File: finite.v

package info (click to toggle)
coq-stdpp 1.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,696 kB
  • sloc: makefile: 52; sh: 35; sed: 1
file content (462 lines) | stat: -rw-r--r-- 18,337 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
From stdpp Require Export countable vector.
From stdpp Require Import options.

Class Finite A `{EqDecision A} := {
  enum : list A;
  (* [NoDup] makes it easy to define the cardinality of the type. *)
  NoDup_enum : NoDup enum;
  elem_of_enum x : x ∈ enum
}.
Global Hint Mode Finite ! - : typeclass_instances.
Global Arguments enum : clear implicits.
Global Arguments enum _ {_ _} : assert.
Global Arguments NoDup_enum : clear implicits.
Global Arguments NoDup_enum _ {_ _} : assert.
Definition card A `{Finite A} := length (enum A).

Program Definition finite_countable `{Finite A} : Countable A := {|
  encode := λ x,
    Pos.of_nat $ S $ default 0 $ fst <$> list_find (x =.) (enum A);
  decode := λ p, enum A !! pred (Pos.to_nat p)
|}.
Next Obligation.
  intros ?? [xs Hxs HA] x; unfold encode, decode; simpl.
  destruct (list_find_elem_of (x =.) xs x) as [[i y] Hi]; auto.
  rewrite Nat2Pos.id by done; simpl; rewrite Hi; simpl.
  destruct (list_find_Some (x =.) xs i y); naive_solver.
Qed.
Global Hint Immediate finite_countable : typeclass_instances.

Definition find `{Finite A} (P : A → Prop) `{∀ x, Decision (P x)} : option A :=
  list_find P (enum A) ≫= decode_nat ∘ fst.

Lemma encode_lt_card `{finA: Finite A} (x : A) : encode_nat x < card A.
Proof.
  destruct finA as [xs Hxs HA]; unfold encode_nat, encode, card; simpl.
  rewrite Nat2Pos.id by done; simpl.
  destruct (list_find _ xs) as [[i y]|] eqn:HE; simpl.
  - apply list_find_Some in HE as (?&?&?); eauto using lookup_lt_Some.
  - destruct xs; simpl; [|lia].
    exfalso; eapply not_elem_of_nil, (HA x).
Qed.
Lemma encode_decode A `{finA: Finite A} i :
  i < card A → ∃ x : A, decode_nat i = Some x ∧ encode_nat x = i.
Proof.
  destruct finA as [xs Hxs HA].
  unfold encode_nat, decode_nat, encode, decode, card; simpl.
  intros Hi. apply lookup_lt_is_Some in Hi. destruct Hi as [x Hx].
  exists x. rewrite !Nat2Pos.id by done; simpl.
  destruct (list_find_elem_of (x =.) xs x) as [[j y] Hj]; auto.
  split; [done|]; rewrite Hj; simpl.
  apply list_find_Some in Hj as (?&->&?). eauto using NoDup_lookup.
Qed.
Lemma find_Some `{finA: Finite A} (P : A → Prop) `{∀ x, Decision (P x)} (x : A) :
  find P = Some x → P x.
Proof.
  destruct finA as [xs Hxs HA]; unfold find, decode_nat, decode; simpl.
  intros Hx. destruct (list_find _ _) as [[i y]|] eqn:Hi; simplify_eq/=.
  rewrite !Nat2Pos.id in Hx by done.
  destruct (list_find_Some P xs i y); naive_solver.
Qed.
Lemma find_is_Some `{finA: Finite A} (P : A → Prop) `{∀ x, Decision (P x)} (x : A) :
  P x → ∃ y, find P = Some y ∧ P y.
Proof.
  destruct finA as [xs Hxs HA]; unfold find, decode; simpl.
  intros Hx. destruct (list_find_elem_of P xs x) as [[i y] Hi]; auto.
  rewrite Hi; unfold decode_nat, decode; simpl. rewrite !Nat2Pos.id by done.
  simpl. apply list_find_Some in Hi; naive_solver.
Qed.

