ] *)
Lemma list_to_map_app {A} (l1 l2 : list (K * A)):
list_to_map (l1 ++ l2) =@{M A} list_to_map l1 ∪ list_to_map l2.
Proof.
induction l1 as [|[??] ? IH]; simpl.
{ by rewrite (left_id _ _). }
by rewrite IH, insert_union_l.
Qed.
Lemma map_disjoint_list_to_map_l {A} (m : M A) ixs :
list_to_map ixs ##ₘ m ↔ Forall (λ ix, m !! ix.1 = None) ixs.
Proof.
split.
- induction ixs; simpl; rewrite ?map_disjoint_insert_l in *; intuition.
- induction 1; simpl; [apply map_disjoint_empty_l|].
rewrite map_disjoint_insert_l. auto.
Qed.
Lemma map_disjoint_list_to_map_r {A} (m : M A) ixs :
m ##ₘ list_to_map ixs ↔ Forall (λ ix, m !! ix.1 = None) ixs.
Proof. by rewrite (symmetry_iff map_disjoint), map_disjoint_list_to_map_l. Qed.
Lemma map_disjoint_list_to_map_zip_l {A} (m : M A) is xs :
length is = length xs →
list_to_map (zip is xs) ##ₘ m ↔ Forall (λ i, m !! i = None) is.
Proof.
intro. rewrite map_disjoint_list_to_map_l.
rewrite <-(fst_zip is xs) at 2 by lia. by rewrite Forall_fmap.
Qed.
Lemma map_disjoint_list_to_map_zip_r {A} (m : M A) is xs :
length is = length xs →
m ##ₘ list_to_map (zip is xs) ↔ Forall (λ i, m !! i = None) is.
Proof.
intro. by rewrite (symmetry_iff map_disjoint), map_disjoint_list_to_map_zip_l.
Qed.
Lemma map_disjoint_list_to_map_zip_l_2 {A} (m : M A) is xs :
length is = length xs → Forall (λ i, m !! i = None) is →
list_to_map (zip is xs) ##ₘ m.
Proof. intro. by rewrite map_disjoint_list_to_map_zip_l. Qed.
Lemma map_disjoint_list_to_map_zip_r_2 {A} (m : M A) is xs :
length is = length xs → Forall (λ i, m !! i = None) is →
m ##ₘ list_to_map (zip is xs).
Proof. intro. by rewrite map_disjoint_list_to_map_zip_r. Qed.
(** ** Properties of the [intersection_with] operation *)
Section intersection_with.
Context {A} (f : A → A → option A).
Implicit Type (m: M A).
Global Instance : LeftAbsorb (=@{M A}) ∅ (intersection_with f).
Proof. unfold intersection_with, map_intersection_with. apply _. Qed.
Global Instance: RightAbsorb (=@{M A}) ∅ (intersection_with f).
Proof. unfold intersection_with, map_intersection_with. apply _. Qed.
Lemma lookup_intersection_with m1 m2 i :
intersection_with f m1 m2 !! i = intersection_with f (m1 !! i) (m2 !! i).
Proof.
unfold intersection_with, map_intersection_with. rewrite lookup_merge.
by destruct (m1 !! i), (m2 !! i).
Qed.
Lemma lookup_intersection_with_Some m1 m2 i z :
intersection_with f m1 m2 !! i = Some z ↔
(∃ x y, m1 !! i = Some x ∧ m2 !! i = Some y ∧ f x y = Some z).
Proof.
rewrite lookup_intersection_with.
destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.
Lemma intersection_with_comm m1 m2 :
(∀ i x y, m1 !! i = Some x → m2 !! i = Some y → f x y = f y x) →
intersection_with f m1 m2 = intersection_with f m2 m1.
Proof.
intros. apply (merge_comm _). intros i.
destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; simpl; eauto.
Qed.
Global Instance: Comm (=) f → Comm (=@{M A}) (intersection_with f).
Proof. intros ???. apply intersection_with_comm. eauto. Qed.
Lemma intersection_with_idemp m :
(∀ i x, m !! i = Some x → f x x = Some x) → intersection_with f m m = m.
Proof.
intros. apply (merge_idemp _). intros i.
destruct (m !! i) eqn:?; simpl; eauto.
Qed.
Lemma alter_intersection_with (g : A → A) m1 m2 i :
(∀ x y, m1 !! i = Some x → m2 !! i = Some y → g <$> f x y = f (g x) (g y)) →
alter g i (intersection_with f m1 m2) =
intersection_with f (alter g i m1) (alter g i m2).
Proof.
intros. apply (partial_alter_merge _).
destruct (m1 !! i) eqn:?, (m2 !! i) eqn:?; simpl; eauto.
Qed.
Lemma delete_intersection_with m1 m2 i :
delete i (intersection_with f m1 m2) =
intersection_with f (delete i m1) (delete i m2).
Proof. by apply (partial_alter_merge _). Qed.
Lemma foldr_delete_intersection_with (m1 m2 : M A) is :
foldr delete (intersection_with f m1 m2) is =
intersection_with f (foldr delete m1 is) (foldr delete m2 is).
Proof.
induction is as [|?? IHis]; simpl; [done|].
by rewrite IHis, delete_intersection_with.
Qed.
Lemma insert_intersection_with m1 m2 i x y z :
f x y = Some z →
<[i:=z]>(intersection_with f m1 m2) =
intersection_with f (<[i:=x]>m1) (<[i:=y]>m2).
Proof. by intros; apply (partial_alter_merge _). Qed.
End intersection_with.
(** ** Properties of the [intersection] operation *)
Global Instance map_empty_interaction {A} : LeftAbsorb (=@{M A}) ∅ (∩) := _.
Global Instance map_interaction_empty {A} : RightAbsorb (=@{M A}) ∅ (∩) := _.
Global Instance map_interaction_assoc {A} : Assoc (=@{M A}) (∩).
Proof.
intros m1 m2 m3.
unfold intersection, map_intersection, intersection_with, map_intersection_with.
apply (merge_assoc _). intros i.
by destruct (m1 !! i), (m2 !! i), (m3 !! i).
Qed.
Global Instance map_intersection_idemp {A} : IdemP (=@{M A}) (∩).
Proof. intros ?. by apply intersection_with_idemp. Qed.
Lemma lookup_intersection {A} (m1 m2 : M A) i :
(m1 ∩ m2) !! i = m1 !! i ∩ m2 !! i.
Proof.
apply lookup_intersection_with.
Qed.
Lemma lookup_intersection_Some {A} (m1 m2 : M A) i x :
(m1 ∩ m2) !! i = Some x ↔ m1 !! i = Some x ∧ is_Some (m2 !! i).
Proof.
unfold intersection, map_intersection. rewrite lookup_intersection_with.
destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.
Lemma lookup_intersection_None {A} (m1 m2 : M A) i :
(m1 ∩ m2) !! i = None ↔ m1 !! i = None ∨ m2 !! i = None.
Proof.
unfold intersection, map_intersection. rewrite lookup_intersection_with.
destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.
Lemma map_intersection_filter {A} (m1 m2 : M A) :
m1 ∩ m2 = filter (λ kx, is_Some (m1 !! kx.1) ∧ is_Some (m2 !! kx.1)) (m1 ∪ m2).
Proof.
apply map_eq; intros i. apply option_eq; intros x.
rewrite lookup_intersection_Some, map_lookup_filter_Some, lookup_union; simpl.
unfold is_Some. destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Lemma map_filter_and {A} (P Q : K * A → Prop)
`{!∀ x, Decision (P x), !∀ x, Decision (Q x)} (m : M A) :
filter (λ x, P x ∧ Q x) m = filter P m ∩ filter Q m.
Proof.
apply map_eq. intros k. rewrite lookup_intersection. rewrite !map_lookup_filter.
destruct (m !! k); simpl; repeat case_guard; naive_solver.
Qed.
Lemma map_fmap_intersection {A B} (f : A → B) (m1 m2 : M A) :
f <$> (m1 ∩ m2) = (f <$> m1) ∩ (f <$> m2).
Proof.
apply map_eq. intros i.
rewrite !lookup_intersection, !lookup_fmap, !lookup_intersection.
destruct (m1 !! i), (m2 !! i); done.
Qed.
(** ** Properties of the [difference_with] operation *)
Lemma lookup_difference_with {A} (f : A → A → option A) (m1 m2 : M A) i :
difference_with f m1 m2 !! i = difference_with f (m1 !! i) (m2 !! i).
Proof.
unfold difference_with, map_difference_with. rewrite lookup_merge.
by destruct (m1 !! i), (m2 !! i).
Qed.
Lemma lookup_difference_with_Some {A} (f : A → A → option A) (m1 m2 : M A) i z :
difference_with f m1 m2 !! i = Some z ↔
(m1 !! i = Some z ∧ m2 !! i = None) ∨
(∃ x y, m1 !! i = Some x ∧ m2 !! i = Some y ∧ f x y = Some z).
Proof.
rewrite lookup_difference_with.
destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.
(** ** Properties of the [difference] operation *)
Lemma lookup_difference {A} (m1 m2 : M A) i :
(m1 ∖ m2) !! i = match m2 !! i with None => m1 !! i | _ => None end.
Proof.
unfold difference, map_difference; rewrite lookup_difference_with.
destruct (m1 !! i), (m2 !! i); done.
Qed.
Lemma lookup_difference_Some {A} (m1 m2 : M A) i x :
(m1 ∖ m2) !! i = Some x ↔ m1 !! i = Some x ∧ m2 !! i = None.
Proof. rewrite lookup_difference. destruct (m1 !! i), (m2 !! i); naive_solver. Qed.
Lemma lookup_difference_is_Some {A} (m1 m2 : M A) i :
is_Some ((m1 ∖ m2) !! i) ↔ is_Some (m1 !! i) ∧ m2 !! i = None.
Proof. unfold is_Some. setoid_rewrite lookup_difference_Some. naive_solver. Qed.
Lemma lookup_difference_None {A} (m1 m2 : M A) i :
(m1 ∖ m2) !! i = None ↔ m1 !! i = None ∨ is_Some (m2 !! i).
Proof.
rewrite lookup_difference.
destruct (m1 !! i), (m2 !! i); compute; naive_solver.
Qed.
Lemma map_disjoint_difference_l {A} (m1 m2 m3 : M A) : m3 ⊆ m2 → m1 ∖ m2 ##ₘ m3.
Proof.
intros Hm i; specialize (Hm i).
unfold difference, map_difference; rewrite lookup_difference_with.
by destruct (m1 !! i), (m2 !! i), (m3 !! i).
Qed.
Lemma map_disjoint_difference_r {A} (m1 m2 m3 : M A) : m3 ⊆ m2 → m3 ##ₘ m1 ∖ m2.
Proof. intros. symmetry. by apply map_disjoint_difference_l. Qed.
Lemma map_subseteq_difference_l {A} (m1 m2 m : M A) : m1 ⊆ m → m1 ∖ m2 ⊆ m.
Proof.
rewrite !map_subseteq_spec. setoid_rewrite lookup_difference_Some. naive_solver.
Qed.
Lemma map_difference_union {A} (m1 m2 : M A) :
m1 ⊆ m2 → m1 ∪ m2 ∖ m1 = m2.
Proof.
rewrite map_subseteq_spec. intro Hm1m2. apply map_eq. intros i.
apply option_eq. intros v. specialize (Hm1m2 i).
unfold difference, map_difference, difference_with, map_difference_with.
rewrite lookup_union_Some_raw, lookup_merge.
destruct (m1 !! i) as [x'|], (m2 !! i);
try specialize (Hm1m2 x'); compute; intuition congruence.
Qed.
Lemma map_difference_diag {A} (m : M A) : m ∖ m = ∅.
Proof.
apply map_empty; intros i. rewrite lookup_difference_None.
destruct (m !! i); eauto.
Qed.
Global Instance map_difference_right_id {A} : RightId (=@{M A}) ∅ (∖) := _.
Lemma map_difference_empty {A} (m : M A) : m ∖ ∅ = m.
Proof. by rewrite (right_id _ _). Qed.
