1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
|
(** This files implements an efficient implementation of finite maps whose keys
range over Coq's data type of any countable type [K]. The data structure is
similar to [Pmap], which in turn is based on the "canonical" binary tries
representation by Appel and Leroy, https://hal.inria.fr/hal-03372247. It thus
has the same good properties:
- It guarantees logarithmic-time [lookup] and [partial_alter], and linear-time
[merge]. It has a low constant factor for computation in Coq compared to other
versions (see the Appel and Leroy paper for benchmarks).
- It satisfies extensional equality [(∀ i, m1 !! i = m2 !! i) → m1 = m2].
- It can be used in nested recursive definitions, e.g.,
[Inductive test := Test : gmap test → test]. This is possible because we do
_not_ use a Sigma type to ensure canonical representations (a Sigma type would
break Coq's strict positivity check).
Compared to [Pmap], we not only need to make sure the trie representation is
canonical, we also need to make sure that all positions (of type positive) are
valid encodings of [K]. That is, for each position [q] in the trie, we have
[encode <$> decode q = Some q].
Instead of formalizing this condition using a Sigma type (which would break
the strict positivity check in nested recursive definitions), we make
[gmap_dep_ne A P] dependent on a predicate [P : positive → Prop] that describes
the subset of valid positions, and instantiate it with [gmap_key K].
The predicate [P : positive → Prop] is considered irrelevant by extraction, so
after extraction, the resulting data structure is identical to [Pmap]. *)
From stdpp Require Export countable infinite fin_maps fin_map_dom.
From stdpp Require Import mapset pmap.
From stdpp Require Import options.
Local Open Scope positive_scope.
Local Notation "P ~ 0" := (λ p, P p~0) : function_scope.
Local Notation "P ~ 1" := (λ p, P p~1) : function_scope.
Implicit Type P : positive → Prop.
(** * The tree data structure *)
Inductive gmap_dep_ne (A : Type) (P : positive → Prop) :=
| GNode001 : gmap_dep_ne A P~1 → gmap_dep_ne A P
| GNode010 : P 1 → A → gmap_dep_ne A P
| GNode011 : P 1 → A → gmap_dep_ne A P~1 → gmap_dep_ne A P
| GNode100 : gmap_dep_ne A P~0 → gmap_dep_ne A P
| GNode101 : gmap_dep_ne A P~0 → gmap_dep_ne A P~1 → gmap_dep_ne A P
| GNode110 : gmap_dep_ne A P~0 → P 1 → A → gmap_dep_ne A P
| GNode111 : gmap_dep_ne A P~0 → P 1 → A → gmap_dep_ne A P~1 → gmap_dep_ne A P.
Global Arguments GNode001 {A P} _ : assert.
Global Arguments GNode010 {A P} _ _ : assert.
Global Arguments GNode011 {A P} _ _ _ : assert.
Global Arguments GNode100 {A P} _ : assert.
Global Arguments GNode101 {A P} _ _ : assert.
Global Arguments GNode110 {A P} _ _ _ : assert.
Global Arguments GNode111 {A P} _ _ _ _ : assert.
(** Using [Variant] we suppress the generation of the induction scheme. We use
the induction scheme [gmap_ind] in terms of the smart constructors to reduce the
number of cases, similar to Appel and Leroy. *)
Variant gmap_dep (A : Type) (P : positive → Prop) :=
| GEmpty : gmap_dep A P
| GNodes : gmap_dep_ne A P → gmap_dep A P.
Global Arguments GEmpty {A P}.
Global Arguments GNodes {A P} _.
Record gmap_key K `{Countable K} (q : positive) :=
GMapKey { _ : encode (A:=K) <$> decode q = Some q }.
Add Printing Constructor gmap_key.
Global Arguments GMapKey {_ _ _ _} _.
Lemma gmap_key_encode `{Countable K} (k : K) : gmap_key K (encode k).
Proof. constructor. by rewrite decode_encode. Qed.
Global Instance gmap_key_pi `{Countable K} q : ProofIrrel (gmap_key K q).
Proof. intros [?] [?]. f_equal. apply (proof_irrel _). Qed.
Record gmap K `{Countable K} A := GMap { gmap_car : gmap_dep A (gmap_key K) }.
Add Printing Constructor gmap.
Global Arguments GMap {_ _ _ _} _.
Global Arguments gmap_car {_ _ _ _} _.
Global Instance gmap_dep_ne_eq_dec {A P} :
EqDecision A → (∀ i, ProofIrrel (P i)) → EqDecision (gmap_dep_ne A P).
Proof.
intros ? Hirr t1 t2. revert P t1 t2 Hirr.
refine (fix go {P} (t1 t2 : gmap_dep_ne A P) {Hirr : _} : Decision (t1 = t2) :=
match t1, t2 with
| GNode001 r1, GNode001 r2 => cast_if (go r1 r2)
| GNode010 _ x1, GNode010 _ x2 => cast_if (decide (x1 = x2))
| GNode011 _ x1 r1, GNode011 _ x2 r2 =>
cast_if_and (decide (x1 = x2)) (go r1 r2)
| GNode100 l1, GNode100 l2 => cast_if (go l1 l2)
| GNode101 l1 r1, GNode101 l2 r2 => cast_if_and (go l1 l2) (go r1 r2)
| GNode110 l1 _ x1, GNode110 l2 _ x2 =>
cast_if_and (go l1 l2) (decide (x1 = x2))
| GNode111 l1 _ x1 r1, GNode111 l2 _ x2 r2 =>
cast_if_and3 (go l1 l2) (decide (x1 = x2)) (go r1 r2)
| _, _ => right _
end);
clear go; abstract first [congruence|f_equal; done || apply Hirr|idtac].
Defined.