Definition encode_fin `{Finite A} (x : A) : fin (card A) :=
  Fin.of_nat_lt (encode_lt_card x).
Program Definition decode_fin `{Finite A} (i : fin (card A)) : A :=
  match Some_dec (decode_nat i) return _ with
  | inleft (x ↾ _) => x | inright _ => _
  end.
Next Obligation.
  intros A ?? i ?; exfalso.
  destruct (encode_decode A i); naive_solver auto using fin_to_nat_lt.
Qed.
Lemma decode_encode_fin `{Finite A} (x : A) : decode_fin (encode_fin x) = x.
Proof.
  unfold decode_fin, encode_fin. destruct (Some_dec _) as [[x' Hx]|Hx].
  { by rewrite fin_to_nat_to_fin, decode_encode_nat in Hx; simplify_eq. }
  exfalso; by rewrite ->fin_to_nat_to_fin, decode_encode_nat in Hx.
Qed.

Lemma fin_choice {n} {B : fin n → Type} (P : ∀ i, B i → Prop) :
  (∀ i, ∃ y, P i y) → ∃ f, ∀ i, P i (f i).
Proof.
  induction n as [|n IH]; intros Hex.
  { exists (fin_0_inv _); intros i; inv_fin i. }
  destruct (IH _ _ (λ i, Hex (FS i))) as [f Hf], (Hex 0%fin) as [y Hy].
  exists (fin_S_inv _ y f); intros i; by inv_fin i.
Qed.
Lemma finite_choice `{Finite A} {B : A → Type} (P : ∀ x, B x → Prop) :
  (∀ x, ∃ y, P x y) → ∃ f, ∀ x, P x (f x).
Proof.
  intros Hex. destruct (fin_choice _ (λ i, Hex (decode_fin i))) as [f ?].
  exists (λ x, eq_rect _ _ (f(encode_fin x)) _ (decode_encode_fin x)); intros x.
  destruct (decode_encode_fin x); simpl; auto.
Qed.

Lemma card_0_inv P `{finA: Finite A} : card A = 0 → A → P.
Proof.
  intros ? x. destruct finA as [[|??] ??]; simplify_eq.
  by destruct (not_elem_of_nil x).
Qed.
Lemma finite_inhabited A `{finA: Finite A} : 0 < card A → Inhabited A.
Proof.
  unfold card; intros. destruct finA as [[|x ?] ??]; simpl in *; [exfalso;lia|].
  constructor; exact x.
Qed.
Lemma finite_inj_submseteq `{finA: Finite A} `{finB: Finite B} (f: A → B)
  `{!Inj (=) (=) f} : f <$> enum A ⊆+ enum B.
Proof.
  intros. destruct finA, finB. apply NoDup_submseteq; auto using NoDup_fmap_2.
Qed.
Lemma finite_inj_Permutation `{Finite A} `{Finite B} (f : A → B)
  `{!Inj (=) (=) f} : card A = card B → f <$> enum A ≡ₚ enum B.
Proof.
  intros. apply submseteq_length_Permutation.
  - by apply finite_inj_submseteq.
  - rewrite length_fmap. by apply Nat.eq_le_incl.
Qed.
Lemma finite_inj_surj `{Finite A} `{Finite B} (f : A → B)
  `{!Inj (=) (=) f} : card A = card B → Surj (=) f.
Proof.
  intros HAB y. destruct (elem_of_list_fmap_2 f (enum A) y) as (x&?&?); eauto.
  rewrite finite_inj_Permutation; auto using elem_of_enum.
Qed.