Lemma map_fmap_difference {A B} (f : A → B) (m1 m2 : M A) :
f <$> (m1 ∖ m2) = (f <$> m1) ∖ (f <$> m2).
Proof.
apply map_eq. intros i.
rewrite !lookup_difference, !lookup_fmap, !lookup_difference.
destruct (m1 !! i), (m2 !! i); done.
Qed.
Lemma insert_difference {A} (m1 m2 : M A) i x :
<[i:=x]> (m1 ∖ m2) = <[i:=x]> m1 ∖ delete i m2.
Proof.
intros. apply map_eq. intros j. apply option_eq. intros y.
rewrite lookup_insert_Some, !lookup_difference_Some,
lookup_insert_Some, lookup_delete_None.
naive_solver.
Qed.
Lemma insert_difference' {A} (m1 m2 : M A) i x :
m2 !! i = None → <[i:=x]> (m1 ∖ m2) = <[i:=x]> m1 ∖ m2.
Proof. intros. by rewrite insert_difference, delete_notin. Qed.
Lemma difference_insert {A} (m1 m2 : M A) i x1 x2 x3 :
<[i:=x1]> m1 ∖ <[i:=x2]> m2 = m1 ∖ <[i:=x3]> m2.
Proof.
apply map_eq. intros i'. apply option_eq. intros x'.
rewrite !lookup_difference_Some, !lookup_insert_Some, !lookup_insert_None.
naive_solver.
Qed.
Lemma difference_insert_subseteq {A} (m1 m2 : M A) i x1 x2 :
<[i:=x1]> m1 ∖ <[i:=x2]> m2 ⊆ m1 ∖ m2.
Proof.
apply map_subseteq_spec. intros i' x'.
rewrite !lookup_difference_Some, lookup_insert_Some, lookup_insert_None.
naive_solver.
Qed.
Lemma delete_difference {A} (m1 m2 : M A) i x :
delete i (m1 ∖ m2) = m1 ∖ <[i:=x]> m2.
Proof.
apply map_eq. intros j. apply option_eq. intros y.
rewrite lookup_delete_Some, !lookup_difference_Some, lookup_insert_None.
naive_solver.
Qed.
Lemma difference_delete {A} (m1 m2 : M A) i x :
m1 !! i = Some x →
m1 ∖ delete i m2 = <[i:=x]> (m1 ∖ m2).
Proof.
intros. apply map_eq. intros j. apply option_eq. intros y.
rewrite lookup_insert_Some, !lookup_difference_Some, lookup_delete_None.
destruct (decide (i = j)); naive_solver.
Qed.
Lemma map_difference_filter {A} (m1 m2 : M A) :
m1 ∖ m2 = filter (λ kx, m2 !! kx.1 = None) m1.
Proof.
apply map_eq; intros i. apply option_eq; intros x.
by rewrite lookup_difference_Some, map_lookup_filter_Some.
Qed.
(** ** Misc properties about the order *)
Lemma map_subseteq_inv {A} (m1 m2 : M A) : m1 ⊆ m2 → m1 ⊂ m2 ∨ m1 = m2.
Proof.
intros. destruct (decide (m2 ∖ m1 = ∅)) as [Hm21|(i&x&Hi)%map_choose].
- right. by rewrite <-(map_difference_union m1 m2), Hm21, (right_id_L _ _).
- left. apply lookup_difference_Some in Hi as [??].
apply map_subset_alt; eauto.
Qed.
(** ** Setoids *)
Section setoid.
Context `{Equiv A}.
Lemma map_equiv_iff (m1 m2 : M A) : m1 ≡ m2 ↔ ∀ i, m1 !! i ≡ m2 !! i.
Proof. done. Qed.
Lemma map_equiv_lookup_l (m1 m2 : M A) i x :
m1 ≡ m2 → m1 !! i = Some x → ∃ y, m2 !! i = Some y ∧ x ≡ y.
Proof. intros Hm Hi. destruct (Hm i); naive_solver. Qed.
Lemma map_equiv_lookup_r (m1 m2 : M A) i y :
m1 ≡ m2 → m2 !! i = Some y → ∃ x, m1 !! i = Some x ∧ x ≡ y.
Proof. intros Hm Hi. destruct (Hm i); naive_solver. Qed.
Global Instance map_equivalence : Equivalence (≡@{A}) → Equivalence (≡@{M A}).
Proof.
split.
- by intros m i.
- by intros m1 m2 ? i.
- by intros m1 m2 m3 ?? i; trans (m2 !! i).
Qed.
Global Instance map_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (M A).
Proof. intros m1 m2 Hm; apply map_eq; intros i. apply leibniz_equiv, Hm. Qed.
Global Instance lookup_proper (i : K) : Proper ((≡@{M A}) ==> (≡)) (lookup i).
Proof. by intros m1 m2 Hm. Qed.
Global Instance lookup_total_proper (i : K) `{!Inhabited A} :
Proper (≡@{A}) inhabitant →
Proper ((≡@{M A}) ==> (≡)) (.!!! i).
Proof.
intros ? m1 m2 Hm. unfold lookup_total, map_lookup_total.
apply from_option_proper; auto. by intros ??.
Qed.
Global Instance partial_alter_proper :
Proper (((≡) ==> (≡)) ==> (=) ==> (≡) ==> (≡@{M A})) partial_alter.
Proof.
by intros f1 f2 Hf i ? <- m1 m2 Hm j; destruct (decide (i = j)) as [->|];
rewrite ?lookup_partial_alter, ?lookup_partial_alter_ne by done;
try apply Hf; apply lookup_proper.
Qed.
Global Instance insert_proper (i : K) :
Proper ((≡) ==> (≡) ==> (≡@{M A})) (insert i).
Proof. by intros ???; apply partial_alter_proper; [constructor|]. Qed.
Global Instance singletonM_proper k : Proper ((≡) ==> (≡@{M A})) (singletonM k).
Proof.
intros ???; apply insert_proper; [done|].
intros ?. rewrite lookup_empty; constructor.
Qed.
Global Instance delete_proper (i : K) : Proper ((≡) ==> (≡@{M A})) (delete i).
Proof. by apply partial_alter_proper; [constructor|]. Qed.
Global Instance alter_proper :
Proper (((≡) ==> (≡)) ==> (=) ==> (≡) ==> (≡@{M A})) alter.
Proof.
intros ?? Hf; apply partial_alter_proper.
by destruct 1; constructor; apply Hf.
Qed.
Global Instance merge_proper `{Equiv B, Equiv C} :
Proper (((≡) ==> (≡) ==> (≡)) ==> (≡@{M A}) ==> (≡@{M B}) ==> (≡@{M C})) merge.
Proof.
intros ?? Hf ?? Hm1 ?? Hm2 i. rewrite !lookup_merge.
destruct (Hm1 i), (Hm2 i); try apply Hf; by constructor.
Qed.
Global Instance union_with_proper :
Proper (((≡) ==> (≡) ==> (≡)) ==> (≡) ==> (≡) ==>(≡@{M A})) union_with.
Proof.
intros ?? Hf. apply merge_proper.
by do 2 destruct 1; first [apply Hf | constructor].
Qed.
Global Instance intersection_with_proper :
Proper (((≡) ==> (≡) ==> (≡)) ==> (≡) ==> (≡) ==>(≡@{M A})) intersection_with.
Proof.
intros ?? Hf. apply merge_proper.
by do 2 destruct 1; first [apply Hf | constructor].
Qed.
Global Instance difference_with_proper :
Proper (((≡) ==> (≡) ==> (≡)) ==> (≡) ==> (≡) ==>(≡@{M A})) difference_with.
Proof.
intros ?? Hf. apply merge_proper.
by do 2 destruct 1; first [apply Hf | constructor].
Qed.
Global Instance union_proper : Proper ((≡) ==> (≡) ==>(≡@{M A})) union.
Proof. apply union_with_proper; solve_proper. Qed.
Global Instance intersection_proper : Proper ((≡) ==> (≡) ==>(≡@{M A})) intersection.
Proof. apply intersection_with_proper; solve_proper. Qed.
Global Instance difference_proper : Proper ((≡) ==> (≡) ==>(≡@{M A})) difference.
Proof. apply difference_with_proper. constructor. Qed.
Global Instance map_zip_with_proper `{Equiv B, Equiv C} :
Proper (((≡) ==> (≡) ==> (≡)) ==> (≡@{M A}) ==> (≡@{M B}) ==> (≡@{M C}))
map_zip_with.
Proof.
intros f1 f2 Hf. apply merge_proper.
destruct 1; destruct 1; repeat f_equiv; constructor || by apply Hf.
Qed.
Global Instance map_disjoint_proper :
Proper ((≡@{M A}) ==> (≡@{M A}) ==> iff) map_disjoint.
Proof.
intros m1 m1' Hm1 m2 m2' Hm2; split;
intros Hm i; specialize (Hm i); by destruct (Hm1 i), (Hm2 i).
Qed.
Global Instance map_fmap_proper `{Equiv B} :
Proper (((≡) ==> (≡)) ==> (≡@{M A}) ==> (≡@{M B})) fmap.
Proof.
intros f f' Hf m m' ? k; rewrite !lookup_fmap. by apply option_fmap_proper.
Qed.
Global Instance map_omap_proper `{Equiv B} :
Proper (((≡) ==> (≡)) ==> (≡@{M A}) ==> (≡@{M B})) omap.
Proof.
intros f f' ? m m' ? k; rewrite !lookup_omap. by apply option_bind_proper.
Qed.
Global Instance map_filter_proper (P : K * A → Prop) `{!∀ kx, Decision (P kx)} :
(∀ k, Proper ((≡) ==> iff) (curry P k)) →
Proper ((≡@{M A}) ==> (≡)) (filter P).
Proof.
intros ? m1 m2 Hm i. rewrite !map_lookup_filter.
destruct (Hm i); simpl; repeat case_guard; try constructor; naive_solver.
Qed.
Global Instance map_singleton_equiv_inj :
Inj2 (=) (≡) (≡) (singletonM (M:=M A)).
Proof.
intros i1 x1 i2 x2 Heq. specialize (Heq i1).
rewrite lookup_singleton in Heq. destruct (decide (i1 = i2)) as [->|].
- rewrite lookup_singleton in Heq. apply (inj _) in Heq. naive_solver.
- rewrite lookup_singleton_ne in Heq by done. inv Heq.
Qed.
Global Instance map_fmap_equiv_inj `{Equiv B} (f : A → B) :
Inj (≡) (≡) f → Inj (≡@{M A}) (≡@{M B}) (fmap f).
Proof.
intros ? m1 m2 Hm i. apply (inj (fmap (M:=option) f)).
rewrite <-!lookup_fmap. by apply Hm.
Qed.
Lemma map_fmap_equiv_ext `{Equiv B} (f1 f2 : A → B) (m : M A) :
(∀ i x, m !! i = Some x → f1 x ≡ f2 x) → f1 <$> m ≡ f2 <$> m.
Proof.
intros Hi i; rewrite !lookup_fmap.
destruct (m !! i) eqn:?; constructor; eauto.
Qed.
End setoid.
(** The lemmas below make it possible to turn an [≡] into an [=]. *)
Section setoid_inversion.
Context `{Equiv A, !Equivalence (≡@{A})}.
Implicit Types m : M A.
Lemma map_empty_equiv_eq m : m ≡ ∅ ↔ m = ∅.
Proof.
split; [intros Hm; apply map_eq; intros i|intros ->].
- generalize (Hm i). by rewrite lookup_empty, None_equiv_eq.
- intros ?. rewrite lookup_empty; constructor.
Qed.
Lemma partial_alter_equiv_eq (f : option A → option A) (m1 m2 : M A) i :
Proper ((≡) ==> (≡)) f →
(∀ x1 mx2, Some x1 ≡ f mx2 → ∃ mx2', Some x1 = f mx2' ∧ mx2' ≡ mx2) →
m1 ≡ partial_alter f i m2 ↔ ∃ m2', m1 = partial_alter f i m2' ∧ m2' ≡ m2.
Proof.
intros ? Hf. split; [|by intros (?&->&<-)]. intros Hm.
assert (∃ mx2', m1 !! i = f mx2' ∧ mx2' ≡ m2 !! i) as (mx2'&?&?).
