1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
|
(** This file collects definitions and theorems on finite sets. Most
importantly, it implements a fold and size function and some useful induction
principles on finite sets . *)
From stdpp Require Import relations.
From stdpp Require Export numbers sets.
From stdpp Require Import options.
(* Pick up extra assumptions from section parameters. *)
Set Default Proof Using "Type*".
(** Operations *)
Global Instance set_size `{Elements A C} : Size C := length ∘ elements.
Global Typeclasses Opaque set_size.
Definition set_fold `{Elements A C} {B}
(f : A → B → B) (b : B) : C → B := foldr f b ∘ elements.
Global Typeclasses Opaque set_fold.
Global Instance set_filter
`{Elements A C, Empty C, Singleton A C, Union C} : Filter A C := λ P _ X,
list_to_set (filter P (elements X)).
Global Typeclasses Opaque set_filter.
Definition set_map `{Elements A C, Singleton B D, Empty D, Union D}
(f : A → B) (X : C) : D :=
list_to_set (f <$> elements X).
Global Typeclasses Opaque set_map.
Global Instance: Params (@set_map) 8 := {}.
Definition set_bind `{Elements A SA, Empty SB, Union SB}
(f : A → SB) (X : SA) : SB :=
⋃ (f <$> elements X).
Global Typeclasses Opaque set_bind.
Global Instance: Params (@set_bind) 6 := {}.
Definition set_omap `{Elements A C, Singleton B D, Empty D, Union D}
(f : A → option B) (X : C) : D :=
list_to_set (omap f (elements X)).
Global Typeclasses Opaque set_omap.
Global Instance: Params (@set_omap) 8 := {}.
Global Instance set_fresh `{Elements A C, Fresh A (list A)} : Fresh A C :=
fresh ∘ elements.
Global Typeclasses Opaque set_fresh.
(** We generalize the [fresh] operation on sets to generate lists of fresh
elements w.r.t. a set [X]. *)
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
(n : nat) (X : C) : list A :=
match n with
| 0 => []
| S n => let x := fresh X in x :: fresh_list n ({[ x ]} ∪ X)
end.
Global Instance: Params (@fresh_list) 6 := {}.
(** The following inductive predicate classifies that a list of elements is
in fact fresh w.r.t. a set [X]. *)
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A → Prop :=
| Forall_fresh_nil : Forall_fresh X []
| Forall_fresh_cons x xs :
x ∉ xs → x ∉ X → Forall_fresh X xs → Forall_fresh X (x :: xs).
(** Properties **)
Section fin_set.
Context `{FinSet A C}.
Implicit Types X Y : C.
Lemma fin_set_finite X : set_finite X.
Proof. by exists (elements X); intros; rewrite elem_of_elements. Qed.
Local Instance elem_of_dec_slow : RelDecision (∈@{C}) | 100.
Proof.
refine (λ x X, cast_if (decide_rel (∈) x (elements X)));
by rewrite <-(elem_of_elements _).
Defined.
(** * The [elements] operation *)
Global Instance set_unfold_elements X x P :
SetUnfoldElemOf x X P → SetUnfoldElemOf x (elements X) P.
Proof. constructor. by rewrite elem_of_elements, (set_unfold_elem_of x X P). Qed.
Global Instance elements_proper: Proper ((≡) ==> (≡ₚ)) (elements (C:=C)).
Proof.
intros ?? E. apply NoDup_Permutation.
- apply NoDup_elements.
- apply NoDup_elements.
- intros. by rewrite !elem_of_elements, E.
Qed.
Lemma elements_empty : elements (∅ : C) = [].
Proof.
apply elem_of_nil_inv; intros x.
rewrite elem_of_elements, elem_of_empty; tauto.
Qed.
Lemma elements_empty_iff X : elements X = [] ↔ X ≡ ∅.
Proof.
rewrite <-Permutation_nil_r. split; [|intros ->; by rewrite elements_empty].
intros HX. apply elem_of_equiv_empty; intros x.
rewrite <-elem_of_elements, HX. apply not_elem_of_nil.
Qed.
Lemma elements_empty_inv X : elements X = [] → X ≡ ∅.
Proof. apply elements_empty_iff. Qed.
Lemma elements_union_singleton (X : C) x :
x ∉ X → elements ({[ x ]} ∪ X) ≡ₚ x :: elements X.
Proof.
intros ?; apply NoDup_Permutation.
{ apply NoDup_elements. }
{ by constructor; rewrite ?elem_of_elements; try apply NoDup_elements. }
intros y; rewrite elem_of_elements, elem_of_union, elem_of_singleton.
by rewrite elem_of_cons, elem_of_elements.
Qed.
Lemma elements_singleton x : elements ({[ x ]} : C) = [x].
Proof.
apply Permutation_singleton_r. by rewrite <-(right_id ∅ (∪) {[x]}),
elements_union_singleton, elements_empty by set_solver.
Qed.
Lemma elements_disj_union (X Y : C) :
X ## Y → elements (X ∪ Y) ≡ₚ elements X ++ elements Y.
Proof.
intros HXY. apply NoDup_Permutation.
- apply NoDup_elements.
- apply NoDup_app. set_solver by eauto using NoDup_elements.
- set_solver.
Qed.
Lemma elements_submseteq X Y : X ⊆ Y → elements X ⊆+ elements Y.