Lemma finite_surj A `{Finite A} B `{Finite B} :
  0 < card A ≤ card B → ∃ g : B → A, Surj (=) g.
Proof.
  intros [??]. destruct (finite_inhabited A) as [x']; auto with lia.
  exists (λ y : B, default x' (decode_nat (encode_nat y))).
  intros x. destruct (encode_decode B (encode_nat x)) as (y&Hy1&Hy2).
  { pose proof (encode_lt_card x); lia. }
  exists y. by rewrite Hy2, decode_encode_nat.
Qed.
Lemma finite_inj A `{Finite A} B `{Finite B} :
  card A ≤ card B ↔ ∃ f : A → B, Inj (=) (=) f.
Proof.
  split.
  - intros. destruct (decide (card A = 0)) as [HA|?].
    { exists (card_0_inv B HA). intros y. apply (card_0_inv _ HA y). }
    destruct (finite_surj A B) as (g&?); auto with lia.
    destruct (surj_cancel g) as (f&?). exists f. apply cancel_inj.
  - intros [f ?]. unfold card. rewrite <-(length_fmap f).
    by apply submseteq_length, (finite_inj_submseteq f).
Qed.
Lemma finite_bijective A `{Finite A} B `{Finite B} :
  card A = card B ↔ ∃ f : A → B, Inj (=) (=) f ∧ Surj (=) f.
Proof.
  split.
  - intros; destruct (proj1 (finite_inj A B)) as [f ?]; auto with lia.
    exists f; split; [done|]. by apply finite_inj_surj.
  - intros (f&?&?). apply (anti_symm (≤)); apply finite_inj.
    + by exists f.
    + destruct (surj_cancel f) as (g&?). exists g. apply cancel_inj.
Qed.
Lemma inj_card `{Finite A} `{Finite B} (f : A → B)
  `{!Inj (=) (=) f} : card A ≤ card B.
Proof. apply finite_inj. eauto. Qed.
Lemma surj_card `{Finite A} `{Finite B} (f : A → B)
  `{!Surj (=) f} : card B ≤ card A.
Proof.
  destruct (surj_cancel f) as (g&?).
  apply inj_card with g, cancel_inj.
Qed.
Lemma bijective_card `{Finite A} `{Finite B} (f : A → B)
  `{!Inj (=) (=) f} `{!Surj (=) f} : card A = card B.
Proof. apply finite_bijective. eauto. Qed.

(** Decidability of quantification over finite types *)
Section forall_exists.
  Context `{Finite A} (P : A → Prop).

  Lemma Forall_finite : Forall P (enum A) ↔ (∀ x, P x).
  Proof. rewrite Forall_forall. intuition auto using elem_of_enum. Qed.
  Lemma Exists_finite : Exists P (enum A) ↔ (∃ x, P x).
  Proof. rewrite Exists_exists. naive_solver eauto using elem_of_enum. Qed.

  Context `{∀ x, Decision (P x)}.

  Global Instance forall_dec: Decision (∀ x, P x).
  Proof using Type*.
   refine (cast_if (decide (Forall P (enum A))));
    abstract by rewrite <-Forall_finite.
  Defined.
  Global Instance exists_dec: Decision (∃ x, P x).
  Proof using Type*.
   refine (cast_if (decide (Exists P (enum A))));
    abstract by rewrite <-Exists_finite.
  Defined.
End forall_exists.

(** Instances *)
Section enc_finite.
  Context `{EqDecision A}.
  Context (to_nat : A → nat) (of_nat : nat → A) (c : nat).
  Context (of_to_nat : ∀ x, of_nat (to_nat x) = x).
  Context (to_nat_c : ∀ x, to_nat x < c).
  Context (to_of_nat : ∀ i, i < c → to_nat (of_nat i) = i).

  Local Program Instance enc_finite : Finite A := {| enum := of_nat <$> seq 0 c |}.
  Next Obligation.
    apply NoDup_alt. intros i j x. rewrite !list_lookup_fmap. intros Hi Hj.
    destruct (seq _ _ !! i) as [i'|] eqn:Hi',
      (seq _ _ !! j) as [j'|] eqn:Hj'; simplify_eq/=.
    apply lookup_seq in Hi' as  [-> ?]. apply lookup_seq in Hj' as [-> ?].
    rewrite <-(to_of_nat i), <-(to_of_nat j) by done. by f_equal.
  Qed.
  Next Obligation.
    intros x. rewrite elem_of_list_fmap. exists (to_nat x).
    split; auto. by apply elem_of_list_lookup_2 with (to_nat x), lookup_seq.
  Qed.
  Lemma enc_finite_card : card A = c.
  Proof. unfold card. simpl. by rewrite length_fmap, length_seq. Qed.
End enc_finite.