{ destruct (m1 !! i) as [x1|] eqn:Hix1.
- apply (Hf x1 (m2 !! i)). by rewrite <-Hix1, Hm, lookup_partial_alter.
- exists (m2 !! i). split; [|done]. apply symmetry, None_equiv_eq.
by rewrite <-Hix1, Hm, lookup_partial_alter. }
exists (partial_alter (λ _, mx2') i m1). split.
- apply map_eq; intros j. destruct (decide (i = j)) as [->|?].
+ by rewrite !lookup_partial_alter.
+ by rewrite !lookup_partial_alter_ne.
- intros j. destruct (decide (i = j)) as [->|?].
+ by rewrite lookup_partial_alter.
+ by rewrite Hm, !lookup_partial_alter_ne.
Qed.
Lemma alter_equiv_eq (f : A → A) (m1 m2 : M A) i :
Proper ((≡) ==> (≡)) f →
(∀ x1 x2, x1 ≡ f x2 → ∃ x2', x1 = f x2' ∧ x2' ≡ x2) →
m1 ≡ alter f i m2 ↔ ∃ m2', m1 = alter f i m2' ∧ m2' ≡ m2.
Proof.
intros ? Hf. apply (partial_alter_equiv_eq _ _ _ _ _). intros mx1 [x2|]; simpl.
- intros (x2'&->&?)%(inj _)%Hf. exists (Some x2'). by repeat constructor.
- intros ->%None_equiv_eq. by exists None.
Qed.
Lemma delete_equiv_eq m1 m2 i :
m1 ≡ delete i m2 ↔ ∃ m2', m1 = delete i m2' ∧ m2' ≡ m2.
Proof. apply (partial_alter_equiv_eq _ _ _ _ _). intros ?? [=]%None_equiv_eq. Qed.
Lemma insert_equiv_eq m1 m2 i x :
m1 ≡ <[i:=x]> m2 ↔ ∃ x' m2', m1 = <[i:=x']> m2' ∧ x' ≡ x ∧ m2' ≡ m2.
Proof.
split; [|by intros (?&?&->&<-&<-)]. intros Hm.
assert (is_Some (m1 !! i)) as [x' Hix'].
{ rewrite Hm, lookup_insert. eauto. }
destruct (m2 !! i) as [y|] eqn:?.
- exists x', (<[i:=y]> m1). split_and!.
+ by rewrite insert_insert, insert_id by done.
+ apply (inj Some). by rewrite <-Hix', Hm, lookup_insert.
+ by rewrite Hm, insert_insert, insert_id by done.
- exists x', (delete i m1). split_and!.
+ by rewrite insert_delete by done.
+ apply (inj Some). by rewrite <-Hix', Hm, lookup_insert.
+ by rewrite Hm, delete_insert by done.
Qed.
Lemma map_singleton_equiv_eq m i x :
m ≡ {[i:=x]} ↔ ∃ x', m = {[i:=x']} ∧ x' ≡ x.
Proof.
rewrite <-!insert_empty, insert_equiv_eq.
setoid_rewrite map_empty_equiv_eq. naive_solver.
Qed.
Lemma map_filter_equiv_eq (P : K * A → Prop) `{!∀ kx, Decision (P kx)} (m1 m2 : M A):
(∀ k, Proper ((≡) ==> iff) (curry P k)) →
m1 ≡ filter P m2 ↔ ∃ m2', m1 = filter P m2' ∧ m2' ≡ m2.
Proof.
intros HP. split; [|by intros (?&->&->)].
revert m1. induction m2 as [|i x m2 ? IH] using map_ind; intros m1 Hm.
{ rewrite map_filter_empty in Hm. exists ∅.
by rewrite map_filter_empty, <-map_empty_equiv_eq. }
rewrite map_filter_insert in Hm. case_decide.
- apply insert_equiv_eq in Hm as (x'&m2'&->&?&(m2''&->&?)%IH).
exists (<[i:=x']> m2''). split; [|by f_equiv].
by rewrite map_filter_insert_True by (by eapply HP).
- rewrite delete_notin in Hm by done.
apply IH in Hm as (m2'&->&Hm2). exists (<[i:=x]> m2'). split; [|by f_equiv].
assert (m2' !! i = None).
{ by rewrite <-None_equiv_eq, Hm2, None_equiv_eq. }
by rewrite map_filter_insert_not' by naive_solver.
Qed.
End setoid_inversion.
Lemma map_omap_equiv_eq `{Equiv A, !Equivalence (≡@{A}),
Equiv B, !Equivalence (≡@{B})}
(f : A → option B) (m1 : M B) (m2 : M A) :
Proper ((≡) ==> (≡)) f →
(∀ y x, Some y ≡ f x → ∃ x', Some y = f x' ∧ x' ≡ x) →
m1 ≡ omap f m2 ↔ ∃ m2', m1 = omap f m2' ∧ m2' ≡ m2.
Proof.
intros ? Hf. split; [|by intros (?&->&->)].
revert m1. induction m2 as [|i x m2 ? IH] using map_ind; intros m1 Hm.
{ rewrite omap_empty, map_empty_equiv_eq in Hm. subst m1.
exists ∅. by rewrite omap_empty. }
rewrite omap_insert in Hm. destruct (f x) as [y|] eqn:Hfx.
- apply insert_equiv_eq in Hm as (y'&m1'&->&Hy&(m2'&->&?)%IH).
destruct (Hf y' x) as (x'&Hfx'&?).
{ by rewrite Hfx, Hy. }
exists (<[i:=x']> m2'). split; [|by f_equiv].
by rewrite omap_insert, <-Hfx'.
- apply delete_equiv_eq in Hm as (m1'&->&(m2'&->&?)%IH).
exists (<[i:=x]> m2'). split; [|by f_equiv]. by rewrite omap_insert, Hfx.
Qed.
Lemma map_fmap_equiv_eq `{Equiv A, !Equivalence (≡@{A}),
Equiv B, !Equivalence (≡@{B})} (f : A → B) (m1 : M B) (m2 : M A) :
Proper ((≡) ==> (≡)) f →
(∀ y x, y ≡ f x → ∃ x', y = f x' ∧ x' ≡ x) →
m1 ≡ f <$> m2 ↔ ∃ m2', m1 = f <$> m2' ∧ m2' ≡ m2.
Proof.
intros ? Hf. rewrite map_fmap_alt; setoid_rewrite map_fmap_alt.
apply map_omap_equiv_eq; [solve_proper|].
intros ?? (?&->&?)%(inj _)%Hf; eauto.
Qed.
Lemma merge_equiv_eq `{Equiv A, !Equivalence (≡@{A}),
Equiv B, !Equivalence (≡@{B}), Equiv C, !Equivalence (≡@{C})}
(f : option A → option B → option C) (m1 : M C) (m2a : M A) (m2b : M B) :
Proper ((≡) ==> (≡) ==> (≡)) f →
(∀ y mx1 mx2,
Some y ≡ f mx1 mx2 →
∃ mx1' mx2', Some y = f mx1' mx2' ∧ mx1' ≡ mx1 ∧ mx2' ≡ mx2) →
m1 ≡ merge f m2a m2b ↔
∃ m2a' m2b', m1 = merge f m2a' m2b' ∧ m2a' ≡ m2a ∧ m2b' ≡ m2b.
Proof.
intros ? Hf. split; [|by intros (?&?&->&->&->)].
revert m1. induction m2a as [|i x m2a ? IH] using map_ind; intros m1.
{ assert (∀ y x,
Some y ≡ f None (Some x) → ∃ x', Some y = f None (Some x') ∧ x' ≡ x).
{ intros ?? (?&?&?&->%None_equiv_eq&(?&->&?)%Some_equiv_eq)%Hf; eauto. }
rewrite merge_empty_l, map_omap_equiv_eq by (done || solve_proper).
intros (m2'&->&?). exists ∅, m2'. by rewrite merge_empty_l. }
unfold insert at 1, map_insert at 1.
rewrite <-(partial_alter_merge_l _ (λ _, f (Some x) (m2b !! i))) by done.
destruct (f (Some x) (m2b !! i)) as [y|] eqn:Hfi.
- intros (y'&m'&->&Hy&(m2a'&m2b'&->&Hm2a&Hm2b)%IH)%insert_equiv_eq.
destruct (Hf y' (Some x) (m2b !! i)) as (mx1&mx2&?&(x'&->&?)%Some_equiv_eq&?).
{ by rewrite Hy, Hfi. }
exists (<[i:=x']> m2a'), (partial_alter (λ _, mx2) i m2b').
split_and!; [by apply partial_alter_merge|by f_equiv|].
intros j. destruct (decide (i = j)) as [->|?].
+ by rewrite lookup_partial_alter.
+ by rewrite Hm2b, lookup_partial_alter_ne.
- intros (m'&->&(m2a'&m2b'&->&Hm2a&Hm2b)%IH)%delete_equiv_eq.
exists (<[i:=x]> m2a'), m2b'. split_and!; [|by f_equiv|done].
apply partial_alter_merge_l, symmetry, None_equiv_eq; simpl.
by rewrite Hm2b, Hfi.
Qed.
Lemma map_union_with_equiv_eq `{Equiv A, !Equivalence (≡@{A})}
(f : A → A → option A) (m1 m2a m2b : M A) :
Proper ((≡) ==> (≡) ==> (≡)) f →
(∀ y x1 x2,
Some y ≡ f x1 x2 → ∃ x1' x2', Some y = f x1' x2' ∧ x1' ≡ x1 ∧ x2' ≡ x2) →
m1 ≡ union_with f m2a m2b ↔
∃ m2a' m2b', m1 = union_with f m2a' m2b' ∧ m2a' ≡ m2a ∧ m2b' ≡ m2b.
Proof.
intros ? Hf. apply (merge_equiv_eq _ _ _ _ _).
intros ? [x1|] [x2|]; simpl;
first [intros (?&?&?&?&?)%Hf|intros (?&?&?)%Some_equiv_eq|intros ?%None_equiv_eq];
by repeat econstructor.
Qed.
Lemma map_intersection_with_equiv_eq `{Equiv A, !Equivalence (≡@{A})}
(f : A → A → option A) (m1 m2a m2b : M A) :
Proper ((≡) ==> (≡) ==> (≡)) f →
(∀ y x1 x2,
Some y ≡ f x1 x2 → ∃ x1' x2', Some y = f x1' x2' ∧ x1' ≡ x1 ∧ x2' ≡ x2) →
m1 ≡ intersection_with f m2a m2b ↔
∃ m2a' m2b', m1 = intersection_with f m2a' m2b' ∧ m2a' ≡ m2a ∧ m2b' ≡ m2b.
Proof.
intros ? Hf. apply (merge_equiv_eq _ _ _ _ _).
intros ? [x1|] [x2|]; simpl;
first [intros (?&?&?&?&?)%Hf|intros (?&?&?)%Some_equiv_eq|intros ?%None_equiv_eq];
by repeat econstructor.
Qed.
Lemma map_difference_with_equiv_eq `{Equiv A, !Equivalence (≡@{A})}
(f : A → A → option A) (m1 m2a m2b : M A) :
Proper ((≡) ==> (≡) ==> (≡)) f →
(∀ y x1 x2,
Some y ≡ f x1 x2 → ∃ x1' x2', Some y = f x1' x2' ∧ x1' ≡ x1 ∧ x2' ≡ x2) →
m1 ≡ difference_with f m2a m2b ↔
∃ m2a' m2b', m1 = difference_with f m2a' m2b' ∧ m2a' ≡ m2a ∧ m2b' ≡ m2b.
Proof.
intros ? Hf. apply (merge_equiv_eq _ _ _ _ _).
intros ? [x1|] [x2|]; simpl;
first [intros (?&?&?&?&?)%Hf|intros (?&?&?)%Some_equiv_eq|intros ?%None_equiv_eq];
by repeat econstructor.
Qed.
Lemma map_union_equiv_eq `{Equiv A, !Equivalence (≡@{A})} (m1 m2a m2b : M A) :
m1 ≡ m2a ∪ m2b ↔ ∃ m2a' m2b', m1 = m2a' ∪ m2b' ∧ m2a' ≡ m2a ∧ m2b' ≡ m2b.