Proof.
intros; apply NoDup_submseteq; eauto using NoDup_elements.
intros x. rewrite !elem_of_elements; auto.
Qed.
Lemma list_to_set_elements X : list_to_set (elements X) ≡ X.
Proof. intros ?. rewrite elem_of_list_to_set. apply elem_of_elements. Qed.
Lemma list_to_set_elements_L `{!LeibnizEquiv C} X : list_to_set (elements X) = X.
Proof. unfold_leibniz. apply list_to_set_elements. Qed.
Lemma elements_list_to_set l :
NoDup l → elements (list_to_set (C:=C) l) ≡ₚ l.
Proof.
intros Hl. induction Hl.
{ rewrite list_to_set_nil. rewrite elements_empty. done. }
rewrite list_to_set_cons, elements_disj_union by set_solver.
rewrite elements_singleton. apply Permutation_skip. done.
Qed.
(** * The [size] operation *)
Global Instance set_size_proper: Proper ((≡) ==> (=)) (@size C _).
Proof. intros ?? E. apply Permutation_length. by rewrite E. Qed.
Lemma size_empty : size (∅ : C) = 0.
Proof. unfold size, set_size. simpl. by rewrite elements_empty. Qed.
Lemma size_empty_iff (X : C) : size X = 0 ↔ X ≡ ∅.
Proof.
split; [|intros ->; by rewrite size_empty].
intros; apply equiv_empty; intros x; rewrite <-elem_of_elements.
by rewrite (nil_length_inv (elements X)), ?elem_of_nil.
Qed.
Lemma size_empty_inv (X : C) : size X = 0 → X ≡ ∅.
Proof. apply size_empty_iff. Qed.
Lemma size_non_empty_iff (X : C) : size X ≠ 0 ↔ X ≢ ∅.
Proof. by rewrite size_empty_iff. Qed.
Lemma set_choose_or_empty X : (∃ x, x ∈ X) ∨ X ≡ ∅.
Proof.
destruct (elements X) as [|x l] eqn:HX; [right|left].
- apply equiv_empty; intros x. by rewrite <-elem_of_elements, HX, elem_of_nil.
- exists x. rewrite <-elem_of_elements, HX. by left.
Qed.
Lemma set_choose X : X ≢ ∅ → ∃ x, x ∈ X.
Proof. intros. by destruct (set_choose_or_empty X). Qed.
Lemma set_choose_L `{!LeibnizEquiv C} X : X ≠ ∅ → ∃ x, x ∈ X.
Proof. unfold_leibniz. apply set_choose. Qed.
Lemma size_pos_elem_of X : 0 < size X → ∃ x, x ∈ X.
Proof.
intros Hsz. destruct (set_choose_or_empty X) as [|HX]; [done|].
contradict Hsz. rewrite HX, size_empty; lia.
Qed.
Lemma size_singleton (x : A) : size ({[ x ]} : C) = 1.
Proof. unfold size, set_size. simpl. by rewrite elements_singleton. Qed.
Lemma size_singleton_inv X x y : size X = 1 → x ∈ X → y ∈ X → x = y.
Proof.
unfold size, set_size. simpl. rewrite <-!elem_of_elements.
generalize (elements X). intros [|? l]; intro; simplify_eq/=.
rewrite (nil_length_inv l), !elem_of_list_singleton by done; congruence.
Qed.
Lemma size_1_elem_of X : size X = 1 → ∃ x, X ≡ {[ x ]}.
Proof.
intros E. destruct (size_pos_elem_of X) as [x ?]; auto with lia.
exists x. apply set_equiv. split.
- rewrite elem_of_singleton. eauto using size_singleton_inv.
- set_solver.
Qed.
Lemma size_union X Y : X ## Y → size (X ∪ Y) = size X + size Y.
Proof.
intros. unfold size, set_size. simpl. rewrite <-length_app.
apply Permutation_length, NoDup_Permutation.
- apply NoDup_elements.
- apply NoDup_app; repeat split; try apply NoDup_elements.
intros x; rewrite !elem_of_elements; set_solver.
- intros. by rewrite elem_of_app, !elem_of_elements, elem_of_union.
Qed.
Lemma size_union_alt X Y : size (X ∪ Y) = size X + size (Y ∖ X).
Proof.
rewrite <-size_union by set_solver.
setoid_replace (Y ∖ X) with ((Y ∪ X) ∖ X) by set_solver.
rewrite <-union_difference, (comm (∪)); set_solver.
Qed.
Lemma size_difference X Y : Y ⊆ X → size (X ∖ Y) = size X - size Y.
Proof.
intros. rewrite (union_difference Y X) at 2 by done.
rewrite size_union by set_solver. lia.
Qed.
Lemma size_difference_alt X Y : size (X ∖ Y) = size X - size (X ∩ Y).
Proof.
intros. rewrite <-size_difference by set_solver.
apply set_size_proper. set_solver.
Qed.
Lemma set_subseteq_size_equiv X1 X2 : X1 ⊆ X2 → size X2 ≤ size X1 → X1 ≡ X2.
Proof.
intros. apply (anti_symm _); [done|].
apply empty_difference_subseteq, size_empty_iff.
rewrite size_difference by done. lia.
Qed.
Lemma set_subseteq_size_eq `{!LeibnizEquiv C} X1 X2 :
X1 ⊆ X2 → size X2 ≤ size X1 → X1 = X2.