Global Instance gmap_dep_eq_dec {A P} :
(∀ i, ProofIrrel (P i)) → EqDecision A → EqDecision (gmap_dep A P).
Proof. intros. solve_decision. Defined.
Global Instance gmap_eq_dec `{Countable K} {A} :
EqDecision A → EqDecision (gmap K A).
Proof. intros. solve_decision. Defined.
(** The smart constructor [GNode] and eliminator [gmap_dep_ne_case] are used to
reduce the number of cases, similar to Appel and Leroy. *)
Local Definition GNode {A P}
(ml : gmap_dep A P~0)
(mx : option (P 1 * A)) (mr : gmap_dep A P~1) : gmap_dep A P :=
match ml, mx, mr with
| GEmpty, None, GEmpty => GEmpty
| GEmpty, None, GNodes r => GNodes (GNode001 r)
| GEmpty, Some (p,x), GEmpty => GNodes (GNode010 p x)
| GEmpty, Some (p,x), GNodes r => GNodes (GNode011 p x r)
| GNodes l, None, GEmpty => GNodes (GNode100 l)
| GNodes l, None, GNodes r => GNodes (GNode101 l r)
| GNodes l, Some (p,x), GEmpty => GNodes (GNode110 l p x)
| GNodes l, Some (p,x), GNodes r => GNodes (GNode111 l p x r)
end.
Local Definition gmap_dep_ne_case {A P B} (t : gmap_dep_ne A P)
(f : gmap_dep A P~0 → option (P 1 * A) → gmap_dep A P~1 → B) : B :=
match t with
| GNode001 r => f GEmpty None (GNodes r)
| GNode010 p x => f GEmpty (Some (p,x)) GEmpty
| GNode011 p x r => f GEmpty (Some (p,x)) (GNodes r)
| GNode100 l => f (GNodes l) None GEmpty
| GNode101 l r => f (GNodes l) None (GNodes r)
| GNode110 l p x => f (GNodes l) (Some (p,x)) GEmpty
| GNode111 l p x r => f (GNodes l) (Some (p,x)) (GNodes r)
end.
(** Operations *)
Local Definition gmap_dep_ne_lookup {A} : ∀ {P}, positive → gmap_dep_ne A P → option A :=
fix go {P} i t {struct t} :=
match t, i with
| (GNode010 _ x | GNode011 _ x _ | GNode110 _ _ x | GNode111 _ _ x _), 1 => Some x
| (GNode100 l | GNode110 l _ _ | GNode101 l _ | GNode111 l _ _ _), i~0 => go i l
| (GNode001 r | GNode011 _ _ r | GNode101 _ r | GNode111 _ _ _ r), i~1 => go i r
| _, _ => None
end.
Local Definition gmap_dep_lookup {A P}
(i : positive) (mt : gmap_dep A P) : option A :=
match mt with GEmpty => None | GNodes t => gmap_dep_ne_lookup i t end.
Global Instance gmap_lookup `{Countable K} {A} :
Lookup K A (gmap K A) := λ k mt,
gmap_dep_lookup (encode k) (gmap_car mt).
Global Instance gmap_empty `{Countable K} {A} : Empty (gmap K A) := GMap GEmpty.
(** Block reduction, even on concrete [gmap]s.
Marking [gmap_empty] as [simpl never] would not be enough, because of
https://github.com/coq/coq/issues/2972 and
https://github.com/coq/coq/issues/2986.
And marking [gmap] consumers as [simpl never] does not work either, see:
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/171#note_53216 *)
Global Opaque gmap_empty.
Local Fixpoint gmap_dep_ne_singleton {A P} (i : positive) :
P i → A → gmap_dep_ne A P :=
match i with
| 1 => GNode010
| i~0 => λ p x, GNode100 (gmap_dep_ne_singleton i p x)
| i~1 => λ p x, GNode001 (gmap_dep_ne_singleton i p x)
end.
Local Definition gmap_partial_alter_aux {A P}
(go : ∀ i, P i → gmap_dep_ne A P → gmap_dep A P)
(f : option A → option A) (i : positive) (p : P i)
(mt : gmap_dep A P) : gmap_dep A P :=
match mt with
| GEmpty =>
match f None with
| None => GEmpty | Some x => GNodes (gmap_dep_ne_singleton i p x)
end
| GNodes t => go i p t
end.
Local Definition gmap_dep_ne_partial_alter {A} (f : option A → option A) :
∀ {P} (i : positive), P i → gmap_dep_ne A P → gmap_dep A P :=
Eval lazy -[gmap_dep_ne_singleton] in
fix go {P} i p t {struct t} :=
gmap_dep_ne_case t $ λ ml mx mr,
match i with
| 1 => λ p, GNode ml ((p,.) <$> f (snd <$> mx)) mr
| i~0 => λ p, GNode (gmap_partial_alter_aux go f i p ml) mx mr
| i~1 => λ p, GNode ml mx (gmap_partial_alter_aux go f i p mr)
end p.
Local Definition gmap_dep_partial_alter {A P}
(f : option A → option A) : ∀ i : positive, P i → gmap_dep A P → gmap_dep A P :=
gmap_partial_alter_aux (gmap_dep_ne_partial_alter f) f.
Global Instance gmap_partial_alter `{Countable K} {A} :
PartialAlter K A (gmap K A) := λ f k '(GMap mt),
GMap $ gmap_dep_partial_alter f (encode k) (gmap_key_encode k) mt.
Local Definition gmap_dep_ne_fmap {A B} (f : A → B) :
∀ {P}, gmap_dep_ne A P → gmap_dep_ne B P :=
fix go {P} t :=
match t with
| GNode001 r => GNode001 (go r)
| GNode010 p x => GNode010 p (f x)
| GNode011 p x r => GNode011 p (f x) (go r)
| GNode100 l => GNode100 (go l)
| GNode101 l r => GNode101 (go l) (go r)
| GNode110 l p x => GNode110 (go l) p (f x)
| GNode111 l p x r => GNode111 (go l) p (f x) (go r)
end.