Proof.
apply map_union_with_equiv_eq; [solve_proper|]. intros ??? ?%(inj _); eauto.
Qed.
Lemma map_intersection_equiv_eq `{Equiv A, !Equivalence (≡@{A})} (m1 m2a m2b : M A) :
m1 ≡ m2a ∩ m2b ↔ ∃ m2a' m2b', m1 = m2a' ∩ m2b' ∧ m2a' ≡ m2a ∧ m2b' ≡ m2b.
Proof.
apply map_intersection_with_equiv_eq; [solve_proper|]. intros ??? ?%(inj _); eauto.
Qed.
Lemma map_difference_equiv_eq `{Equiv A, !Equivalence (≡@{A})} (m1 m2a m2b : M A) :
m1 ≡ m2a ∖ m2b ↔ ∃ m2a' m2b', m1 = m2a' ∖ m2b' ∧ m2a' ≡ m2a ∧ m2b' ≡ m2b.
Proof.
apply map_difference_with_equiv_eq; [constructor|]. intros ??? [=]%None_equiv_eq.
Qed.
End theorems.
(** ** The [map_seq] operation *)
Section map_seq.
Context `{FinMap nat M} {A : Type}.
Implicit Types x : A.
Implicit Types xs : list A.
Global Instance map_seq_proper `{Equiv A} start :
Proper ((≡@{list A}) ==> (≡@{M A})) (map_seq start).
Proof.
intros l1 l2 Hl. revert start.
induction Hl as [|x1 x2 l1 l2 ?? IH]; intros start; simpl.
- intros ?. rewrite lookup_empty; constructor.
- repeat (done || f_equiv).
Qed.
Lemma lookup_map_seq start xs i :
map_seq (M:=M A) start xs !! i = (guard (start ≤ i);; xs !! (i - start)).
Proof.
revert start. induction xs as [|x' xs IH]; intros start; simpl.
{ rewrite lookup_empty; simplify_option_eq; by rewrite ?lookup_nil. }
destruct (decide (start = i)) as [->|?].
- by rewrite lookup_insert, option_guard_True, Nat.sub_diag by lia.
- rewrite lookup_insert_ne, IH by done.
simplify_option_eq; try done || lia.
by replace (i - start) with (S (i - S start)) by lia.
Qed.
Lemma lookup_map_seq_0 xs i : map_seq (M:=M A) 0 xs !! i = xs !! i.
Proof. by rewrite lookup_map_seq, option_guard_True, Nat.sub_0_r by lia. Qed.
Lemma lookup_map_seq_Some_inv start xs i x :
xs !! i = Some x ↔ map_seq (M:=M A) start xs !! (start + i) = Some x.
Proof.
rewrite lookup_map_seq, option_guard_True by lia.
by rewrite Nat.add_sub_swap, Nat.sub_diag.
Qed.
Lemma lookup_map_seq_Some start xs i x :
map_seq (M:=M A) start xs !! i = Some x ↔ start ≤ i ∧ xs !! (i - start) = Some x.
Proof. rewrite lookup_map_seq. case_guard; naive_solver. Qed.
Lemma lookup_map_seq_None start xs i :
map_seq (M:=M A) start xs !! i = None ↔ i < start ∨ start + length xs ≤ i.
Proof.
rewrite lookup_map_seq.
case_guard; simplify_option_eq; rewrite ?lookup_ge_None; naive_solver lia.
Qed.
Lemma lookup_map_seq_is_Some start xs i x :
is_Some (map_seq (M:=M A) start xs !! i) ↔ start ≤ i < start + length xs.
Proof. rewrite <-not_eq_None_Some, lookup_map_seq_None. lia. Qed.
Lemma map_seq_singleton start x :
map_seq (M:=M A) start [x] = {[ start := x ]}.
Proof. done. Qed.
(** [map_seq_disjoint] uses [length xs = 0] instead of [xs = []] as
[lia] can handle the former but not the latter. *)
Lemma map_seq_disjoint start1 start2 xs1 xs2 :
map_seq (M:=M A) start1 xs1 ##ₘ map_seq start2 xs2 ↔
start1 + length xs1 ≤ start2 ∨ start2 + length xs2 ≤ start1
∨ length xs1 = 0 ∨ length xs2 = 0.
Proof.
rewrite map_disjoint_alt. setoid_rewrite lookup_map_seq_None.
split; intros Hi; [|lia]. pose proof (Hi start1). pose proof (Hi start2). lia.
Qed.
Lemma map_seq_app_disjoint start xs1 xs2 :
map_seq (M:=M A) start xs1 ##ₘ map_seq (start + length xs1) xs2.
Proof. apply map_seq_disjoint. lia. Qed.
Lemma map_seq_app start xs1 xs2 :
map_seq start (xs1 ++ xs2)
=@{M A} map_seq start xs1 ∪ map_seq (start + length xs1) xs2.
Proof.
revert start. induction xs1 as [|x1 xs1 IH]; intros start; simpl.
- by rewrite (left_id_L _ _), Nat.add_0_r.
- by rewrite IH, Nat.add_succ_r, !insert_union_singleton_l, (assoc_L _).
Qed.
Lemma map_seq_cons_disjoint start xs :
map_seq (M:=M A) (S start) xs !! start = None.
Proof. rewrite lookup_map_seq_None. lia. Qed.
Lemma map_seq_cons start xs x :
map_seq start (x :: xs) =@{M A} <[start:=x]> (map_seq (S start) xs).
Proof. done. Qed.
Lemma map_seq_snoc_disjoint start xs :
map_seq (M:=M A) start xs !! (start+length xs) = None.
Proof. rewrite lookup_map_seq_None. lia. Qed.
Lemma map_seq_snoc start xs x :
map_seq start (xs ++ [x]) =@{M A} <[start+length xs:=x]> (map_seq start xs).
Proof.
rewrite map_seq_app, map_seq_singleton.
by rewrite insert_union_singleton_r by (by rewrite map_seq_snoc_disjoint).
Qed.
Lemma fmap_map_seq {B} (f : A → B) start xs :
f <$> map_seq start xs =@{M B} map_seq start (f <$> xs).
Proof.
revert start. induction xs as [|x xs IH]; intros start; csimpl.
{ by rewrite fmap_empty. }
by rewrite fmap_insert, IH.
Qed.
Lemma insert_map_seq start xs i x:
start ≤ i < start + length xs →
<[i:=x]> (map_seq start xs) =@{M A} map_seq start (<[i - start:=x]> xs).
Proof.
intros. apply map_eq. intros j. destruct (decide (i = j)) as [->|?].
- rewrite lookup_insert, lookup_map_seq, option_guard_True by lia.
by rewrite list_lookup_insert by lia.
- rewrite lookup_insert_ne, !lookup_map_seq by done.
case_guard; [|done]. by rewrite list_lookup_insert_ne by lia.
Qed.
Lemma map_seq_insert start xs i x:
i < length xs →
map_seq start (<[i:=x]> xs) =@{M A} <[start + i:=x]> (map_seq start xs).
Proof. intros. rewrite insert_map_seq by lia. auto with f_equal lia. Qed.
Lemma insert_map_seq_0 xs i x:
i < length xs →
<[i:=x]> (map_seq 0 xs) =@{M A} map_seq 0 (<[i:=x]> xs).
Proof. intros. rewrite insert_map_seq by lia. auto with f_equal lia. Qed.
End map_seq.
(** ** The [map_seqZ] operation *)
Section map_seqZ.
Context `{FinMap Z M} {A : Type}.
Implicit Types x : A.
Implicit Types xs : list A.
Local Open Scope Z_scope.
Global Instance map_seqZ_proper `{Equiv A} start :
Proper ((≡@{list A}) ==> (≡@{M A})) (map_seqZ start).
Proof.
intros l1 l2 Hl. revert start.
induction Hl as [|x1 x2 l1 l2 ?? IH]; intros start; simpl.
- intros ?. rewrite lookup_empty; constructor.
- repeat (done || f_equiv).
Qed.
Lemma lookup_map_seqZ start xs i :
map_seqZ (M:=M A) start xs !! i = (guard (start ≤ i);; xs !! Z.to_nat (i - start)).
Proof.
revert start. induction xs as [|x' xs IH]; intros start; simpl.
{ rewrite lookup_empty; simplify_option_eq; by rewrite ?lookup_nil. }
destruct (decide (start = i)) as [->|?].
- by rewrite lookup_insert, option_guard_True, Z.sub_diag by lia.
- rewrite lookup_insert_ne, IH by done.
simplify_option_eq; try done || lia.
replace (i - start) with (Z.succ (i - Z.succ start)) by lia.
by rewrite Z2Nat.inj_succ; [|lia].
Qed.
Lemma lookup_map_seqZ_0 xs i :
0 ≤ i →
map_seqZ (M:=M A) 0 xs !! i = xs !! Z.to_nat i.
Proof. intros ?. by rewrite lookup_map_seqZ, option_guard_True, Z.sub_0_r. Qed.
Lemma lookup_map_seqZ_Some_inv start xs i x :
xs !! i = Some x ↔ map_seqZ (M:=M A) start xs !! (start + Z.of_nat i) = Some x.
Proof.
rewrite ->lookup_map_seqZ, option_guard_True by lia.
assert (Z.to_nat (start + Z.of_nat i - start) = i) as -> by lia.
done.
Qed.
Lemma lookup_map_seqZ_Some start xs i x :
map_seqZ (M:=M A) start xs !! i = Some x ↔
start ≤ i ∧ xs !! Z.to_nat (i - start) = Some x.
Proof. rewrite lookup_map_seqZ. case_guard; naive_solver. Qed.
Lemma lookup_map_seqZ_None start xs i :
map_seqZ (M:=M A) start xs !! i = None ↔
i < start ∨ start + Z.of_nat (length xs) ≤ i.
Proof.
rewrite lookup_map_seqZ.
case_guard; simplify_option_eq; rewrite ?lookup_ge_None; naive_solver lia.
Qed.
Lemma lookup_map_seqZ_is_Some start xs i :
is_Some (map_seqZ (M:=M A) start xs !! i) ↔
start ≤ i < start + Z.of_nat (length xs).
Proof. rewrite <-not_eq_None_Some, lookup_map_seqZ_None. lia. Qed.
Lemma map_seqZ_singleton start x :
map_seqZ (M:=M A) start [x] = {[ start := x ]}.
Proof. done. Qed.
(** [map_seqZ_disjoint] uses [length xs = 0] instead of [xs = []] as
[lia] can handle the former but not the latter. *)
Lemma map_seqZ_disjoint start1 start2 xs1 xs2 :
map_seqZ (M:=M A) start1 xs1 ##ₘ map_seqZ (M:=M A) start2 xs2 ↔
start1 + Z.of_nat (length xs1) ≤ start2 ∨ start2 + Z.of_nat (length xs2) ≤ start1
∨ length xs1 = 0%nat ∨ length xs2 = 0%nat.
Proof.
rewrite map_disjoint_alt. setoid_rewrite lookup_map_seqZ_None.
split; intros Hi; [|lia]. pose proof (Hi start1). pose proof (Hi start2). lia.
Qed.
Lemma map_seqZ_app_disjoint start xs1 xs2 :
map_seqZ (M:=M A) start xs1 ##ₘ map_seqZ (start + Z.of_nat (length xs1)) xs2.
Proof. apply map_seqZ_disjoint. lia. Qed.
Lemma map_seqZ_app start xs1 xs2 :
map_seqZ start (xs1 ++ xs2)
=@{M A} map_seqZ start xs1 ∪ map_seqZ (start + Z.of_nat (length xs1)) xs2.
Proof.
revert start. induction xs1 as [|x1 xs1 IH]; intros start; simpl.
- by rewrite ->(left_id_L _ _), Z.add_0_r.
- by rewrite IH, Nat2Z.inj_succ, Z.add_succ_r, Z.add_succ_l,
!insert_union_singleton_l, (assoc_L _).
Qed.
Lemma map_seqZ_cons_disjoint start xs :
map_seqZ (M:=M A) (Z.succ start) xs !! start = None.
Proof. rewrite lookup_map_seqZ_None. lia. Qed.