(** If we have a surjection [f : A → B] and [A] is finite, then [B] is finite
too. The surjection [f] could map multiple [x : A] on the same [B], so we
need to remove duplicates in [enum]. If [f] is injective, we do not need to do that,
leading to a potentially faster implementation of [enum], see [bijective_finite]
below. *)
Section surjective_finite.
  Context `{Finite A, EqDecision B} (f : A → B).
  Context `{!Surj (=) f}.

  Program Definition surjective_finite: Finite B :=
    {| enum := remove_dups (f <$> enum A) |}.
  Next Obligation. apply NoDup_remove_dups. Qed.
  Next Obligation.
    intros y. rewrite elem_of_remove_dups, elem_of_list_fmap.
    destruct (surj f y). eauto using elem_of_enum.
  Qed.
End surjective_finite.

Section bijective_finite.
  Context `{Finite A, EqDecision B} (f : A → B).
  Context `{!Inj (=) (=) f, !Surj (=) f}.

  Program Definition bijective_finite : Finite B :=
    {| enum := f <$> enum A |}.
  Next Obligation. apply (NoDup_fmap f), NoDup_enum. Qed.
  Next Obligation.
    intros b. rewrite elem_of_list_fmap. destruct (surj f b).
    eauto using elem_of_enum.
  Qed.
End bijective_finite.

Global Program Instance option_finite `{Finite A} : Finite (option A) :=
  {| enum := None :: (Some <$> enum A) |}.
Next Obligation.
  constructor.
  - rewrite elem_of_list_fmap. by intros (?&?&?).
  - apply (NoDup_fmap_2 _); auto using NoDup_enum.
Qed.
Next Obligation.
  intros ??? [x|]; [right|left]; auto.
  apply elem_of_list_fmap. eauto using elem_of_enum.
Qed.
Lemma option_cardinality `{Finite A} : card (option A) = S (card A).
Proof. unfold card. simpl. by rewrite length_fmap. Qed.

Global Program Instance Empty_set_finite : Finite Empty_set := {| enum := [] |}.
Next Obligation. by apply NoDup_nil. Qed.
Next Obligation. intros []. Qed.
Lemma Empty_set_card : card Empty_set = 0.
Proof. done. Qed.

Global Program Instance unit_finite : Finite () := {| enum := [tt] |}.
Next Obligation. apply NoDup_singleton. Qed.
Next Obligation. intros []. by apply elem_of_list_singleton. Qed.
Lemma unit_card : card unit = 1.
Proof. done. Qed.

Global Program Instance bool_finite : Finite bool := {| enum := [true; false] |}.
Next Obligation.
  constructor; [ by rewrite elem_of_list_singleton | apply NoDup_singleton ].
Qed.
Next Obligation. intros [|]; [ left | right; left ]. Qed.
Lemma bool_card : card bool = 2.
Proof. done. Qed.

Global Program Instance sum_finite `{Finite A, Finite B} : Finite (A + B)%type :=
  {| enum := (inl <$> enum A) ++ (inr <$> enum B) |}.
Next Obligation.
  intros. apply NoDup_app; split_and?.
  - apply (NoDup_fmap_2 _). by apply NoDup_enum.
  - intro. rewrite !elem_of_list_fmap. intros (?&?&?) (?&?&?); congruence.
  - apply (NoDup_fmap_2 _). by apply NoDup_enum.
Qed.
Next Obligation.
  intros ?????? [x|y]; rewrite elem_of_app, !elem_of_list_fmap;
    [left|right]; (eexists; split; [done|apply elem_of_enum]).
Qed.
Lemma sum_card `{Finite A, Finite B} : card (A + B) = card A + card B.
Proof. unfold card. simpl. by rewrite length_app, !length_fmap. Qed.

Global Program Instance prod_finite `{Finite A, Finite B} : Finite (A * B)%type :=
  {| enum := a ← enum A; (a,.) <$> enum B |}.
Next Obligation.
  intros A ?????. apply NoDup_bind.
  - intros a1 a2 [a b] ?? (?&?&_)%elem_of_list_fmap (?&?&_)%elem_of_list_fmap.
    naive_solver.
  - intros a ?. rewrite (NoDup_fmap _). apply NoDup_enum.
  - apply NoDup_enum.
Qed.
Next Obligation.
  intros ?????? [a b]. apply elem_of_list_bind.
  exists a. eauto using elem_of_enum, elem_of_list_fmap_1.
Qed.
Lemma prod_card `{Finite A} `{Finite B} : card (A * B) = card A * card B.
Proof.
  unfold card; simpl. induction (enum A); simpl; auto.
  rewrite length_app, length_fmap. auto.
Qed.