Local Definition gmap_dep_fmap {A B P} (f : A → B)
(mt : gmap_dep A P) : gmap_dep B P :=
match mt with GEmpty => GEmpty | GNodes t => GNodes (gmap_dep_ne_fmap f t) end.
Global Instance gmap_fmap `{Countable K} : FMap (gmap K) := λ {A B} f '(GMap mt),
GMap $ gmap_dep_fmap f mt.
Local Definition gmap_dep_omap_aux {A B P}
(go : gmap_dep_ne A P → gmap_dep B P) (tm : gmap_dep A P) : gmap_dep B P :=
match tm with GEmpty => GEmpty | GNodes t' => go t' end.
Local Definition gmap_dep_ne_omap {A B} (f : A → option B) :
∀ {P}, gmap_dep_ne A P → gmap_dep B P :=
fix go {P} t :=
gmap_dep_ne_case t $ λ ml mx mr,
GNode (gmap_dep_omap_aux go ml) ('(p,x) ← mx; (p,.) <$> f x)
(gmap_dep_omap_aux go mr).
Local Definition gmap_dep_omap {A B P} (f : A → option B) :
gmap_dep A P → gmap_dep B P := gmap_dep_omap_aux (gmap_dep_ne_omap f).
Global Instance gmap_omap `{Countable K} : OMap (gmap K) := λ {A B} f '(GMap mt),
GMap $ gmap_dep_omap f mt.
Local Definition gmap_merge_aux {A B C P}
(go : gmap_dep_ne A P → gmap_dep_ne B P → gmap_dep C P)
(f : option A → option B → option C)
(mt1 : gmap_dep A P) (mt2 : gmap_dep B P) : gmap_dep C P :=
match mt1, mt2 with
| GEmpty, GEmpty => GEmpty
| GNodes t1', GEmpty => gmap_dep_ne_omap (λ x, f (Some x) None) t1'
| GEmpty, GNodes t2' => gmap_dep_ne_omap (λ x, f None (Some x)) t2'
| GNodes t1', GNodes t2' => go t1' t2'
end.
Local Definition diag_None' {A B C} {P : Prop}
(f : option A → option B → option C)
(mx : option (P * A)) (my : option (P * B)) : option (P * C) :=
match mx, my with
| None, None => None
| Some (p,x), None => (p,.) <$> f (Some x) None
| None, Some (p,y) => (p,.) <$> f None (Some y)
| Some (p,x), Some (_,y) => (p,.) <$> f (Some x) (Some y)
end.
Local Definition gmap_dep_ne_merge {A B C} (f : option A → option B → option C) :
∀ {P}, gmap_dep_ne A P → gmap_dep_ne B P → gmap_dep C P :=
fix go {P} t1 t2 {struct t1} :=
gmap_dep_ne_case t1 $ λ ml1 mx1 mr1,
gmap_dep_ne_case t2 $ λ ml2 mx2 mr2,
GNode (gmap_merge_aux go f ml1 ml2) (diag_None' f mx1 mx2)
(gmap_merge_aux go f mr1 mr2).
Local Definition gmap_dep_merge {A B C P} (f : option A → option B → option C) :
gmap_dep A P → gmap_dep B P → gmap_dep C P :=
gmap_merge_aux (gmap_dep_ne_merge f) f.
Global Instance gmap_merge `{Countable K} : Merge (gmap K) :=
λ {A B C} f '(GMap mt1) '(GMap mt2), GMap $ gmap_dep_merge f mt1 mt2.
Local Definition gmap_fold_aux {A B P}
(go : positive → B → gmap_dep_ne A P → B)
(i : positive) (y : B) (mt : gmap_dep A P) : B :=
match mt with GEmpty => y | GNodes t => go i y t end.
Local Definition gmap_dep_ne_fold {A B} (f : positive → A → B → B) :
∀ {P}, positive → B → gmap_dep_ne A P → B :=
fix go {P} i y t :=
gmap_dep_ne_case t $ λ ml mx mr,
gmap_fold_aux go i~1
(gmap_fold_aux go i~0
match mx with None => y | Some (p,x) => f (Pos.reverse i) x y end ml) mr.
Local Definition gmap_dep_fold {A B P} (f : positive → A → B → B) :
positive → B → gmap_dep A P → B :=
gmap_fold_aux (gmap_dep_ne_fold f).
Global Instance gmap_fold `{Countable K} {A} :
MapFold K A (gmap K A) := λ {B} f y '(GMap mt),
gmap_dep_fold (λ i x, match decode i with Some k => f k x | None => id end) 1 y mt.
(** Proofs *)
Local Definition GNode_valid {A P}
(ml : gmap_dep A P~0) (mx : option (P 1 * A)) (mr : gmap_dep A P~1) :=
match ml, mx, mr with GEmpty, None, GEmpty => False | _, _, _ => True end.
Local Lemma gmap_dep_ind A (Q : ∀ P, gmap_dep A P → Prop) :
(∀ P, Q P GEmpty) →
(∀ P ml mx mr, GNode_valid ml mx mr → Q _ ml → Q _ mr → Q P (GNode ml mx mr)) →
∀ P mt, Q P mt.
Proof.
intros Hemp Hnode P [|t]; [done|]. induction t.
- by apply (Hnode _ GEmpty None (GNodes _)).
- by apply (Hnode _ GEmpty (Some (_,_)) GEmpty).
- by apply (Hnode _ GEmpty (Some (_,_)) (GNodes _)).
- by apply (Hnode _ (GNodes _) None GEmpty).
- by apply (Hnode _ (GNodes _) None (GNodes _)).