Lemma map_seqZ_cons start xs x :
map_seqZ start (x :: xs) =@{M A} <[start:=x]> (map_seqZ (Z.succ start) xs).
Proof. done. Qed.
Lemma map_seqZ_snoc_disjoint start xs :
map_seqZ (M:=M A) start xs !! (start + Z.of_nat (length xs)) = None.
Proof. rewrite lookup_map_seqZ_None. lia. Qed.
Lemma map_seqZ_snoc start xs x :
map_seqZ start (xs ++ [x])
=@{M A} <[(start + Z.of_nat (length xs)):=x]> (map_seqZ start xs).
Proof.
rewrite map_seqZ_app, map_seqZ_singleton.
by rewrite insert_union_singleton_r by (by rewrite map_seqZ_snoc_disjoint).
Qed.
Lemma fmap_map_seqZ {B} (f : A → B) start xs :
f <$> map_seqZ start xs =@{M B} map_seqZ start (f <$> xs).
Proof.
revert start. induction xs as [|x xs IH]; intros start; csimpl.
{ by rewrite fmap_empty. }
by rewrite fmap_insert, IH.
Qed.
Lemma insert_map_seqZ start xs i x:
start ≤ i < start + Z.of_nat (length xs) →
<[i:=x]> (map_seqZ start xs)
=@{M A} map_seqZ start (<[Z.to_nat (i - start):=x]> xs).
Proof.
intros. apply map_eq. intros j. destruct (decide (i = j)) as [->|?].
- rewrite lookup_insert, lookup_map_seqZ, option_guard_True by lia.
by rewrite list_lookup_insert by lia.
- rewrite lookup_insert_ne, !lookup_map_seqZ by done.
case_guard; [|done]. by rewrite list_lookup_insert_ne by lia.
Qed.
Lemma map_seqZ_insert start xs i x:
(i < length xs)%nat →
map_seqZ start (<[i:=x]> xs) =@{M A}
<[start + Z.of_nat i:=x]> (map_seqZ start xs).
Proof. intros. rewrite insert_map_seqZ by lia. auto with lia f_equal. Qed.
Lemma insert_map_seqZ_0 xs i x:
0 ≤ i < Z.of_nat (length xs) →
<[i:=x]> (map_seqZ 0 xs) =@{M A} map_seqZ 0 (<[Z.to_nat i:=x]> xs).
Proof. intros. rewrite insert_map_seqZ by lia. auto with lia f_equal. Qed.
Lemma map_seqZ_insert_0 xs i x:
(i < length xs)%nat →
map_seqZ 0 (<[i:=x]> xs) =@{M A} <[Z.of_nat i:=x]> (map_seqZ 0 xs).
Proof. intros. by rewrite map_seqZ_insert. Qed.
End map_seqZ.
Section kmap.
Context `{FinMap K1 M1} `{FinMap K2 M2}.
Context (f : K1 → K2) `{!Inj (=) (=) f}.
Local Notation kmap := (kmap (M1:=M1) (M2:=M2)).
Lemma lookup_kmap_Some {A} (m : M1 A) (j : K2) x :
kmap f m !! j = Some x ↔ ∃ i, j = f i ∧ m !! i = Some x.
Proof.
assert (∀ x',
(j, x) ∈ prod_map f id <$> map_to_list m →
(j, x') ∈ prod_map f id <$> map_to_list m → x = x').
{ intros x'. rewrite !elem_of_list_fmap.
intros [[j' y1] [??]] [[? y2] [??]]; simplify_eq/=.
by apply (map_to_list_unique m j'). }
unfold kmap. rewrite <-elem_of_list_to_map', elem_of_list_fmap by done.
setoid_rewrite elem_of_map_to_list'. split.
- intros [[??] [??]]; naive_solver.
- intros [? [??]]. eexists (_, _); naive_solver.
Qed.
Lemma lookup_kmap_is_Some {A} (m : M1 A) (j : K2) :
is_Some (kmap f m !! j) ↔ ∃ i, j = f i ∧ is_Some (m !! i).
Proof. unfold is_Some. setoid_rewrite lookup_kmap_Some. naive_solver. Qed.
Lemma lookup_kmap_None {A} (m : M1 A) (j : K2) :
kmap f m !! j = None ↔ ∀ i, j = f i → m !! i = None.
Proof.
setoid_rewrite eq_None_not_Some.
rewrite lookup_kmap_is_Some. naive_solver.
Qed.
(** Note that to state a lemma [map_kmap f m !! j = ...] we need to have a
partial inverse [f_inv] of [f] (which one cannot define constructively). Then
we could write [map_kmap f m !! j = (i ← f_inv j; m !! i)] *)
Lemma lookup_kmap {A} (m : M1 A) (i : K1) :
kmap f m !! (f i) = m !! i.
Proof. apply option_eq. setoid_rewrite lookup_kmap_Some. naive_solver. Qed.
Lemma lookup_total_kmap `{Inhabited A} (m : M1 A) (i : K1) :
kmap f m !!! (f i) = m !!! i.
Proof. by rewrite !lookup_total_alt, lookup_kmap. Qed.
Global Instance kmap_inj {A} : Inj (=@{M1 A}) (=) (kmap f).
Proof.
intros m1 m2 Hm. apply map_eq. intros i. by rewrite <-!lookup_kmap, Hm.
Qed.
Lemma kmap_empty {A} : kmap f ∅ =@{M2 A} ∅.
Proof. unfold kmap. by rewrite map_to_list_empty. Qed.
Lemma kmap_empty_iff {A} (m : M1 A) : kmap f m = ∅ ↔ m = ∅.
Proof. rewrite !map_empty. setoid_rewrite lookup_kmap_None. naive_solver. Qed.
Lemma kmap_singleton {A} i (x : A) : kmap f {[ i := x ]} = {[ f i := x ]}.
Proof. unfold kmap. by rewrite map_to_list_singleton. Qed.
Lemma kmap_partial_alter {A} (g : option A → option A) (m : M1 A) i :
kmap f (partial_alter g i m) = partial_alter g (f i) (kmap f m).
Proof.
apply map_eq; intros j. apply option_eq; intros y.
destruct (decide (j = f i)) as [->|?].
{ by rewrite lookup_partial_alter, !lookup_kmap, lookup_partial_alter. }
rewrite lookup_partial_alter_ne, !lookup_kmap_Some by done. split.
- intros [i' [? Hm]]; simplify_eq/=.
rewrite lookup_partial_alter_ne in Hm by naive_solver. naive_solver.
- intros [i' [? Hm]]; simplify_eq/=. exists i'.
rewrite lookup_partial_alter_ne by naive_solver. naive_solver.
Qed.
Lemma kmap_insert {A} (m : M1 A) i x :
kmap f (<[i:=x]> m) = <[f i:=x]> (kmap f m).
Proof. apply kmap_partial_alter. Qed.
Lemma kmap_delete {A} (m : M1 A) i :
kmap f (delete i m) = delete (f i) (kmap f m).
Proof. apply kmap_partial_alter. Qed.
Lemma kmap_alter {A} (g : A → A) (m : M1 A) i :
kmap f (alter g i m) = alter g (f i) (kmap f m).
Proof. apply kmap_partial_alter. Qed.
Lemma kmap_merge {A B C} (g : option A → option B → option C)
(m1 : M1 A) (m2 : M1 B) :
kmap f (merge g m1 m2) = merge g (kmap f m1) (kmap f m2).
Proof.
apply map_eq; intros j. apply option_eq; intros y.
rewrite lookup_merge, lookup_kmap_Some.
setoid_rewrite lookup_merge. split.
{ intros [i [-> ?]]. by rewrite !lookup_kmap. }
intros Hg. destruct (kmap f m1 !! j) as [x1|] eqn:Hm1.
{ apply lookup_kmap_Some in Hm1 as (i&->&Hm1i).
exists i. split; [done|]. by rewrite Hm1i, <-lookup_kmap. }
destruct (kmap f m2 !! j) as [x2|] eqn:Hm2; [|naive_solver].
apply lookup_kmap_Some in Hm2 as (i&->&Hm2i).
exists i. split; [done|]. by rewrite Hm2i, <-lookup_kmap, Hm1.
Qed.
Lemma kmap_union_with {A} (g : A → A → option A) (m1 m2 : M1 A) :
kmap f (union_with g m1 m2)
= union_with g (kmap f m1) (kmap f m2).
Proof. apply kmap_merge. Qed.
Lemma kmap_intersection_with {A} (g : A → A → option A) (m1 m2 : M1 A) :
kmap f (intersection_with g m1 m2)
= intersection_with g (kmap f m1) (kmap f m2).
Proof. apply kmap_merge. Qed.
Lemma kmap_difference_with {A} (g : A → A → option A) (m1 m2 : M1 A) :
kmap f (difference_with g m1 m2)
= difference_with g (kmap f m1) (kmap f m2).
Proof. apply kmap_merge. Qed.
Lemma kmap_union {A} (m1 m2 : M1 A) :
kmap f (m1 ∪ m2) = kmap f m1 ∪ kmap f m2.
Proof. apply kmap_union_with. Qed.
Lemma kmap_intersection {A} (m1 m2 : M1 A) :
kmap f (m1 ∩ m2) = kmap f m1 ∩ kmap f m2.
Proof. apply kmap_intersection_with. Qed.
Lemma kmap_difference {A} (m1 m2 : M1 A) :
kmap f (m1 ∖ m2) = kmap f m1 ∖ kmap f m2.
Proof. apply kmap_difference_with. Qed.
Lemma kmap_zip_with {A B C} (g : A → B → C) (m1 : M1 A) (m2 : M1 B) :
kmap f (map_zip_with g m1 m2) = map_zip_with g (kmap f m1) (kmap f m2).
Proof. by apply kmap_merge. Qed.
Lemma kmap_imap {A B} (g : K2 → A → option B) (m : M1 A) :
kmap f (map_imap (g ∘ f) m) = map_imap g (kmap f m).
Proof.
apply map_eq; intros j. apply option_eq; intros y.
rewrite map_lookup_imap, bind_Some. setoid_rewrite lookup_kmap_Some.
setoid_rewrite map_lookup_imap. setoid_rewrite bind_Some. naive_solver.
Qed.
Lemma kmap_omap {A B} (g : A → option B) (m : M1 A) :
kmap f (omap g m) = omap g (kmap f m).
Proof.
apply map_eq; intros j. apply option_eq; intros y.
rewrite lookup_omap, bind_Some. setoid_rewrite lookup_kmap_Some.
setoid_rewrite lookup_omap. setoid_rewrite bind_Some. naive_solver.
Qed.
Lemma kmap_fmap {A B} (g : A → B) (m : M1 A) :
kmap f (g <$> m) = g <$> (kmap f m).
Proof. by rewrite !map_fmap_alt, kmap_omap. Qed.
Lemma map_disjoint_kmap {A} (m1 m2 : M1 A) :
kmap f m1 ##ₘ kmap f m2 ↔ m1 ##ₘ m2.
Proof.
rewrite !map_disjoint_spec. setoid_rewrite lookup_kmap_Some. naive_solver.
Qed.
Lemma map_agree_kmap {A} (m1 m2 : M1 A) :
map_agree (kmap f m1) (kmap f m2) ↔ map_agree m1 m2.
Proof.
rewrite !map_agree_spec. setoid_rewrite lookup_kmap_Some. naive_solver.
Qed.
Lemma kmap_subseteq {A} (m1 m2 : M1 A) :
kmap f m1 ⊆ kmap f m2 ↔ m1 ⊆ m2.
Proof.
rewrite !map_subseteq_spec. setoid_rewrite lookup_kmap_Some. naive_solver.
Qed.
Lemma kmap_subset {A} (m1 m2 : M1 A) :
kmap f m1 ⊂ kmap f m2 ↔ m1 ⊂ m2.
Proof. unfold strict. by rewrite !kmap_subseteq. Qed.
End kmap.
Section preimg.
(** We restrict the theory to finite sets with Leibniz equality, which is
sufficient for [gset], but not for [boolset] or [propset]. The result of the
pre-image is a map of sets. To support general sets, we would need setoid
equality on sets, and thus setoid equality on maps. *)
Context `{FinMap K MK, FinMap A MA, FinSet K SK, !LeibnizEquiv SK}.