Proof. unfold_leibniz. apply set_subseteq_size_equiv. Qed.
Lemma subseteq_size X Y : X ⊆ Y → size X ≤ size Y.
Proof. intros. rewrite (union_difference X Y), size_union_alt by done. lia. Qed.
Lemma subset_size X Y : X ⊂ Y → size X < size Y.
Proof.
intros. rewrite (union_difference X Y) by set_solver.
rewrite size_union_alt, difference_twice.
cut (size (Y ∖ X) ≠ 0); [lia |].
by apply size_non_empty_iff, non_empty_difference.
Qed.
Lemma size_list_to_set l :
NoDup l → size (list_to_set (C:=C) l) = length l.
Proof.
intros Hl. unfold size, set_size. simpl.
rewrite elements_list_to_set; done.
Qed.
(** * Induction principles *)
Lemma set_wf : well_founded (⊂@{C}).
Proof. apply (wf_projected (<) size); auto using subset_size, lt_wf. Qed.
Lemma set_ind (P : C → Prop) :
Proper ((≡) ==> impl) P →
P ∅ → (∀ x X, x ∉ X → P X → P ({[ x ]} ∪ X)) → ∀ X, P X.
Proof.
intros ? Hemp Hadd. apply well_founded_induction with (⊂).
{ apply set_wf. }
intros X IH. destruct (set_choose_or_empty X) as [[x ?]|HX].
- rewrite (union_difference {[ x ]} X) by set_solver.
apply Hadd; [set_solver|]. apply IH; set_solver.
- by rewrite HX.
Qed.
Lemma set_ind_L `{!LeibnizEquiv C} (P : C → Prop) :
P ∅ → (∀ x X, x ∉ X → P X → P ({[ x ]} ∪ X)) → ∀ X, P X.
Proof. apply set_ind. by intros ?? ->%leibniz_equiv_iff. Qed.
(** * The [set_fold] operation *)
Lemma set_fold_ind {B} (P : B → C → Prop) (f : A → B → B) (b : B) :
(∀ x, Proper ((≡) ==> impl) (P x)) →
P b ∅ → (∀ x X r, x ∉ X → P r X → P (f x r) ({[ x ]} ∪ X)) →
∀ X, P (set_fold f b X) X.
Proof.
intros ? Hemp Hadd.
cut (∀ l, NoDup l → ∀ X, (∀ x, x ∈ X ↔ x ∈ l) → P (foldr f b l) X).
{ intros help ?. apply help; [apply NoDup_elements|].
symmetry. apply elem_of_elements. }
induction 1 as [|x l ?? IH]; simpl.
- intros X HX. setoid_rewrite elem_of_nil in HX.
rewrite equiv_empty; [done|]. set_solver.
- intros X HX. setoid_rewrite elem_of_cons in HX.
rewrite (union_difference {[ x ]} X) by set_solver.
apply Hadd; [set_solver|]. apply IH; set_solver.
Qed.
Lemma set_fold_ind_L `{!LeibnizEquiv C}
{B} (P : B → C → Prop) (f : A → B → B) (b : B) :
P b ∅ → (∀ x X r, x ∉ X → P r X → P (f x r) ({[ x ]} ∪ X)) →
∀ X, P (set_fold f b X) X.
Proof. apply set_fold_ind. solve_proper. Qed.
Lemma set_fold_proper {B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (b : B) `{!∀ a, Proper (R ==> R) (f a)}
(Hf : ∀ a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) :
Proper ((≡) ==> R) (set_fold f b : C → B).
Proof. intros ?? E. apply (foldr_permutation R f b); auto. by rewrite E. Qed.
Lemma set_fold_empty {B} (f : A → B → B) (b : B) :
set_fold f b (∅ : C) = b.
Proof. by unfold set_fold; simpl; rewrite elements_empty. Qed.
Lemma set_fold_singleton {B} (f : A → B → B) (b : B) (a : A) :
set_fold f b ({[a]} : C) = f a b.
Proof. by unfold set_fold; simpl; rewrite elements_singleton. Qed.
(** The following lemma shows that folding over two sets separately (using the
result of the first fold as input for the second fold) is equivalent to folding
over the union, *if* the function is idempotent for the elements that will be
processed twice ([X ∩ Y]) and does not care about the order in which elements
are processed.
This is a generalization of [set_fold_union] (below) with a.) a relation [R]
instead of equality b.) a function [f : A → B → B] instead of [f : A → A → A],
and c.) premises that ensure the elements are in [X ∪ Y]. *)
Lemma set_fold_union_strong {B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (b : B) X Y :
(∀ x, Proper (R ==> R) (f x)) →
(∀ x b',
(** This is morally idempotence for elements of [X ∩ Y] *)
x ∈ X ∩ Y →
(** We cannot write this in the usual direction of idempotence properties
(i.e., [R (f x (f x b'))) (f x b')]) because [R] is not symmetric. *)
R (f x b') (f x (f x b'))) →
(∀ x1 x2 b',
(** This is morally commutativity + associativity for elements of [X ∪ Y] *)
x1 ∈ X ∪ Y → x2 ∈ X ∪ Y → x1 ≠ x2 →
R (f x1 (f x2 b')) (f x2 (f x1 b'))) →
R (set_fold f b (X ∪ Y)) (set_fold f (set_fold f b X) Y).