- by apply (Hnode _ (GNodes _) (Some (_,_)) GEmpty).
- by apply (Hnode _ (GNodes _) (Some (_,_)) (GNodes _)).
Qed.
Local Lemma gmap_dep_lookup_GNode {A P} (ml : gmap_dep A P~0) mr mx i :
gmap_dep_lookup i (GNode ml mx mr) =
match i with
| 1 => snd <$> mx | i~0 => gmap_dep_lookup i ml | i~1 => gmap_dep_lookup i mr
end.
Proof. by destruct ml, mx as [[]|], mr, i. Qed.
Local Lemma gmap_dep_ne_lookup_not_None {A P} (t : gmap_dep_ne A P) :
∃ i, P i ∧ gmap_dep_ne_lookup i t ≠ None.
Proof.
induction t; repeat select (∃ _, _) (fun H => destruct H);
try first [by eexists 1|by eexists _~0|by eexists _~1].
Qed.
Local Lemma gmap_dep_eq_empty {A P} (mt : gmap_dep A P) :
(∀ i, P i → gmap_dep_lookup i mt = None) → mt = GEmpty.
Proof.
intros Hlookup. destruct mt as [|t]; [done|].
destruct (gmap_dep_ne_lookup_not_None t); naive_solver.
Qed.
Local Lemma gmap_dep_eq {A P} (mt1 mt2 : gmap_dep A P) :
(∀ i, ProofIrrel (P i)) →
(∀ i, P i → gmap_dep_lookup i mt1 = gmap_dep_lookup i mt2) → mt1 = mt2.
Proof.
revert mt2. induction mt1 as [|P ml1 mx1 mr1 _ IHl IHr] using gmap_dep_ind;
intros mt2 ? Hlookup;
destruct mt2 as [|? ml2 mx2 mr2 _ _ _] using gmap_dep_ind.
- done.
- symmetry. apply gmap_dep_eq_empty. naive_solver.
- apply gmap_dep_eq_empty. naive_solver.
- f_equal.
+ apply (IHl _ _). intros i. generalize (Hlookup (i~0)).
by rewrite !gmap_dep_lookup_GNode.
+ generalize (Hlookup 1). rewrite !gmap_dep_lookup_GNode.
destruct mx1 as [[]|], mx2 as [[]|]; intros; simplify_eq/=;
repeat f_equal; try apply proof_irrel; naive_solver.
+ apply (IHr _ _). intros i. generalize (Hlookup (i~1)).
by rewrite !gmap_dep_lookup_GNode.
Qed.
Local Lemma gmap_dep_ne_lookup_singleton {A P} i (p : P i) (x : A) :
gmap_dep_ne_lookup i (gmap_dep_ne_singleton i p x) = Some x.
Proof. revert P p. induction i; by simpl. Qed.
Local Lemma gmap_dep_ne_lookup_singleton_ne {A P} i j (p : P i) (x : A) :
i ≠ j → gmap_dep_ne_lookup j (gmap_dep_ne_singleton i p x) = None.
Proof. revert P j p. induction i; intros ? [?|?|]; naive_solver. Qed.
Local Lemma gmap_dep_partial_alter_GNode {A P} (f : option A → option A)
i (p : P i) (ml : gmap_dep A P~0) mx mr :
GNode_valid ml mx mr →
gmap_dep_partial_alter f i p (GNode ml mx mr) =
match i with
| 1 => λ p, GNode ml ((p,.) <$> f (snd <$> mx)) mr
| i~0 => λ p, GNode (gmap_dep_partial_alter f i p ml) mx mr
| i~1 => λ p, GNode ml mx (gmap_dep_partial_alter f i p mr)
end p.
Proof. by destruct ml, mx as [[]|], mr. Qed.
Local Lemma gmap_dep_lookup_partial_alter {A P} (f : option A → option A)
(mt : gmap_dep A P) i (p : P i) :
gmap_dep_lookup i (gmap_dep_partial_alter f i p mt) = f (gmap_dep_lookup i mt).
Proof.
revert i p. induction mt using gmap_dep_ind.
{ intros i p; simpl. destruct (f None); simpl; [|done].
by rewrite gmap_dep_ne_lookup_singleton. }
intros [] ?;
rewrite gmap_dep_partial_alter_GNode, !gmap_dep_lookup_GNode by done;
done || by destruct (f _).
Qed.
Local Lemma gmap_dep_lookup_partial_alter_ne {A P} (f : option A → option A)
(mt : gmap_dep A P) i (p : P i) j :
i ≠ j →
gmap_dep_lookup j (gmap_dep_partial_alter f i p mt) = gmap_dep_lookup j mt.
Proof.
revert i p j; induction mt using gmap_dep_ind.
{ intros i p j ?; simpl. destruct (f None); simpl; [|done].
by rewrite gmap_dep_ne_lookup_singleton_ne. }
intros [] ? [] ?;
rewrite gmap_dep_partial_alter_GNode, !gmap_dep_lookup_GNode by done;
auto with lia.
Qed.
Local Lemma gmap_dep_lookup_fmap {A B P} (f : A → B) (mt : gmap_dep A P) i :
gmap_dep_lookup i (gmap_dep_fmap f mt) = f <$> gmap_dep_lookup i mt.
Proof.
destruct mt as [|t]; simpl; [done|].
revert i. induction t; intros []; by simpl.
Qed.
Local Lemma gmap_dep_omap_GNode {A B P} (f : A → option B)
(ml : gmap_dep A P~0) mx mr :
GNode_valid ml mx mr →
gmap_dep_omap f (GNode ml mx mr) =
GNode (gmap_dep_omap f ml) ('(p,x) ← mx; (p,.) <$> f x) (gmap_dep_omap f mr).
Proof. by destruct ml, mx as [[]|], mr. Qed.