Local Notation map_preimg :=
(map_preimg (K:=K) (A:=A) (MKA:=MK A) (MASK:=MA SK) (SK:=SK)).
Implicit Types m : MK A.
Lemma map_preimg_empty : map_preimg ∅ = ∅.
Proof. apply map_fold_empty. Qed.
Lemma map_preimg_insert m i x :
m !! i = None →
map_preimg (<[i:=x]> m) =
partial_alter (λ mX, Some ({[ i ]} ∪ default ∅ mX)) x (map_preimg m).
Proof.
intros Hi. refine (map_fold_insert_L _ _ i x m _ Hi).
intros j1 j2 x1 x2 m' ? _ _. destruct (decide (x1 = x2)) as [->|?].
- rewrite <-!partial_alter_compose.
apply partial_alter_ext; intros ? _; f_equal/=. set_solver.
- by apply partial_alter_commute.
Qed.
(** The [map_preimg] function never returns an empty set (we represent that
case via [None]). *)
Lemma lookup_preimg_Some_non_empty m x :
map_preimg m !! x ≠ Some ∅.
Proof.
induction m as [|i x' m ? IH] using map_ind.
{ by rewrite map_preimg_empty, lookup_empty. }
rewrite map_preimg_insert by done. destruct (decide (x = x')) as [->|].
- rewrite lookup_partial_alter. intros [=]. set_solver.
- rewrite lookup_partial_alter_ne by done. set_solver.
Qed.
Lemma lookup_preimg_None_1 m x i :
map_preimg m !! x = None → m !! i ≠ Some x.
Proof.
induction m as [|i' x' m ? IH] using map_ind; [by rewrite lookup_empty|].
rewrite map_preimg_insert by done. destruct (decide (x = x')) as [->|].
- by rewrite lookup_partial_alter.
- rewrite lookup_partial_alter_ne, lookup_insert_Some by done. naive_solver.
Qed.
Lemma lookup_preimg_Some_1 m X x i :
map_preimg m !! x = Some X →
i ∈ X ↔ m !! i = Some x.
Proof.
revert X. induction m as [|i' x' m ? IH] using map_ind; intros X.
{ by rewrite map_preimg_empty, lookup_empty. }
rewrite map_preimg_insert by done. destruct (decide (x = x')) as [->|].
- rewrite lookup_partial_alter. intros [= <-].
rewrite elem_of_union, elem_of_singleton, lookup_insert_Some.
destruct (map_preimg m !! x') as [X'|] eqn:Hx'; simpl.
+ rewrite IH by done. naive_solver.
+ apply (lookup_preimg_None_1 _ _ i) in Hx'. set_solver.
- rewrite lookup_partial_alter_ne, lookup_insert_Some by done. naive_solver.
Qed.
Lemma lookup_preimg_None m x :
map_preimg m !! x = None ↔ ∀ i, m !! i ≠ Some x.
Proof.
split; [by eauto using lookup_preimg_None_1|].
intros Hm. apply eq_None_not_Some; intros [X ?].
destruct (set_choose_L X) as [i ?].
{ intros ->. by eapply lookup_preimg_Some_non_empty. }
by eapply (Hm i), lookup_preimg_Some_1.
Qed.
Lemma lookup_preimg_Some m x X :
map_preimg m !! x = Some X ↔ X ≠ ∅ ∧ ∀ i, i ∈ X ↔ m !! i = Some x.
Proof.
split.
- intros HxX. split; [intros ->; by eapply lookup_preimg_Some_non_empty|].
intros j. by apply lookup_preimg_Some_1.
- intros [HXne HX]. destruct (map_preimg m !! x) as [X'|] eqn:HX'.
+ f_equal; apply set_eq; intros i. rewrite HX.
by apply lookup_preimg_Some_1.
+ apply set_choose_L in HXne as [j ?].
apply (lookup_preimg_None_1 _ _ j) in HX'. naive_solver.
Qed.
Lemma lookup_total_preimg m x i :
i ∈ map_preimg m !!! x ↔ m !! i = Some x.
Proof.
rewrite lookup_total_alt. destruct (map_preimg m !! x) as [X|] eqn:HX.
- by apply lookup_preimg_Some.
- rewrite lookup_preimg_None in HX. set_solver.
Qed.
End preimg.
(** ** The [map_img] (image/codomain) operation *)
Section img.
Context `{FinMap K M, SemiSet A SA}.
Implicit Types m : M A.
Implicit Types x y : A.
Implicit Types X : SA.
(* avoid writing ≡@{D} everywhere... *)
Notation map_img := (map_img (M:=M A) (SA:=SA)).
Lemma elem_of_map_img m x : x ∈ map_img m ↔ ∃ i, m !! i = Some x.
Proof. unfold map_img. rewrite elem_of_map_to_set. naive_solver. Qed.
Lemma elem_of_map_img_1 m x : x ∈ map_img m → ∃ i, m !! i = Some x.
Proof. apply elem_of_map_img. Qed.
Lemma elem_of_map_img_2 m i x : m !! i = Some x → x ∈ map_img m.
Proof. rewrite elem_of_map_img. eauto. Qed.
Lemma not_elem_of_map_img m x : x ∉ map_img m ↔ ∀ i, m !! i ≠ Some x.
Proof. rewrite elem_of_map_img. naive_solver. Qed.
Lemma not_elem_of_map_img_1 m i x : x ∉ map_img m → m !! i ≠ Some x.
Proof. rewrite not_elem_of_map_img. eauto. Qed.
Lemma not_elem_of_map_img_2 m x : (∀ i, m !! i ≠ Some x) → x ∉ map_img m.
Proof. apply not_elem_of_map_img. Qed.
Lemma map_subseteq_img m1 m2 : m1 ⊆ m2 → map_img m1 ⊆ map_img m2.
Proof.
rewrite map_subseteq_spec. intros ? x.
rewrite !elem_of_map_img. naive_solver.
Qed.
Lemma map_img_filter (P : K * A → Prop) `{!∀ ix, Decision (P ix)} m X :
(∀ x, x ∈ X ↔ ∃ i, m !! i = Some x ∧ P (i, x)) →
map_img (filter P m) ≡ X.
Proof.
intros HX x. rewrite elem_of_map_img, HX.
unfold is_Some. by setoid_rewrite map_lookup_filter_Some.
Qed.
Lemma map_img_filter_subseteq (P : K * A → Prop) `{!∀ ix, Decision (P ix)} m :
map_img (filter P m) ⊆ map_img m.
Proof. apply map_subseteq_img, map_filter_subseteq. Qed.
Lemma map_img_empty : map_img ∅ ≡ ∅.
Proof.
rewrite set_equiv. intros x. rewrite elem_of_map_img, elem_of_empty.
setoid_rewrite lookup_empty. naive_solver.
Qed.
Lemma map_img_empty_iff m : map_img m ≡ ∅ ↔ m = ∅.
Proof.
split; [|intros ->; by rewrite map_img_empty].
intros Hm. apply map_empty; intros i.
apply eq_None_ne_Some; intros x ?%elem_of_map_img_2. set_solver.
Qed.
Lemma map_img_empty_inv m : map_img m ≡ ∅ → m = ∅.
Proof. apply map_img_empty_iff. Qed.
Lemma map_img_delete_subseteq i m : map_img (delete i m) ⊆ map_img m.
Proof. apply map_subseteq_img, delete_subseteq. Qed.
Lemma map_img_insert m i x :
map_img (<[i:=x]> m) ≡ {[ x ]} ∪ map_img (delete i m).
Proof.
intros y. rewrite elem_of_union, !elem_of_map_img, elem_of_singleton.
setoid_rewrite lookup_delete_Some. setoid_rewrite lookup_insert_Some.
naive_solver.
Qed.
Lemma map_img_insert_notin m i x :
m !! i = None → map_img (<[i:=x]> m) ≡ {[ x ]} ∪ map_img m.
Proof. intros. by rewrite map_img_insert, delete_notin. Qed.
Lemma map_img_insert_subseteq m i x :
map_img (<[i:=x]> m) ⊆ {[ x ]} ∪ map_img m.
Proof.
rewrite map_img_insert. apply union_mono_l, map_img_delete_subseteq.
Qed.
Lemma elem_of_map_img_insert m i x : x ∈ map_img (<[i:=x]> m).
Proof. apply elem_of_map_img. exists i. apply lookup_insert. Qed.
Lemma elem_of_map_img_insert_ne m i x y :
x ≠ y → x ∈ map_img (<[i:=y]> m) → x ∈ map_img m.
Proof. intros ? ?%map_img_insert_subseteq. set_solver. Qed.
Lemma map_img_singleton i x : map_img {[ i := x ]} ≡ {[ x ]}.
Proof.
apply set_equiv. intros y.
rewrite elem_of_map_img. setoid_rewrite lookup_singleton_Some. set_solver.
Qed.
Lemma elem_of_map_img_union m1 m2 x :
x ∈ map_img (m1 ∪ m2) →
x ∈ map_img m1 ∨ x ∈ map_img m2.
Proof.
rewrite !elem_of_map_img. setoid_rewrite lookup_union_Some_raw. naive_solver.
Qed.
Lemma elem_of_map_img_union_l m1 m2 x :
x ∈ map_img m1 → x ∈ map_img (m1 ∪ m2).
Proof.
rewrite !elem_of_map_img. setoid_rewrite lookup_union_Some_raw. naive_solver.
Qed.
Lemma elem_of_map_img_union_r m1 m2 x :
m1 ##ₘ m2 → x ∈ map_img m2 → x ∈ map_img (m1 ∪ m2).
Proof.
intros. rewrite map_union_comm by done. by apply elem_of_map_img_union_l.
Qed.
Lemma elem_of_map_img_union_disjoint m1 m2 x :
m1 ##ₘ m2 → x ∈ map_img (m1 ∪ m2) ↔ x ∈ map_img m1 ∨ x ∈ map_img m2.
Proof.
naive_solver eauto using elem_of_map_img_union,
elem_of_map_img_union_l, elem_of_map_img_union_r.
Qed.
Lemma map_img_union_subseteq m1 m2 :
map_img (m1 ∪ m2) ⊆ map_img m1 ∪ map_img m2.
Proof. intros v Hv. apply elem_of_union, elem_of_map_img_union. exact Hv. Qed.
Lemma map_img_union_subseteq_l m1 m2 : map_img m1 ⊆ map_img (m1 ∪ m2).
Proof. intros v Hv. by apply elem_of_map_img_union_l. Qed.
Lemma map_img_union_subseteq_r m1 m2 :
m1 ##ₘ m2 → map_img m2 ⊆ map_img (m1 ∪ m2).
Proof. intros Hdisj v Hv. by apply elem_of_map_img_union_r. Qed.
Lemma map_img_union_disjoint m1 m2 :
m1 ##ₘ m2 → map_img (m1 ∪ m2) ≡ map_img m1 ∪ map_img m2.
Proof.
intros Hdisj. apply set_equiv. intros x.
rewrite elem_of_union. by apply elem_of_map_img_union_disjoint.
Qed.
Lemma map_img_finite m : set_finite (map_img m).
Proof.
induction m as [|i x m ? IH] using map_ind.
- rewrite map_img_empty. apply empty_finite.
- eapply set_finite_subseteq; [by apply map_img_insert_subseteq|].
apply union_finite; [apply singleton_finite | apply IH].
Qed.
(** Alternative definition of [img] in terms of [map_to_list]. *)
Lemma map_img_alt m : map_img m ≡ list_to_set (map_to_list m).*2.
Proof.
induction m as [|i x m ? IH] using map_ind.
{ by rewrite map_img_empty, map_to_list_empty. }
by rewrite map_img_insert_notin, map_to_list_insert by done.
Qed.
Lemma map_img_singleton_inv m i x :
map_img m ≡ {[ x ]} → m !! i = None ∨ m !! i = Some x.
Proof.
intros Hm. destruct (m !! i) eqn:Hmk; [|by auto].
apply elem_of_map_img_2 in Hmk. set_solver.
Qed.