Proof.
(** This lengthy proof involves various steps by transitivity of [R].
Roughly, we show that the LHS is related to folding over:
elements (Y ∖ X) ++ elements (X ∩ Y) ++ elements (X ∖ Y)
and the RHS is related to folding over:
elements (Y ∖ X) ++ elements (X ∩ Y) ++ elements (X ∩ Y) ++ elements (Y ∖ X)
These steps are justified by lemma [foldr_permutation]. In the middle we
remove the repeated folding over [elements (X ∩ Y)] using [foldr_idemp_strong].
Most of the proof work concerns the side conditions of [foldr_permutation]
and [foldr_idemp_strong], which require relating results about lists and
sets. *)
intros ?.
assert (∀ b1 b2 l, R b1 b2 → R (foldr f b1 l) (foldr f b2 l)) as Hff.
{ intros b1 b2 l Hb. induction l as [|x l]; simpl; [done|]. by f_equiv. }
intros Hfidemp Hfcomm. unfold set_fold; simpl.
trans (foldr f b (elements (Y ∖ X) ++ elements (X ∩ Y) ++ elements (X ∖ Y))).
{ apply (foldr_permutation R f b).
- intros j1 x1 j2 x2 b' Hj Hj1 Hj2. apply Hfcomm.
+ apply elem_of_list_lookup_2 in Hj1. set_solver.
+ apply elem_of_list_lookup_2 in Hj2. set_solver.
+ intros ->. pose proof (NoDup_elements (X ∪ Y)).
by eapply Hj, NoDup_lookup.
- rewrite <-!elements_disj_union by set_solver. f_equiv; intros x.
destruct (decide (x ∈ X)), (decide (x ∈ Y)); set_solver. }
trans (foldr f (foldr f b (elements (X ∩ Y) ++ elements (X ∖ Y)))
(elements (Y ∖ X) ++ elements (X ∩ Y))).
{ rewrite !foldr_app. apply Hff. apply (foldr_idemp_strong (flip R)).
- solve_proper.
- intros j a b' ?%elem_of_list_lookup_2. apply Hfidemp. set_solver.
- intros j1 x1 j2 x2 b' Hj Hj1 Hj2. apply Hfcomm.
+ apply elem_of_list_lookup_2 in Hj2. set_solver.
+ apply elem_of_list_lookup_2 in Hj1. set_solver.
+ intros ->. pose proof (NoDup_elements (X ∩ Y)).
by eapply Hj, NoDup_lookup. }
trans (foldr f (foldr f b (elements (X ∩ Y) ++ elements (X ∖ Y))) (elements Y)).
{ apply (foldr_permutation R f _).
- intros j1 x1 j2 x2 b' Hj Hj1 Hj2. apply Hfcomm.
+ apply elem_of_list_lookup_2 in Hj1. set_solver.
+ apply elem_of_list_lookup_2 in Hj2. set_solver.
+ intros ->. assert (NoDup (elements (Y ∖ X) ++ elements (X ∩ Y))).
{ rewrite <-elements_disj_union by set_solver. apply NoDup_elements. }
by eapply Hj, NoDup_lookup.
- rewrite <-!elements_disj_union by set_solver. f_equiv; intros x.
destruct (decide (x ∈ X)); set_solver. }
apply Hff. apply (foldr_permutation R f _).
- intros j1 x1 j2 x2 b' Hj Hj1 Hj2. apply Hfcomm.
+ apply elem_of_list_lookup_2 in Hj1. set_solver.
+ apply elem_of_list_lookup_2 in Hj2. set_solver.
+ intros ->. assert (NoDup (elements (X ∩ Y) ++ elements (X ∖ Y))).
{ rewrite <-elements_disj_union by set_solver. apply NoDup_elements. }
by eapply Hj, NoDup_lookup.
- rewrite <-!elements_disj_union by set_solver. f_equiv; intros x.
destruct (decide (x ∈ Y)); set_solver.
Qed.
Lemma set_fold_union (f : A → A → A) (b : A) X Y :
IdemP (=) f →
Comm (=) f →
Assoc (=) f →
set_fold f b (X ∪ Y) = set_fold f (set_fold f b X) Y.
Proof.
intros. apply (set_fold_union_strong _ _ _ _ _ _).
- intros x b' _. by rewrite (assoc_L f), (idemp f).
- intros x1 x2 b' _ _ _. by rewrite !(assoc_L f), (comm_L f x1).
Qed.
(** Generalization of [set_fold_disj_union] (below) with a.) a relation [R]
instead of equality b.) a function [f : A → B → B] instead of [f : A → A → A],
and c.) premises that ensure the elements are in [X ∪ Y]. *)
Lemma set_fold_disj_union_strong {B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (b : B) X Y :
(∀ x, Proper (R ==> R) (f x)) →
(∀ x1 x2 b',
(** This is morally commutativity + associativity for elements of [X ∪ Y] *)
x1 ∈ X ∪ Y → x2 ∈ X ∪ Y → x1 ≠ x2 →
R (f x1 (f x2 b')) (f x2 (f x1 b'))) →
X ## Y →
R (set_fold f b (X ∪ Y)) (set_fold f (set_fold f b X) Y).
Proof. intros. apply set_fold_union_strong; set_solver. Qed.