Local Lemma gmap_dep_lookup_omap {A B P} (f : A → option B) (mt : gmap_dep A P) i :
gmap_dep_lookup i (gmap_dep_omap f mt) = gmap_dep_lookup i mt ≫= f.
Proof.
revert i. induction mt using gmap_dep_ind; [done|].
intros [];
rewrite gmap_dep_omap_GNode, !gmap_dep_lookup_GNode by done; [done..|].
destruct select (option _) as [[]|]; simpl; by try destruct (f _).
Qed.
Section gmap_merge.
Context {A B C} (f : option A → option B → option C).
Local Lemma gmap_dep_merge_GNode_GEmpty {P} (ml : gmap_dep A P~0) mx mr :
GNode_valid ml mx mr →
gmap_dep_merge f (GNode ml mx mr) GEmpty =
GNode (gmap_dep_omap (λ x, f (Some x) None) ml) (diag_None' f mx None)
(gmap_dep_omap (λ x, f (Some x) None) mr).
Proof. by destruct ml, mx as [[]|], mr. Qed.
Local Lemma gmap_dep_merge_GEmpty_GNode {P} (ml : gmap_dep B P~0) mx mr :
GNode_valid ml mx mr →
gmap_dep_merge f GEmpty (GNode ml mx mr) =
GNode (gmap_dep_omap (λ x, f None (Some x)) ml) (diag_None' f None mx)
(gmap_dep_omap (λ x, f None (Some x)) mr).
Proof. by destruct ml, mx as [[]|], mr. Qed.
Local Lemma gmap_dep_merge_GNode_GNode {P}
(ml1 : gmap_dep A P~0) ml2 mx1 mx2 mr1 mr2 :
GNode_valid ml1 mx1 mr1 → GNode_valid ml2 mx2 mr2 →
gmap_dep_merge f (GNode ml1 mx1 mr1) (GNode ml2 mx2 mr2) =
GNode (gmap_dep_merge f ml1 ml2) (diag_None' f mx1 mx2)
(gmap_dep_merge f mr1 mr2).
Proof. by destruct ml1, mx1 as [[]|], mr1, ml2, mx2 as [[]|], mr2. Qed.
Local Lemma gmap_dep_lookup_merge {P} (mt1 : gmap_dep A P) (mt2 : gmap_dep B P) i :
gmap_dep_lookup i (gmap_dep_merge f mt1 mt2) =
diag_None f (gmap_dep_lookup i mt1) (gmap_dep_lookup i mt2).
Proof.
revert mt2 i; induction mt1 using gmap_dep_ind; intros mt2 i.
{ induction mt2 using gmap_dep_ind; [done|].
rewrite gmap_dep_merge_GEmpty_GNode, gmap_dep_lookup_GNode by done.
destruct i as [i|i|];
rewrite ?gmap_dep_lookup_omap, gmap_dep_lookup_GNode; simpl;
[by destruct (gmap_dep_lookup i _)..|].
destruct select (option _) as [[]|]; simpl; by try destruct (f _). }
destruct mt2 using gmap_dep_ind.
{ rewrite gmap_dep_merge_GNode_GEmpty, gmap_dep_lookup_GNode by done.
destruct i as [i|i|];
rewrite ?gmap_dep_lookup_omap, gmap_dep_lookup_GNode; simpl;
[by destruct (gmap_dep_lookup i _)..|].
destruct select (option _) as [[]|]; simpl; by try destruct (f _). }
rewrite gmap_dep_merge_GNode_GNode by done.
destruct i; rewrite ?gmap_dep_lookup_GNode; [done..|].
repeat destruct select (option _) as [[]|]; simpl; by try destruct (f _).
Qed.
End gmap_merge.
Local Lemma gmap_dep_fold_GNode {A B} (f : positive → A → B → B)
{P} i y (ml : gmap_dep A P~0) mx mr :
gmap_dep_fold f i y (GNode ml mx mr) = gmap_dep_fold f i~1
(gmap_dep_fold f i~0
match mx with None => y | Some (_,x) => f (Pos.reverse i) x y end ml) mr.
Proof. by destruct ml, mx as [[]|], mr. Qed.
Local Lemma gmap_dep_fold_ind {A} {P} (Q : gmap_dep A P → Prop) :
Q GEmpty →
(∀ i p x mt,
gmap_dep_lookup i mt = None →
(∀ j A' B (f : positive → A' → B → B) (g : A → A') b x',
gmap_dep_fold f j b
(gmap_dep_partial_alter (λ _, Some x') i p (gmap_dep_fmap g mt))
= f (Pos.reverse_go i j) x' (gmap_dep_fold f j b (gmap_dep_fmap g mt))) →
Q mt → Q (gmap_dep_partial_alter (λ _, Some x) i p mt)) →
∀ mt, Q mt.
Proof.
intros Hemp Hinsert mt. revert Q Hemp Hinsert.
induction mt as [|P ml mx mr ? IHl IHr] using gmap_dep_ind;
intros Q Hemp Hinsert; [done|].
apply (IHr (λ mt, Q (GNode ml mx mt))).
{ apply (IHl (λ mt, Q (GNode mt mx GEmpty))).
{ destruct mx as [[p x]|]; [|done].
replace (GNode GEmpty (Some (p,x)) GEmpty) with
(gmap_dep_partial_alter (λ _, Some x) 1 p GEmpty) by done.
by apply Hinsert. }
intros i p x mt r ? Hfold.
replace (GNode (gmap_dep_partial_alter (λ _, Some x) i p mt) mx GEmpty)
with (gmap_dep_partial_alter (λ _, Some x) (i~0) p (GNode mt mx GEmpty))
by (by destruct mt, mx as [[]|]).
apply Hinsert.
- by rewrite gmap_dep_lookup_GNode.