Fixpoint vec_enum {A} (l : list A) (n : nat) : list (vec A n) :=
  match n with
  | 0 => [[#]]
  | S m => a ← l; vcons a <$> vec_enum l m
  end.

Global Program Instance vec_finite `{Finite A} n : Finite (vec A n) :=
  {| enum := vec_enum (enum A) n |}.
Next Obligation.
  intros A ?? n. induction n as [|n IH]; csimpl; [apply NoDup_singleton|].
  apply NoDup_bind.
  - intros x1 x2 y ?? (?&?&_)%elem_of_list_fmap (?&?&_)%elem_of_list_fmap.
    congruence.
  - intros x ?. rewrite NoDup_fmap by (intros ?; apply vcons_inj_2). done.
  - apply NoDup_enum.
Qed.
Next Obligation.
  intros A ?? n v. induction v as [|x n v IH]; csimpl; [apply elem_of_list_here|].
  apply elem_of_list_bind. eauto using elem_of_enum, elem_of_list_fmap_1.
Qed.
Lemma vec_card `{Finite A} n : card (vec A n) = card A ^ n.
Proof.
  unfold card; simpl. induction n as [|n IH]; simpl; [done|].
  rewrite <-IH. clear IH. generalize (vec_enum (enum A) n).
  induction (enum A) as [|x xs IH]; intros l; csimpl; auto.
  by rewrite length_app, length_fmap, IH.
Qed.

Global Instance list_finite `{Finite A} n : Finite { l : list A | length l = n }.
Proof.
  refine (bijective_finite (λ v : vec A n, vec_to_list v ↾ length_vec_to_list _)).
  - abstract (by intros v1 v2 [= ?%vec_to_list_inj2]).
  - abstract (intros [l <-]; exists (list_to_vec l);
      apply (sig_eq_pi _), vec_to_list_to_vec).
Defined.
Lemma list_card `{Finite A} n : card { l : list A | length l = n } = card A ^ n.
Proof. unfold card; simpl. rewrite length_fmap. apply vec_card. Qed.

Fixpoint fin_enum (n : nat) : list (fin n) :=
  match n with 0 => [] | S n => 0%fin :: (FS <$> fin_enum n) end.
Global Program Instance fin_finite n : Finite (fin n) := {| enum := fin_enum n |}.
Next Obligation.
  intros n. induction n; simpl; constructor.
  - rewrite elem_of_list_fmap. by intros (?&?&?).
  - by apply (NoDup_fmap _).
Qed.
Next Obligation.
  intros n i. induction i as [|n i IH]; simpl;
    rewrite elem_of_cons, ?elem_of_list_fmap; eauto.
Qed.
Lemma fin_card n : card (fin n) = n.
Proof. unfold card; simpl. induction n; simpl; rewrite ?length_fmap; auto. Qed.

(* shouldn’t be an instance (cycle with [sig_finite]): *)
Lemma finite_sig_dec `{!EqDecision A} (P : A → Prop) `{Finite (sig P)} x :
  Decision (P x).
Proof.
  assert {xs : list A | ∀ x, P x ↔ x ∈ xs} as [xs ?].
  { clear x. exists (proj1_sig <$> enum _). intros x. split; intros Hx.
    - apply elem_of_list_fmap_1_alt with (x ↾ Hx); [apply elem_of_enum|]; done.
    - apply elem_of_list_fmap in Hx as [[x' Hx'] [-> _]]; done. }
  destruct (decide (x ∈ xs)); [left | right]; naive_solver.
Qed. (* <- could be Defined but this lemma will probably not be used for computing *)

Section sig_finite.
  Context {A} (P : A → Prop) `{∀ x, Decision (P x)}.