Lemma set_fold_disj_union (f : A → A → A) (b : A) X Y :
Comm (=) f →
Assoc (=) f →
X ## Y →
set_fold f b (X ∪ Y) = set_fold f (set_fold f b X) Y.
Proof.
intros. apply (set_fold_disj_union_strong _ _ _ _ _ _); [|done].
intros x1 x2 b' _ _ _. by rewrite !(assoc_L f), (comm_L f x1).
Qed.
Lemma set_fold_comm_acc_strong {B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (g : B → B) (b : B) X :
(∀ x, Proper (R ==> R) (f x)) →
(∀ x y, x ∈ X → R (f x (g y)) (g (f x y))) →
R (set_fold f (g b) X) (g (set_fold f b X)).
Proof.
intros. unfold set_fold; simpl.
apply foldr_comm_acc_strong; [done|solve_proper|set_solver].
Qed.
Lemma set_fold_comm_acc {B} (f : A → B → B) (g : B → B) (b : B) X :
(∀ x y, f x (g y) = g (f x y)) →
set_fold f (g b) X = g (set_fold f b X).
Proof. intros. apply (set_fold_comm_acc_strong _); [solve_proper|auto]. Qed.
(** * Minimal elements *)
Lemma minimal_exists_elem_of R `{!Transitive R, ∀ x y, Decision (R x y)} (X : C) :
X ≢ ∅ → ∃ x, x ∈ X ∧ minimal R x X.
Proof.
pattern X; apply set_ind; clear X.
{ by intros X X' HX; setoid_rewrite HX. }
{ done. }
intros x X ? IH Hemp. destruct (set_choose_or_empty X) as [[z ?]|HX].
{ destruct IH as (x' & Hx' & Hmin); [set_solver|].
destruct (decide (R x x')).
- exists x; split; [set_solver|].
eapply union_minimal; [eapply singleton_minimal|by eapply minimal_weaken].
- exists x'; split; [set_solver|].
by eapply union_minimal; [apply singleton_minimal_not_above|]. }
exists x; split; [set_solver|].
rewrite HX, (right_id _ (∪)). apply singleton_minimal.
Qed.
Lemma minimal_exists_elem_of_L R `{!LeibnizEquiv C, !Transitive R,
∀ x y, Decision (R x y)} (X : C) :
X ≠ ∅ → ∃ x, x ∈ X ∧ minimal R x X.
Proof. unfold_leibniz. apply (minimal_exists_elem_of R). Qed.
Lemma minimal_exists R `{!Transitive R,
∀ x y, Decision (R x y)} `{!Inhabited A} (X : C) :
∃ x, minimal R x X.
Proof.
destruct (set_choose_or_empty X) as [ (y & Ha) | Hne].
- edestruct (minimal_exists_elem_of R X) as (x & Hel & Hmin); first set_solver.
exists x. done.
- exists inhabitant. intros y Hel. set_solver.
Qed.
(** * Filter *)
Lemma elem_of_filter (P : A → Prop) `{!∀ x, Decision (P x)} X x :
x ∈ filter P X ↔ P x ∧ x ∈ X.
Proof.
unfold filter, set_filter.
by rewrite elem_of_list_to_set, elem_of_list_filter, elem_of_elements.
Qed.
Global Instance set_unfold_filter (P : A → Prop) `{!∀ x, Decision (P x)} X Q x :
SetUnfoldElemOf x X Q → SetUnfoldElemOf x (filter P X) (P x ∧ Q).
Proof.
intros ?; constructor. by rewrite elem_of_filter, (set_unfold_elem_of x X Q).
Qed.
Section filter.
Context (P : A → Prop) `{!∀ x, Decision (P x)}.
Lemma filter_empty : filter P (∅:C) ≡ ∅.
Proof. set_solver. Qed.
Lemma filter_singleton x : P x → filter P ({[ x ]} : C) ≡ {[ x ]}.
Proof. set_solver. Qed.
Lemma filter_singleton_not x : ¬P x → filter P ({[ x ]} : C) ≡ ∅.
Proof. set_solver. Qed.
Lemma filter_empty_not_elem_of X x : filter P X ≡ ∅ → P x → x ∉ X.
Proof. set_solver. Qed.
Lemma disjoint_filter X Y : X ## Y → filter P X ## filter P Y.
Proof. set_solver. Qed.
Lemma filter_union X Y : filter P (X ∪ Y) ≡ filter P X ∪ filter P Y.
Proof. set_solver. Qed.
Lemma disjoint_filter_complement X : filter P X ## filter (λ x, ¬P x) X.
Proof. set_solver. Qed.
Lemma filter_union_complement X : filter P X ∪ filter (λ x, ¬P x) X ≡ X.
Proof. intros x. destruct (decide (P x)); set_solver. Qed.
Section leibniz_equiv.
Context `{!LeibnizEquiv C}.
Lemma filter_empty_L : filter P (∅:C) = ∅.
Proof. unfold_leibniz. apply filter_empty. Qed.
Lemma filter_singleton_L x : P x → filter P ({[ x ]} : C) = {[ x ]}.
Proof. unfold_leibniz. apply filter_singleton. Qed.
Lemma filter_singleton_not_L x : ¬P x → filter P ({[ x ]} : C) = ∅.
Proof. unfold_leibniz. apply filter_singleton_not. Qed.
Lemma filter_empty_not_elem_of_L X x : filter P X = ∅ → P x → x ∉ X.