- intros j A' B f g b x'.
replace (gmap_dep_partial_alter (λ _, Some x') (i~0) p
(gmap_dep_fmap g (GNode mt mx GEmpty)))
with (GNode (gmap_dep_partial_alter (λ _, Some x') i p (gmap_dep_fmap g mt))
(prod_map id g <$> mx) GEmpty)
by (by destruct mt, mx as [[]|]).
replace (gmap_dep_fmap g (GNode mt mx GEmpty))
with (GNode (gmap_dep_fmap g mt) (prod_map id g <$> mx) GEmpty)
by (by destruct mt, mx as [[]|]).
rewrite !gmap_dep_fold_GNode; simpl; auto.
- done. }
intros i p x mt r ? Hfold.
replace (GNode ml mx (gmap_dep_partial_alter (λ _, Some x) i p mt))
with (gmap_dep_partial_alter (λ _, Some x) (i~1) p (GNode ml mx mt))
by (by destruct ml, mx as [[]|], mt).
apply Hinsert.
- by rewrite gmap_dep_lookup_GNode.
- intros j A' B f g b x'.
replace (gmap_dep_partial_alter (λ _, Some x') (i~1) p
(gmap_dep_fmap g (GNode ml mx mt)))
with (GNode (gmap_dep_fmap g ml) (prod_map id g <$> mx)
(gmap_dep_partial_alter (λ _, Some x') i p (gmap_dep_fmap g mt)))
by (by destruct ml, mx as [[]|], mt).
replace (gmap_dep_fmap g (GNode ml mx mt))
with (GNode (gmap_dep_fmap g ml) (prod_map id g <$> mx) (gmap_dep_fmap g mt))
by (by destruct ml, mx as [[]|], mt).
rewrite !gmap_dep_fold_GNode; simpl; auto.
- done.
Qed.
(** Instance of the finite map type class *)
Global Instance gmap_finmap `{Countable K} : FinMap K (gmap K).
Proof.
split.
- intros A [mt1] [mt2] Hlookup. f_equal. apply (gmap_dep_eq _ _ _).
intros i [Hk]. destruct (decode i) as [k|]; simplify_eq/=. apply Hlookup.
- done.
- intros A f [mt] i. apply gmap_dep_lookup_partial_alter.
- intros A f [mt] i j ?. apply gmap_dep_lookup_partial_alter_ne. naive_solver.
- intros A b f [mt] i. apply gmap_dep_lookup_fmap.
- intros A B f [mt] i. apply gmap_dep_lookup_omap.
- intros A B C f [mt1] [mt2] i. apply gmap_dep_lookup_merge.
- done.
- intros A P Hemp Hins [mt].
apply (gmap_dep_fold_ind (λ mt, P (GMap mt))); clear mt; [done|].
intros i [Hk] x mt ? Hfold. destruct (fmap_Some_1 _ _ _ Hk) as (k&Hk'&->).
assert (GMapKey Hk = gmap_key_encode k) as Hkk by (apply proof_irrel).
rewrite Hkk in Hfold |- *. clear Hk Hkk.
apply (Hins k x (GMap mt)); [done|]. intros A' B f g b x'.
trans ((match decode (encode k) with Some k => f k x' | None => id end)
(map_fold f b (g <$> GMap mt))); [apply (Hfold 1)|].
by rewrite Hk'.
Qed.
Global Program Instance gmap_countable
`{Countable K, Countable A} : Countable (gmap K A) := {
encode m := encode (map_to_list m : list (K * A));
decode p := list_to_map <$> decode p
}.
Next Obligation.
intros K ?? A ?? m; simpl. rewrite decode_encode; simpl.
by rewrite list_to_map_to_list.
Qed.
(** Conversion to/from [Pmap] *)
Local Definition gmap_dep_ne_to_pmap_ne {A} : ∀ {P}, gmap_dep_ne A P → Pmap_ne A :=
fix go {P} t :=
match t with
| GNode001 r => PNode001 (go r)
| GNode010 _ x => PNode010 x
| GNode011 _ x r => PNode011 x (go r)
| GNode100 l => PNode100 (go l)
| GNode101 l r => PNode101 (go l) (go r)
| GNode110 l _ x => PNode110 (go l) x
| GNode111 l _ x r => PNode111 (go l) x (go r)
end.
Local Definition gmap_dep_to_pmap {A P} (mt : gmap_dep A P) : Pmap A :=
match mt with
| GEmpty => PEmpty
| GNodes t => PNodes (gmap_dep_ne_to_pmap_ne t)
end.
Definition gmap_to_pmap {A} (m : gmap positive A) : Pmap A :=
let '(GMap mt) := m in gmap_dep_to_pmap mt.
Local Lemma lookup_gmap_dep_ne_to_pmap_ne {A P} (t : gmap_dep_ne A P) i :
gmap_dep_ne_to_pmap_ne t !! i = gmap_dep_ne_lookup i t.
Proof. revert i; induction t; intros []; by simpl. Qed.
Lemma lookup_gmap_to_pmap {A} (m : gmap positive A) i :
gmap_to_pmap m !! i = m !! i.
Proof. destruct m as [[|t]]; [done|]. apply lookup_gmap_dep_ne_to_pmap_ne. Qed.
Local Definition pmap_ne_to_gmap_dep_ne {A} :
∀ {P}, (∀ i, P i) → Pmap_ne A → gmap_dep_ne A P :=
fix go {P} (p : ∀ i, P i) t :=
match t with
| PNode001 r => GNode001 (go p~1 r)
| PNode010 x => GNode010 (p 1) x
| PNode011 x r => GNode011 (p 1) x (go p~1 r)
| PNode100 l => GNode100 (go p~0 l)
| PNode101 l r => GNode101 (go p~0 l) (go p~1 r)
| PNode110 l x => GNode110 (go p~0 l) (p 1) x
| PNode111 l x r => GNode111 (go p~0 l) (p 1) x (go p~1 r)
end%function.