Lemma map_img_union_inv `{!RelDecision (∈@{SA})} X Y m :
X ## Y →
map_img m ≡ X ∪ Y →
∃ m1 m2, m = m1 ∪ m2 ∧ m1 ##ₘ m2 ∧ map_img m1 ≡ X ∧ map_img m2 ≡ Y.
Proof.
intros Hsep Himg.
exists (filter (λ '(_,x), x ∈ X) m), (filter (λ '(_,x), x ∉ X) m).
assert (filter (λ '(_,x), x ∈ X) m ##ₘ filter (λ '(_,x), x ∉ X) m).
{ apply map_disjoint_filter_complement. }
split_and!.
- symmetry. apply map_filter_union_complement.
- done.
- apply map_img_filter; intros x. split; [|naive_solver].
intros. destruct (elem_of_map_img_1 m x); set_solver.
- apply map_img_filter; intros x; split.
+ intros. destruct (elem_of_map_img_1 m x); set_solver.
+ intros (i & ?%elem_of_map_img_2 & ?). set_solver.
Qed.
Section leibniz.
Context `{!LeibnizEquiv SA}.
Lemma map_img_empty_L : map_img ∅ = ∅.
Proof. unfold_leibniz. exact map_img_empty. Qed.
Lemma map_img_empty_iff_L m : map_img m = ∅ ↔ m = ∅.
Proof. unfold_leibniz. apply map_img_empty_iff. Qed.
Lemma map_img_empty_inv_L m : map_img m = ∅ → m = ∅.
Proof. apply map_img_empty_iff_L. Qed.
Lemma map_img_singleton_L i x : map_img {[ i := x ]} = {[ x ]}.
Proof. unfold_leibniz. apply map_img_singleton. Qed.
Lemma map_img_insert_notin_L m i x :
m !! i = None → map_img (<[i:=x]> m) = {[ x ]} ∪ map_img m.
Proof. unfold_leibniz. apply map_img_insert_notin. Qed.
Lemma map_img_union_disjoint_L m1 m2 :
m1 ##ₘ m2 → map_img (m1 ∪ m2) = map_img m1 ∪ map_img m2.
Proof. unfold_leibniz. apply map_img_union_disjoint. Qed.
Lemma map_img_alt_L m : map_img m = list_to_set (map_to_list m).*2.
Proof. unfold_leibniz. apply map_img_alt. Qed.
Lemma map_img_singleton_inv_L m i x :
map_img m = {[ x ]} → m !! i = None ∨ m !! i = Some x.
Proof. unfold_leibniz. apply map_img_singleton_inv. Qed.
Lemma map_img_union_inv_L `{!RelDecision (∈@{SA})} X Y m :
X ## Y →
map_img m = X ∪ Y →
∃ m1 m2, m = m1 ∪ m2 ∧ m1 ##ₘ m2 ∧ map_img m1 = X ∧ map_img m2 = Y.
Proof. unfold_leibniz. apply map_img_union_inv. Qed.
End leibniz.
(** Set solver instances *)
Global Instance set_unfold_map_img_empty x :
SetUnfoldElemOf x (map_img (∅:M A)) False.
Proof. constructor. by rewrite map_img_empty, elem_of_empty. Qed.
Global Instance set_unfold_map_img_singleton x i y :
SetUnfoldElemOf x (map_img ({[i:=y]}:M A)) (x = y).
Proof. constructor. by rewrite map_img_singleton, elem_of_singleton. Qed.
End img.
Lemma map_img_fmap `{FinMap K M, FinSet A SA, SemiSet B SB} (f : A → B) (m : M A) :
map_img (f <$> m) ≡@{SB} set_map (C:=SA) f (map_img m).
Proof.
apply set_equiv. intros y. rewrite elem_of_map_img, elem_of_map.
setoid_rewrite lookup_fmap. setoid_rewrite fmap_Some.
setoid_rewrite elem_of_map_img. naive_solver.
Qed.
Lemma map_img_fmap_L `{FinMap K M, FinSet A SA, SemiSet B SB, !LeibnizEquiv SB}
(f : A → B) (m : M A) :
map_img (f <$> m) =@{SB} set_map (C:=SA) f (map_img m).
Proof. unfold_leibniz. apply map_img_fmap. Qed.
Lemma map_img_kmap `{FinMap K M, FinMap K2 M2, SemiSet A SA}
(f : K → K2) `{!Inj (=) (=) f} m :
map_img (kmap (M2:=M2) f m) ≡@{SA} map_img m.
Proof.
apply set_equiv. intros x. rewrite !elem_of_map_img.
setoid_rewrite (lookup_kmap_Some f). naive_solver.
Qed.
Lemma map_img_kmap_L `{FinMap K M, FinMap K2 M2, SemiSet A SA, !LeibnizEquiv SA}
(f : K → K2) `{!Inj (=) (=) f} m :
map_img (kmap (M2:=M2) f m) =@{SA} map_img m.
Proof. unfold_leibniz. by apply map_img_kmap. Qed.
(** ** The [map_compose] operation *)
Section map_compose.
Context `{FinMap A MA, FinMap B MB} {C : Type}.
Implicit Types (m : MB C) (n : MA B) (a : A) (b : B) (c : C).
Lemma map_lookup_compose m n a : (m ∘ₘ n) !! a = n !! a ≫= (m !!.).
Proof. apply lookup_omap. Qed.
Lemma map_lookup_compose_Some m n a c :
(m ∘ₘ n) !! a = Some c ↔ ∃ b, n !! a = Some b ∧ m !! b = Some c.
Proof. rewrite map_lookup_compose. destruct (n !! a) eqn:?; naive_solver. Qed.
Lemma map_lookup_compose_Some_1 m n a c :
(m ∘ₘ n) !! a = Some c → ∃ b, n !! a = Some b ∧ m !! b = Some c.
Proof. by rewrite map_lookup_compose_Some. Qed.
Lemma map_lookup_compose_Some_2 m n a b c :
n !! a = Some b → m !! b = Some c → (m ∘ₘ n) !! a = Some c.
Proof. intros. apply map_lookup_compose_Some. by exists b. Qed.
Lemma map_lookup_compose_None m n a :
(m ∘ₘ n) !! a = None ↔
n !! a = None ∨ ∃ b, n !! a = Some b ∧ m !! b = None.
Proof. rewrite map_lookup_compose. destruct (n !! a) eqn:?; naive_solver. Qed.
Lemma map_lookup_compose_None_1 m n a :
(m ∘ₘ n) !! a = None → n !! a = None ∨ ∃ b, n !! a = Some b ∧ m !! b = None.
Proof. apply map_lookup_compose_None. Qed.
Lemma map_lookup_compose_None_2_1 m n a : n !! a = None → (m ∘ₘ n) !! a = None.
Proof. intros. apply map_lookup_compose_None. by left. Qed.
Lemma map_lookup_compose_None_2_2 m n a b :
n !! a = Some b → m !! b = None → (m ∘ₘ n) !! a = None.
Proof. intros. apply map_lookup_compose_None. naive_solver. Qed.
Lemma map_compose_img_subseteq `{SemiSet C D} m n :
map_img (m ∘ₘ n) ⊆@{D} map_img m.
Proof.
intros c. rewrite !elem_of_map_img.
setoid_rewrite map_lookup_compose_Some. naive_solver.
Qed.
Lemma map_compose_empty_r m : m ∘ₘ ∅ =@{MA C} ∅.
Proof. apply omap_empty. Qed.
Lemma map_compose_empty_l n : (∅ : MB C) ∘ₘ n =@{MA C} ∅.
Proof.
apply map_eq. intros k. rewrite map_lookup_compose, lookup_empty.
destruct (n !! k); simpl; [|done]. apply lookup_empty.
Qed.
Lemma map_compose_empty_iff m n :
m ∘ₘ n = ∅ ↔ ∀ a b, n !! a = Some b → m !! b = None.
Proof.
rewrite map_empty. setoid_rewrite map_lookup_compose_None.
apply forall_proper; intros a. destruct (n !! a); naive_solver.
Qed.
Lemma map_disjoint_compose_l m1 m2 n : m1 ##ₘ m2 → m1 ∘ₘ n ##ₘ m2 ∘ₘ n.
Proof.
rewrite !map_disjoint_spec; intros Hdisj a c1 c2.
rewrite !map_lookup_compose. destruct (n !! a); naive_solver.
Qed.
Lemma map_disjoint_compose_r m n1 n2 : n1 ##ₘ n2 → m ∘ₘ n1 ##ₘ m ∘ₘ n2.
Proof. apply map_disjoint_omap. Qed.
Lemma map_compose_union_l m1 m2 n : (m1 ∪ m2) ∘ₘ n = (m1 ∘ₘ n) ∪ (m2 ∘ₘ n).
Proof.
apply map_eq; intros a. rewrite lookup_union, !map_lookup_compose.
destruct (n !! a) as [b|] eqn:?; simpl; [|done]. by rewrite lookup_union.
Qed.
Lemma map_compose_union_r m n1 n2 :
n1 ##ₘ n2 → m ∘ₘ (n1 ∪ n2) = (m ∘ₘ n1) ∪ (m ∘ₘ n2).
Proof. intros Hs. by apply map_omap_union. Qed.
Lemma map_compose_mono_l m n1 n2 : n1 ⊆ n2 → m ∘ₘ n1 ⊆ m ∘ₘ n2.
Proof. by apply map_omap_mono. Qed.
Lemma map_compose_mono_r m1 m2 n : m1 ⊆ m2 → m1 ∘ₘ n ⊆ m2 ∘ₘ n.
Proof.
rewrite !map_subseteq_spec; intros ? a c.
rewrite !map_lookup_compose_Some. naive_solver.
Qed.
Lemma map_compose_mono m1 m2 n1 n2 :
m1 ⊆ m2 → n1 ⊆ n2 → m1 ∘ₘ n1 ⊆ m2 ∘ₘ n2.
Proof.
intros. transitivity (m1 ∘ₘ n2);
[by apply map_compose_mono_l|by apply map_compose_mono_r].
Qed.
Lemma map_compose_as_omap m n : m ∘ₘ n = omap (m !!.) n.
Proof. done. Qed.
(** Alternative definition of [m ∘ₘ n] by recursion on [n] *)
Lemma map_compose_as_fold m n :
m ∘ₘ n = map_fold (λ a b,
match m !! b with
| Some c => <[a:=c]>
| None => id
end) ∅ n.
Proof.
apply (map_fold_weak_ind (λ mn n, omap (m !!.) n = mn)).
{ apply map_compose_empty_r. }
intros k b n' mn Hn' IH. rewrite omap_insert, <-IH.
destruct (m !! b); [done|].
by apply delete_notin, map_lookup_compose_None_2_1.
Qed.
Lemma map_compose_min_l `{SemiSet B D, !RelDecision (∈@{D})} m n :
m ∘ₘ n = filter (λ '(b,_), b ∈ map_img (SA:=D) n) m ∘ₘ n.
Proof.
apply map_eq; intros a. rewrite !map_lookup_compose.
destruct (n !! a) as [b|] eqn:?; simpl; [|done].
rewrite map_lookup_filter. destruct (m !! b) eqn:?; simpl; [|done].
by rewrite option_guard_True by (by eapply elem_of_map_img_2).
Qed.
Lemma map_compose_min_r m n :
m ∘ₘ n = m ∘ₘ filter (λ '(_,b), is_Some (m !! b)) n.
Proof.
apply map_eq; intros a. rewrite !map_lookup_compose, map_lookup_filter.
destruct (n !! a) as [b|] eqn:?; simpl; [|done]. by destruct (m !! b) eqn:?.
Qed.
Lemma map_compose_insert_Some m n a b c :
m !! b = Some c →
m ∘ₘ <[a:=b]> n =@{MA C} <[a:=c]> (m ∘ₘ n).
Proof. intros. by apply omap_insert_Some. Qed.
Lemma map_compose_insert_None m n a b :
m !! b = None →
m ∘ₘ <[a:=b]> n =@{MA C} delete a (m ∘ₘ n).
Proof. intros. by apply omap_insert_None. Qed.
Lemma map_compose_delete m n a :
m ∘ₘ delete a n =@{MA C} delete a (m ∘ₘ n).