Proof. unfold_leibniz. apply filter_empty_not_elem_of. Qed.
Lemma filter_union_L X Y : filter P (X ∪ Y) = filter P X ∪ filter P Y.
Proof. unfold_leibniz. apply filter_union. Qed.
Lemma filter_union_complement_L X Y : filter P X ∪ filter (λ x, ¬P x) X = X.
Proof. unfold_leibniz. apply filter_union_complement. Qed.
End leibniz_equiv.
End filter.
(** * Map *)
Section map.
Context `{SemiSet B D}.
Lemma elem_of_map (f : A → B) (X : C) y :
y ∈ set_map (D:=D) f X ↔ ∃ x, y = f x ∧ x ∈ X.
Proof.
unfold set_map. rewrite elem_of_list_to_set, elem_of_list_fmap.
by setoid_rewrite elem_of_elements.
Qed.
Global Instance set_unfold_map (f : A → B) (X : C) (P : A → Prop) y :
(∀ x, SetUnfoldElemOf x X (P x)) →
SetUnfoldElemOf y (set_map (D:=D) f X) (∃ x, y = f x ∧ P x).
Proof. constructor. rewrite elem_of_map; naive_solver. Qed.
Global Instance set_map_proper :
Proper (pointwise_relation _ (=) ==> (≡) ==> (≡)) (set_map (C:=C) (D:=D)).
Proof. intros f g ? X Y. set_unfold; naive_solver. Qed.
Global Instance set_map_mono :
Proper (pointwise_relation _ (=) ==> (⊆) ==> (⊆)) (set_map (C:=C) (D:=D)).
Proof. intros f g ? X Y. set_unfold; naive_solver. Qed.
Lemma elem_of_map_1 (f : A → B) (X : C) (y : B) :
y ∈ set_map (D:=D) f X → ∃ x, y = f x ∧ x ∈ X.
Proof. set_solver. Qed.
Lemma elem_of_map_2 (f : A → B) (X : C) (x : A) :
x ∈ X → f x ∈ set_map (D:=D) f X.
Proof. set_solver. Qed.
Lemma elem_of_map_2_alt (f : A → B) (X : C) (x : A) (y : B) :
x ∈ X → y = f x → y ∈ set_map (D:=D) f X.
Proof. set_solver. Qed.
Lemma set_map_empty (f : A → B) :
set_map (C:=C) (D:=D) f ∅ = ∅.
Proof. unfold set_map. rewrite elements_empty. done. Qed.
Lemma set_map_union (f : A → B) (X Y : C) :
set_map (D:=D) f (X ∪ Y) ≡ set_map (D:=D) f X ∪ set_map (D:=D) f Y.
Proof. set_solver. Qed.
(** This cannot be using [=] because [list_to_set_singleton] does not hold for [=]. *)
Lemma set_map_singleton (f : A → B) (x : A) :
set_map (C:=C) (D:=D) f {[x]} ≡ {[f x]}.
Proof. set_solver. Qed.
Lemma set_map_union_L `{!LeibnizEquiv D} (f : A → B) (X Y : C) :
set_map (D:=D) f (X ∪ Y) = set_map (D:=D) f X ∪ set_map (D:=D) f Y.
Proof. unfold_leibniz. apply set_map_union. Qed.
Lemma set_map_singleton_L `{!LeibnizEquiv D} (f : A → B) (x : A) :
set_map (C:=C) (D:=D) f {[x]} = {[f x]}.
Proof. unfold_leibniz. apply set_map_singleton. Qed.
End map.
(** * Bind *)
Section set_bind.
Context `{SemiSet B SB}.
Local Notation set_bind := (set_bind (A:=A) (SA:=C) (SB:=SB)).
Lemma elem_of_set_bind (f : A → SB) (X : C) y :
y ∈ set_bind f X ↔ ∃ x, x ∈ X ∧ y ∈ f x.
Proof.
unfold set_bind. rewrite !elem_of_union_list. set_solver.
Qed.
Global Instance set_unfold_set_bind (f : A → SB) (X : C)
(y : B) (P : A → B → Prop) (Q : A → Prop) :
(∀ x y, SetUnfoldElemOf y (f x) (P x y)) →
(∀ x, SetUnfoldElemOf x X (Q x)) →
SetUnfoldElemOf y (set_bind f X) (∃ x, Q x ∧ P x y).
Proof.
intros HSU1 HSU2. constructor.
rewrite elem_of_set_bind. set_solver.
Qed.
Global Instance set_bind_proper :
Proper (pointwise_relation _ (≡) ==> (≡) ==> (≡)) set_bind.
Proof. unfold pointwise_relation; intros f1 f2 Hf X1 X2 HX. set_solver. Qed.
Global Instance set_bind_mono :
Proper (pointwise_relation _ (⊆) ==> (⊆) ==> (⊆)) set_bind.
Proof. unfold pointwise_relation; intros f1 f2 Hf X1 X2 HX. set_solver. Qed.
Lemma set_bind_ext (f g : A → SB) (X Y : C) :
(∀ x, x ∈ X → x ∈ Y → f x ≡ g x) → X ≡ Y → set_bind f X ≡ set_bind g Y.
Proof. set_solver. Qed.
Lemma set_bind_singleton f x : set_bind f {[x]} ≡ f x.
Proof. set_solver. Qed.