Local Definition pmap_to_gmap_dep {A P}
(p : ∀ i, P i) (mt : Pmap A) : gmap_dep A P :=
match mt with
| PEmpty => GEmpty
| PNodes t => GNodes (pmap_ne_to_gmap_dep_ne p t)
end.
Definition pmap_to_gmap {A} (m : Pmap A) : gmap positive A :=
GMap $ pmap_to_gmap_dep gmap_key_encode m.
Local Lemma lookup_pmap_ne_to_gmap_dep_ne {A P} (p : ∀ i, P i) (t : Pmap_ne A) i :
gmap_dep_ne_lookup i (pmap_ne_to_gmap_dep_ne p t) = t !! i.
Proof. revert P i p; induction t; intros ? [] ?; by simpl. Qed.
Lemma lookup_pmap_to_gmap {A} (m : Pmap A) i : pmap_to_gmap m !! i = m !! i.
Proof. destruct m as [|t]; [done|]. apply lookup_pmap_ne_to_gmap_dep_ne. Qed.
(** * Curry and uncurry *)
Definition gmap_uncurry `{Countable K1, Countable K2} {A} :
gmap K1 (gmap K2 A) → gmap (K1 * K2) A :=
map_fold (λ i1 m' macc,
map_fold (λ i2 x, <[(i1,i2):=x]>) macc m') ∅.
Definition gmap_curry `{Countable K1, Countable K2} {A} :
gmap (K1 * K2) A → gmap K1 (gmap K2 A) :=
map_fold (λ '(i1, i2) x,
partial_alter (Some ∘ <[i2:=x]> ∘ default ∅) i1) ∅.
Section curry_uncurry.
Context `{Countable K1, Countable K2} {A : Type}.
Lemma lookup_gmap_uncurry (m : gmap K1 (gmap K2 A)) i j :
gmap_uncurry m !! (i,j) = m !! i ≫= (.!! j).
Proof.
apply (map_fold_weak_ind (λ mr m, mr !! (i,j) = m !! i ≫= (.!! j))).
{ by rewrite !lookup_empty. }
clear m; intros i' m2 m m12 Hi' IH.
apply (map_fold_weak_ind (λ m2r m2, m2r !! (i,j) = <[i':=m2]> m !! i ≫= (.!! j))).
{ rewrite IH. destruct (decide (i' = i)) as [->|].
- rewrite lookup_insert, Hi'; simpl; by rewrite lookup_empty.
- by rewrite lookup_insert_ne by done. }
intros j' y m2' m12' Hj' IH'. destruct (decide (i = i')) as [->|].
- rewrite lookup_insert; simpl. destruct (decide (j = j')) as [->|].
+ by rewrite !lookup_insert.
+ by rewrite !lookup_insert_ne, IH', lookup_insert by congruence.
- by rewrite !lookup_insert_ne, IH', lookup_insert_ne by congruence.
Qed.
Lemma lookup_gmap_curry (m : gmap (K1 * K2) A) i j :
gmap_curry m !! i ≫= (.!! j) = m !! (i, j).
Proof.
apply (map_fold_weak_ind (λ mr m, mr !! i ≫= (.!! j) = m !! (i, j))).
{ by rewrite !lookup_empty. }
clear m; intros [i' j'] x m12 mr Hij' IH.
destruct (decide (i = i')) as [->|].
- rewrite lookup_partial_alter. destruct (decide (j = j')) as [->|].
+ destruct (mr !! i'); simpl; by rewrite !lookup_insert.
+ destruct (mr !! i'); simpl; by rewrite !lookup_insert_ne by congruence.
- by rewrite lookup_partial_alter_ne, lookup_insert_ne by congruence.
Qed.
Lemma lookup_gmap_curry_None (m : gmap (K1 * K2) A) i :
gmap_curry m !! i = None ↔ (∀ j, m !! (i, j) = None).
Proof.
apply (map_fold_weak_ind
(λ mr m, mr !! i = None ↔ (∀ j, m !! (i, j) = None))); [done|].
clear m; intros [i' j'] x m12 mr Hij' IH.
destruct (decide (i = i')) as [->|].
- split; [by rewrite lookup_partial_alter|].
intros Hi. specialize (Hi j'). by rewrite lookup_insert in Hi.
- rewrite lookup_partial_alter_ne, IH; [|done]. apply forall_proper.
intros j. rewrite lookup_insert_ne; [done|congruence].
Qed.
Lemma gmap_uncurry_curry (m : gmap (K1 * K2) A) :
gmap_uncurry (gmap_curry m) = m.
Proof.
apply map_eq; intros [i j]. by rewrite lookup_gmap_uncurry, lookup_gmap_curry.
Qed.
Lemma gmap_curry_non_empty (m : gmap (K1 * K2) A) i x :
gmap_curry m !! i = Some x → x ≠ ∅.
Proof.
intros Hm ->. eapply eq_None_not_Some; [|by eexists].
eapply lookup_gmap_curry_None; intros j.
by rewrite <-lookup_gmap_curry, Hm.
Qed.
Lemma gmap_curry_uncurry_non_empty (m : gmap K1 (gmap K2 A)) :
(∀ i x, m !! i = Some x → x ≠ ∅) →
gmap_curry (gmap_uncurry m) = m.
Proof.
intros Hne. apply map_eq; intros i. destruct (m !! i) as [m2|] eqn:Hm.
- destruct (gmap_curry (gmap_uncurry m) !! i) as [m2'|] eqn:Hcurry.
+ f_equal. apply map_eq. intros j.
trans (gmap_curry (gmap_uncurry m) !! i ≫= (.!! j)).