Proof. intros. by apply omap_delete. Qed.
Lemma map_compose_singleton_Some m a b c :
m !! b = Some c →
m ∘ₘ {[a := b]} =@{MA C} {[a := c]}.
Proof. intros. by apply omap_singleton_Some. Qed.
Lemma map_compose_singleton_None m a b :
m !! b = None →
m ∘ₘ {[a := b]} =@{MA C} ∅.
Proof. intros. by apply omap_singleton_None. Qed.
Lemma map_compose_singletons a b c :
({[b := c]} : MB C) ∘ₘ {[a := b]} =@{MA C} {[a := c]}.
Proof. by apply map_compose_singleton_Some, lookup_insert. Qed.
End map_compose.
Lemma map_compose_assoc `{FinMap A MA, FinMap B MB, FinMap C MC} {D}
(m : MC D) (n : MB C) (o : MA B) :
m ∘ₘ (n ∘ₘ o) = (m ∘ₘ n) ∘ₘ o.
Proof.
apply map_eq; intros a. rewrite !map_lookup_compose.
destruct (o !! a); simpl; [|done]. by rewrite map_lookup_compose.
Qed.
Lemma map_fmap_map_compose `{FinMap A MA, FinMap B MB} {C1 C2} (f : C1 → C2)
(m : MB C1) (n : MA B) :
f <$> (m ∘ₘ n) = (f <$> m) ∘ₘ n.
Proof.
apply map_eq; intros a. rewrite lookup_fmap, !map_lookup_compose.
destruct (n !! a); simpl; [|done]. by rewrite lookup_fmap.
Qed.
Lemma map_omap_map_compose `{FinMap A MA, FinMap B MB} {C1 C2} (f : C1 → option C2)
(m : MB C1) (n : MA B) :
omap f (m ∘ₘ n) = omap f m ∘ₘ n.
Proof.
apply map_eq; intros a. rewrite lookup_omap, !map_lookup_compose.
destruct (n !! a); simpl; [|done]. by rewrite lookup_omap.
Qed.
(** * Tactics *)
(** The tactic [decompose_map_disjoint] simplifies occurrences of [disjoint]
in the hypotheses that involve the empty map [∅], the union [(∪)] or insert
[<[_:=_]>] operation, the singleton [{[_:= _]}] map, and disjointness of lists of
maps. This tactic does not yield any information loss as all simplifications
performed are reversible. *)
Ltac decompose_map_disjoint := repeat
match goal with
| H : _ ∪ _ ##ₘ _ |- _ => apply map_disjoint_union_l in H; destruct H
| H : _ ##ₘ _ ∪ _ |- _ => apply map_disjoint_union_r in H; destruct H
| H : {[ _ := _ ]} ##ₘ _ |- _ => apply map_disjoint_singleton_l in H
| H : _ ##ₘ {[ _ := _ ]} |- _ => apply map_disjoint_singleton_r in H
| H : <[_:=_]>_ ##ₘ _ |- _ => apply map_disjoint_insert_l in H; destruct H
| H : _ ##ₘ <[_:=_]>_ |- _ => apply map_disjoint_insert_r in H; destruct H
| H : ⋃ _ ##ₘ _ |- _ => apply map_disjoint_union_list_l in H
| H : _ ##ₘ ⋃ _ |- _ => apply map_disjoint_union_list_r in H
| H : ∅ ##ₘ _ |- _ => clear H
| H : _ ##ₘ ∅ |- _ => clear H
| H : Forall (.##ₘ _) _ |- _ => rewrite Forall_vlookup in H
| H : Forall (.##ₘ _) [] |- _ => clear H
| H : Forall (.##ₘ _) (_ :: _) |- _ => rewrite Forall_cons in H; destruct H
| H : Forall (.##ₘ _) (_ :: _) |- _ => rewrite Forall_app in H; destruct H
end.
(** To prove a disjointness property, we first decompose all hypotheses, and
then use an auto database to prove the required property. *)
Create HintDb map_disjoint discriminated.
Ltac solve_map_disjoint :=
solve [decompose_map_disjoint; auto with map_disjoint].
(** We declare these hints using [Hint Extern] instead of [Hint Resolve] as
[eauto] works badly with hints parametrized by type class constraints. *)
Global Hint Extern 1 (_ ##ₘ _) => done : map_disjoint.
Global Hint Extern 2 (∅ ##ₘ _) => apply map_disjoint_empty_l : map_disjoint.
Global Hint Extern 2 (_ ##ₘ ∅) => apply map_disjoint_empty_r : map_disjoint.
Global Hint Extern 2 ({[ _ := _ ]} ##ₘ _) =>
apply map_disjoint_singleton_l_2 : map_disjoint.
Global Hint Extern 2 (_ ##ₘ {[ _ := _ ]}) =>
apply map_disjoint_singleton_r_2 : map_disjoint.
Global Hint Extern 2 (_ ∪ _ ##ₘ _) => apply map_disjoint_union_l_2 : map_disjoint.
Global Hint Extern 2 (_ ##ₘ _ ∪ _) => apply map_disjoint_union_r_2 : map_disjoint.
Global Hint Extern 2 ({[_:= _]} ##ₘ _) => apply map_disjoint_singleton_l : map_disjoint.
Global Hint Extern 2 (_ ##ₘ {[_:= _]}) => apply map_disjoint_singleton_r : map_disjoint.
Global Hint Extern 2 (<[_:=_]>_ ##ₘ _) => apply map_disjoint_insert_l_2 : map_disjoint.
Global Hint Extern 2 (_ ##ₘ <[_:=_]>_) => apply map_disjoint_insert_r_2 : map_disjoint.
Global Hint Extern 2 (delete _ _ ##ₘ _) => apply map_disjoint_delete_l : map_disjoint.
Global Hint Extern 2 (_ ##ₘ delete _ _) => apply map_disjoint_delete_r : map_disjoint.
Global Hint Extern 2 (list_to_map _ ##ₘ _) =>
apply map_disjoint_list_to_map_zip_l_2 : mem_disjoint.
Global Hint Extern 2 (_ ##ₘ list_to_map _) =>
apply map_disjoint_list_to_map_zip_r_2 : mem_disjoint.
Global Hint Extern 2 (⋃ _ ##ₘ _) => apply map_disjoint_union_list_l_2 : mem_disjoint.
Global Hint Extern 2 (_ ##ₘ ⋃ _) => apply map_disjoint_union_list_r_2 : mem_disjoint.
Global Hint Extern 2 (foldr delete _ _ ##ₘ _) =>
apply map_disjoint_foldr_delete_l : map_disjoint.
Global Hint Extern 2 (_ ##ₘ foldr delete _ _) =>
apply map_disjoint_foldr_delete_r : map_disjoint.
Global Hint Extern 3 (_ ∘ₘ _ ##ₘ _ ∘ₘ _) =>
apply map_disjoint_compose_l : map_disjoint.
Global Hint Extern 3 (_ ∘ₘ _ ##ₘ _ ∘ₘ _) =>
apply map_disjoint_compose_r : map_disjoint.
(** The tactic [simpl_map by tac] simplifies occurrences of finite map look
ups. It uses [tac] to discharge generated inequalities. Look ups in unions do
not have nice equational properties, hence it invokes [tac] to prove that such
look ups yield [Some]. *)
Tactic Notation "simpl_map" "by" tactic3(tac) := repeat
match goal with
| H : context[ ∅ !! _ ] |- _ => rewrite lookup_empty in H
| H : context[ (<[_:=_]>_) !! _ ] |- _ =>
rewrite lookup_insert in H || rewrite lookup_insert_ne in H by tac
| H : context[ (alter _ _ _) !! _] |- _ =>
rewrite lookup_alter in H || rewrite lookup_alter_ne in H by tac
| H : context[ (delete _ _) !! _] |- _ =>
rewrite lookup_delete in H || rewrite lookup_delete_ne in H by tac
| H : context[ {[ _ := _ ]} !! _ ] |- _ =>
rewrite lookup_singleton in H || rewrite lookup_singleton_ne in H by tac
| H : context[ (_ <$> _) !! _ ] |- _ => rewrite lookup_fmap in H
| H : context[ (omap _ _) !! _ ] |- _ => rewrite lookup_omap in H
| H : context[ lookup (A:=?A) ?i (?m1 ∪ ?m2) ] |- _ =>
let x := mk_evar A in
let E := fresh in
assert ((m1 ∪ m2) !! i = Some x) as E by (clear H; by tac);
rewrite E in H; clear E
| |- context[ ∅ !! _ ] => rewrite lookup_empty
| |- context[ (<[_:=_]>_) !! _ ] =>
rewrite lookup_insert || rewrite lookup_insert_ne by tac
| |- context[ (alter _ _ _) !! _ ] =>
rewrite lookup_alter || rewrite lookup_alter_ne by tac
| |- context[ (delete _ _) !! _ ] =>
rewrite lookup_delete || rewrite lookup_delete_ne by tac
| |- context[ {[ _ := _ ]} !! _ ] =>
rewrite lookup_singleton || rewrite lookup_singleton_ne by tac
| |- context[ (_ <$> _) !! _ ] => rewrite lookup_fmap
| |- context[ (omap _ _) !! _ ] => rewrite lookup_omap
| |- context [ lookup (A:=?A) ?i ?m ] =>
let x := mk_evar A in
let E := fresh in
assert (m !! i = Some x) as E by tac;
rewrite E; clear E
end.
Create HintDb simpl_map discriminated.
Tactic Notation "simpl_map" := simpl_map by eauto with simpl_map map_disjoint.
Global Hint Extern 80 ((_ ∪ _) !! _ = Some _) => apply lookup_union_Some_l : simpl_map.
Global Hint Extern 81 ((_ ∪ _) !! _ = Some _) => apply lookup_union_Some_r : simpl_map.
Global Hint Extern 80 ({[ _:=_ ]} !! _ = Some _) => apply lookup_singleton : simpl_map.
Global Hint Extern 80 (<[_:=_]> _ !! _ = Some _) => apply lookup_insert : simpl_map.
(** Now we take everything together and also discharge conflicting look ups,
simplify overlapping look ups, and perform cancellations of equalities
involving unions. *)
Tactic Notation "simplify_map_eq" "by" tactic3(tac) :=
decompose_map_disjoint;
repeat match goal with
| _ => progress simpl_map by tac
| _ => progress simplify_eq/=
| _ => progress simpl_option by tac
| H : {[ _ := _ ]} !! _ = None |- _ => rewrite lookup_singleton_None in H
| H : {[ _ := _ ]} !! _ = Some _ |- _ =>
rewrite lookup_singleton_Some in H; destruct H
| H1 : ?m1 !! ?i = Some ?x, H2 : ?m2 !! ?i = Some ?y |- _ =>
let H3 := fresh in
opose proof* (lookup_weaken_inv m1 m2 i x y) as H3; [done|by tac|done|];
clear H2; symmetry in H3
| H1 : ?m1 !! ?i = Some ?x, H2 : ?m2 !! ?i = None |- _ =>
let H3 := fresh in
apply (lookup_weaken _ m2) in H1; [congruence|by tac]
| H : ?m ∪ _ = ?m ∪ _ |- _ =>
apply map_union_cancel_l in H; [|by tac|by tac]
| H : _ ∪ ?m = _ ∪ ?m |- _ =>
apply map_union_cancel_r in H; [|by tac|by tac]
| H : {[?i := ?x]} = ∅ |- _ => by destruct (map_non_empty_singleton i x)
| H : ∅ = {[?i := ?x]} |- _ => by destruct (map_non_empty_singleton i x)
| H : ?m !! ?i = Some _, H2 : ?m !! ?j = None |- _ =>
unless (i ≠ j) by done;
assert (i ≠ j) by (by intros ?; simplify_eq)
end.
Tactic Notation "simplify_map_eq" "/=" "by" tactic3(tac) :=
repeat (progress csimpl in * || simplify_map_eq by tac).
Tactic Notation "simplify_map_eq" :=
simplify_map_eq by eauto with simpl_map map_disjoint.
Tactic Notation "simplify_map_eq" "/=" :=
simplify_map_eq/= by eauto with simpl_map map_disjoint.
|