Lemma set_bind_singleton_L `{!LeibnizEquiv SB} f x : set_bind f {[x]} = f x.
Proof. unfold_leibniz. apply set_bind_singleton. Qed.
Lemma set_bind_disj_union f (X Y : C) :
X ## Y → set_bind f (X ∪ Y) ≡ set_bind f X ∪ set_bind f Y.
Proof. set_solver. Qed.
Lemma set_bind_disj_union_L `{!LeibnizEquiv SB} f (X Y : C) :
X ## Y → set_bind f (X ∪ Y) = set_bind f X ∪ set_bind f Y.
Proof. unfold_leibniz. apply set_bind_disj_union. Qed.
End set_bind.
(** * OMap *)
Section set_omap.
Context `{SemiSet B D}.
Implicit Types (f : A → option B).
Implicit Types (x : A) (y : B).
Notation set_omap := (set_omap (C:=C) (D:=D)).
Lemma elem_of_set_omap f X y : y ∈ set_omap f X ↔ ∃ x, x ∈ X ∧ f x = Some y.
Proof.
unfold set_omap. rewrite elem_of_list_to_set, elem_of_list_omap.
by setoid_rewrite elem_of_elements.
Qed.
Global Instance set_unfold_omap f X (P : A → Prop) y :
(∀ x, SetUnfoldElemOf x X (P x)) →
SetUnfoldElemOf y (set_omap f X) (∃ x, Some y = f x ∧ P x).
Proof. constructor. rewrite elem_of_set_omap; naive_solver. Qed.
Global Instance set_omap_proper :
Proper (pointwise_relation _ (=) ==> (≡) ==> (≡)) set_omap.
Proof. intros f g Hfg X Y. set_unfold. setoid_rewrite Hfg. naive_solver. Qed.
Global Instance set_omap_mono :
Proper (pointwise_relation _ (=) ==> (⊆) ==> (⊆)) set_omap.
Proof. intros f g Hfg X Y. set_unfold. setoid_rewrite Hfg. naive_solver. Qed.
Lemma elem_of_set_omap_1 f X y : y ∈ set_omap f X → ∃ x, Some y = f x ∧ x ∈ X.
Proof. set_solver. Qed.
Lemma elem_of_set_omap_2 f X x y : x ∈ X → f x = Some y → y ∈ set_omap f X.
Proof. set_solver. Qed.
Lemma set_omap_empty f : set_omap f ∅ = ∅.
Proof. unfold set_omap. by rewrite elements_empty. Qed.
Lemma set_omap_empty_iff f X : set_omap f X ≡ ∅ ↔ set_Forall (λ x, f x = None) X.
Proof.
split; set_unfold; unfold set_Forall.
- intros Hi x Hx. destruct (f x) as [y|] eqn:Hy; naive_solver.
- intros Hi y (x & Hf & Hx). specialize (Hi x Hx). by rewrite Hi in Hf.
Qed.
Lemma set_omap_union f X Y : set_omap f (X ∪ Y) ≡ set_omap f X ∪ set_omap f Y.
Proof. set_solver. Qed.
Lemma set_omap_singleton f x :
set_omap f {[ x ]} ≡ match f x with Some y => {[ y ]} | None => ∅ end.
Proof. set_solver. Qed.
Lemma set_omap_singleton_Some f x y : f x = Some y → set_omap f {[ x ]} ≡ {[ y ]}.
Proof. intros Hx. by rewrite set_omap_singleton, Hx. Qed.
Lemma set_omap_singleton_None f x : f x = None → set_omap f {[ x ]} ≡ ∅.
Proof. intros Hx. by rewrite set_omap_singleton, Hx. Qed.
Lemma set_omap_alt f X : set_omap f X ≡ set_bind (λ x, option_to_set (f x)) X.
Proof. set_solver. Qed.
Lemma set_map_alt (f : A → B) X : set_map f X = set_omap (λ x, Some (f x)) X.
Proof. set_solver. Qed.
Lemma set_omap_filter P `{∀ x, Decision (P x)} f X :
(∀ x, x ∈ X → is_Some (f x) → P x) →
set_omap f (filter P X) ≡ set_omap f X.
Proof. set_solver. Qed.
Section leibniz.
Context `{!LeibnizEquiv D}.
Lemma set_omap_union_L f X Y : set_omap f (X ∪ Y) = set_omap f X ∪ set_omap f Y.
Proof. unfold_leibniz. apply set_omap_union. Qed.
Lemma set_omap_singleton_L f x :
set_omap f {[ x ]} = match f x with Some y => {[ y ]} | None => ∅ end.
Proof. unfold_leibniz. apply set_omap_singleton. Qed.
Lemma set_omap_singleton_Some_L f x y :
f x = Some y → set_omap f {[ x ]} = {[ y ]}.
Proof. unfold_leibniz. apply set_omap_singleton_Some. Qed.
Lemma set_omap_singleton_None_L f x : f x = None → set_omap f {[ x ]} = ∅.
Proof. unfold_leibniz. apply set_omap_singleton_None. Qed.
Lemma set_omap_alt_L f X :
set_omap f X = set_bind (λ x, option_to_set (f x)) X.
Proof. unfold_leibniz. apply set_omap_alt. Qed.
Lemma set_omap_filter_L P `{∀ x, Decision (P x)} f X :
(∀ x, x ∈ X → is_Some (f x) → P x) →
set_omap f (filter P X) = set_omap f X.