  Fixpoint list_filter_sig (l : list A) : list (sig P) :=
    match l with
    | [] => []
    | x :: l => match decide (P x) with
              | left H => x ↾ H :: list_filter_sig l
              | _ => list_filter_sig l
              end
    end.
  Lemma list_filter_sig_filter (l : list A) :
    proj1_sig <$> list_filter_sig l = filter P l.
  Proof.
    induction l as [| a l IH]; [done |].
    simpl; rewrite filter_cons.
    destruct (decide _); csimpl; by rewrite IH.
  Qed.

  Context `{Finite A} `{∀ x, ProofIrrel (P x)}.

  Global Program Instance sig_finite : Finite (sig P) :=
    {| enum := list_filter_sig (enum A) |}.
  Next Obligation.
    eapply NoDup_fmap_1. rewrite list_filter_sig_filter.
    apply NoDup_filter, NoDup_enum.
  Qed.
  Next Obligation.
    intros p. apply (elem_of_list_fmap_2_inj proj1_sig).
    rewrite list_filter_sig_filter, elem_of_list_filter.
    split; [by destruct p | apply elem_of_enum].
  Qed.
  Lemma sig_card : card (sig P) = length (filter P (enum A)).
  Proof. by rewrite <-list_filter_sig_filter, length_fmap. Qed.
End sig_finite.

Lemma finite_pigeonhole `{Finite A} `{Finite B} (f : A → B) :
  card B < card A → ∃ x1 x2, x1 ≠ x2 ∧ f x1 = f x2.
Proof.
  intros. apply dec_stable; intros Heq.
  cut (Inj eq eq f); [intros ?%inj_card; lia|].
  intros x1 x2 ?. apply dec_stable. naive_solver.
Qed.

Lemma nat_pigeonhole (f : nat → nat) (n1 n2 : nat) :
  n2 < n1 →
  (∀ i, i < n1 → f i < n2) →
  ∃ i1 i2, i1 < i2 < n1 ∧ f i1 = f i2.
Proof.
  intros Hn Hf. pose (f' (i : fin n1) := nat_to_fin (Hf _ (fin_to_nat_lt i))).
  destruct (finite_pigeonhole f') as (i1&i2&Hi&Hf'); [by rewrite !fin_card|].
  apply (not_inj (f:=fin_to_nat)) in Hi. apply (f_equal fin_to_nat) in Hf'.
  unfold f' in Hf'. rewrite !fin_to_nat_to_fin in Hf'.
  pose proof (fin_to_nat_lt i1); pose proof (fin_to_nat_lt i2).
  destruct (decide (i1 < i2)); [exists i1, i2|exists i2, i1]; lia.
Qed.

Lemma list_pigeonhole {A} (l1 l2 : list A) :
  l1 ⊆ l2 →
  length l2 < length l1 →
  ∃ i1 i2 x, i1 < i2 ∧ l1 !! i1 = Some x ∧ l1 !! i2 = Some x.
Proof.
  intros Hl Hlen.
  assert (∀ i : fin (length l1), ∃ (j : fin (length l2)) x,
    l1 !! (fin_to_nat i) = Some x ∧
    l2 !! (fin_to_nat j) = Some x) as [f Hf]%fin_choice.
  { intros i. destruct (lookup_lt_is_Some_2 l1 i)
      as [x Hix]; [apply fin_to_nat_lt|].
    assert (x ∈ l2) as [j Hjx]%elem_of_list_lookup_1
      by (by eapply Hl, elem_of_list_lookup_2).
    exists (nat_to_fin (lookup_lt_Some _ _ _ Hjx)), x.
    by rewrite fin_to_nat_to_fin. }
  destruct (finite_pigeonhole f) as (i1&i2&Hi&Hf'); [by rewrite !fin_card|].
  destruct (Hf i1) as (x1&?&?), (Hf i2) as (x2&?&?).
  assert (x1 = x2) as -> by congruence.
  apply (not_inj (f:=fin_to_nat)) in Hi. apply (f_equal fin_to_nat) in Hf'.
  destruct (decide (i1 < i2)); [exists i1, i2|exists i2, i1]; eauto with lia.
Qed.