Proof. unfold_leibniz. apply set_omap_filter. Qed.
End leibniz.
End set_omap.
(** * Decision procedures *)
Lemma set_Forall_elements P X : set_Forall P X ↔ Forall P (elements X).
Proof. rewrite Forall_forall. by setoid_rewrite elem_of_elements. Qed.
Lemma set_Exists_elements P X : set_Exists P X ↔ Exists P (elements X).
Proof. rewrite Exists_exists. by setoid_rewrite elem_of_elements. Qed.
Lemma set_Forall_Exists_dec (P Q : A → Prop) (dec : ∀ x, {P x} + {Q x}) X :
{set_Forall P X} + {set_Exists Q X}.
Proof.
refine (cast_if (Forall_Exists_dec P Q dec (elements X)));
[by apply set_Forall_elements|by apply set_Exists_elements].
Defined.
Lemma not_set_Forall_Exists P `{dec : ∀ x, Decision (P x)} X :
¬set_Forall P X → set_Exists (not ∘ P) X.
Proof. intro. by destruct (set_Forall_Exists_dec P (not ∘ P) dec X). Qed.
Lemma not_set_Exists_Forall P `{dec : ∀ x, Decision (P x)} X :
¬set_Exists P X → set_Forall (not ∘ P) X.
Proof.
by destruct (set_Forall_Exists_dec
(not ∘ P) P (λ x, swap_if (decide (P x))) X).
Qed.
Global Instance set_Forall_dec (P : A → Prop) `{∀ x, Decision (P x)} X :
Decision (set_Forall P X) | 100.
Proof.
refine (cast_if (decide (Forall P (elements X))));
by rewrite set_Forall_elements.
Defined.
Global Instance set_Exists_dec `(P : A → Prop) `{∀ x, Decision (P x)} X :
Decision (set_Exists P X) | 100.
Proof.
refine (cast_if (decide (Exists P (elements X))));
by rewrite set_Exists_elements.
Defined.
(** Alternative versions of finite and infinite predicates *)
Lemma pred_finite_set (P : A → Prop) :
pred_finite P ↔ (∃ X : C, ∀ x, P x → x ∈ X).
Proof.
split.
- intros [xs Hfin]. exists (list_to_set xs). set_solver.
- intros [X Hfin]. exists (elements X). set_solver.
Qed.
Lemma dec_pred_finite_set_alt (P : A → Prop) `{!∀ x : A, Decision (P x)} :
pred_finite P ↔ (∃ X : C, ∀ x, P x ↔ x ∈ X).
Proof.
rewrite dec_pred_finite_alt; [|done]. split.
- intros [xs Hfin]. exists (list_to_set xs). set_solver.
- intros [X Hfin]. exists (elements X). set_solver.
Qed.
Lemma pred_infinite_set (P : A → Prop) :
pred_infinite P ↔ (∀ X : C, ∃ x, P x ∧ x ∉ X).
Proof.
split.
- intros Hinf X. destruct (Hinf (elements X)). set_solver.
- intros Hinf xs. destruct (Hinf (list_to_set xs)). set_solver.
Qed.
Section infinite.
Context `{Infinite A}.
(** Properties about the [fresh] operation on finite sets *)
Global Instance fresh_proper: Proper ((≡@{C}) ==> (=)) fresh.
Proof. unfold fresh, set_fresh. by intros X1 X2 ->. Qed.
Lemma is_fresh X : fresh X ∉ X.
Proof.
unfold fresh, set_fresh. rewrite <-elem_of_elements. apply infinite_is_fresh.
Qed.
Lemma exist_fresh X : ∃ x, x ∉ X.
Proof. exists (fresh X). apply is_fresh. Qed.
(** Properties about the [fresh_list] operation on finite sets *)
Global Instance fresh_list_proper n : Proper ((≡@{C}) ==> (=)) (fresh_list n).
Proof. induction n as [|n IH]; intros ?? E; by setoid_subst. Qed.
Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs → NoDup xs.
Proof. induction 1; by constructor. Qed.
Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs → x ∈ xs → x ∉ X.
Proof.
intros HX; revert x; rewrite <-Forall_forall. by induction HX; constructor.
Qed.
Lemma Forall_fresh_alt X xs :
Forall_fresh X xs ↔ NoDup xs ∧ ∀ x, x ∈ xs → x ∉ X.
Proof.
split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
rewrite <-Forall_forall.
intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
Qed.
Lemma Forall_fresh_subseteq X Y xs :
Forall_fresh X xs → Y ⊆ X → Forall_fresh Y xs.
Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
Lemma length_fresh_list n X : length (fresh_list n X) = n.
Proof. revert X. induction n; simpl; auto. Qed.
Lemma fresh_list_is_fresh n X x : x ∈ fresh_list n X → x ∉ X.
Proof.
revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
apply IH in Hin; set_solver.
Qed.
Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
Proof.
revert X. induction n; simpl; constructor; auto.
intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
Qed.
Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
Proof.
rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
Qed.
End infinite.
End fin_set.
Lemma size_set_seq `{FinSet nat C} start len :
size (set_seq (C:=C) start len) = len.
Proof.
rewrite <-list_to_set_seq, size_list_to_set.
2:{ apply NoDup_seq. }
rewrite length_seq. done.
Qed.
|