{ by rewrite Hcurry. }
by rewrite lookup_gmap_curry, lookup_gmap_uncurry, Hm.
+ rewrite lookup_gmap_curry_None in Hcurry.
exfalso; apply (Hne i m2), map_eq; [done|intros j].
by rewrite lookup_empty, <-(Hcurry j), lookup_gmap_uncurry, Hm.
- apply lookup_gmap_curry_None; intros j. by rewrite lookup_gmap_uncurry, Hm.
Qed.
End curry_uncurry.
(** * Finite sets *)
Definition gset K `{Countable K} := mapset (gmap K).
Section gset.
Context `{Countable K}.
(* Lift instances of operational TCs from [mapset] and mark them [simpl never]. *)
Global Instance gset_elem_of: ElemOf K (gset K) := _.
Global Instance gset_empty : Empty (gset K) := _.
Global Instance gset_singleton : Singleton K (gset K) := _.
Global Instance gset_union: Union (gset K) := _.
Global Instance gset_intersection: Intersection (gset K) := _.
Global Instance gset_difference: Difference (gset K) := _.
Global Instance gset_elements: Elements K (gset K) := _.
Global Instance gset_eq_dec : EqDecision (gset K) := _.
Global Instance gset_countable : Countable (gset K) := _.
Global Instance gset_equiv_dec : RelDecision (≡@{gset K}) | 1 := _.
Global Instance gset_elem_of_dec : RelDecision (∈@{gset K}) | 1 := _.
Global Instance gset_disjoint_dec : RelDecision (##@{gset K}) := _.
Global Instance gset_subseteq_dec : RelDecision (⊆@{gset K}) := _.
(** We put in an eta expansion to avoid [injection] from unfolding equalities
like [dom (gset _) m1 = dom (gset _) m2]. *)
Global Instance gset_dom {A} : Dom (gmap K A) (gset K) := λ m,
let '(GMap mt) := m in mapset_dom (GMap mt).
Global Arguments gset_elem_of : simpl never.
Global Arguments gset_empty : simpl never.
Global Arguments gset_singleton : simpl never.
Global Arguments gset_union : simpl never.
Global Arguments gset_intersection : simpl never.
Global Arguments gset_difference : simpl never.
Global Arguments gset_elements : simpl never.
Global Arguments gset_eq_dec : simpl never.
Global Arguments gset_countable : simpl never.
Global Arguments gset_equiv_dec : simpl never.
Global Arguments gset_elem_of_dec : simpl never.
Global Arguments gset_disjoint_dec : simpl never.
Global Arguments gset_subseteq_dec : simpl never.
Global Arguments gset_dom : simpl never.
(* Lift instances of other TCs. *)
Global Instance gset_leibniz : LeibnizEquiv (gset K) := _.
Global Instance gset_semi_set : SemiSet K (gset K) | 1 := _.
Global Instance gset_set : Set_ K (gset K) | 1 := _.
Global Instance gset_fin_set : FinSet K (gset K) := _.
Global Instance gset_dom_spec : FinMapDom K (gmap K) (gset K).
Proof.
pose proof (mapset_dom_spec (M:=gmap K)) as [?? Hdom]; split; auto.
intros A m. specialize (Hdom A m). by destruct m.
Qed.
(** If you are looking for a lemma showing that [gset] is extensional, see
[sets.set_eq]. *)
(** The function [gset_to_gmap x X] converts a set [X] to a map with domain
[X] where each key has value [x]. Compared to the generic conversion
[set_to_map], the function [gset_to_gmap] has [O(n)] instead of [O(n log n)]
complexity and has an easier and better developed theory. *)
Definition gset_to_gmap {A} (x : A) (X : gset K) : gmap K A :=
(λ _, x) <$> mapset_car X.
Lemma lookup_gset_to_gmap {A} (x : A) (X : gset K) i :
gset_to_gmap x X !! i = (guard (i ∈ X);; Some x).
Proof.
destruct X as [X].
unfold gset_to_gmap, gset_elem_of, elem_of, mapset_elem_of; simpl.
rewrite lookup_fmap.
case_guard; destruct (X !! i) as [[]|]; naive_solver.
Qed.
Lemma lookup_gset_to_gmap_Some {A} (x : A) (X : gset K) i y :
gset_to_gmap x X !! i = Some y ↔ i ∈ X ∧ x = y.
Proof. rewrite lookup_gset_to_gmap. simplify_option_eq; naive_solver. Qed.
Lemma lookup_gset_to_gmap_None {A} (x : A) (X : gset K) i :
gset_to_gmap x X !! i = None ↔ i ∉ X.
Proof. rewrite lookup_gset_to_gmap. simplify_option_eq; naive_solver. Qed.
Lemma gset_to_gmap_empty {A} (x : A) : gset_to_gmap x ∅ = ∅.
Proof. apply fmap_empty. Qed.
Lemma gset_to_gmap_union_singleton {A} (x : A) i Y :
gset_to_gmap x ({[ i ]} ∪ Y) = <[i:=x]>(gset_to_gmap x Y).
Proof.
apply map_eq; intros j; apply option_eq; intros y.
rewrite lookup_insert_Some, !lookup_gset_to_gmap_Some, elem_of_union,
elem_of_singleton; destruct (decide (i = j)); intuition.
Qed.
Lemma gset_to_gmap_singleton {A} (x : A) i :
gset_to_gmap x {[ i ]} = {[i:=x]}.
Proof.
rewrite <-(right_id_L ∅ (∪) {[ i ]}), gset_to_gmap_union_singleton.
by rewrite gset_to_gmap_empty.
Qed.
Lemma gset_to_gmap_difference_singleton {A} (x : A) i Y :
gset_to_gmap x (Y ∖ {[i]}) = delete i (gset_to_gmap x Y).
Proof.
apply map_eq; intros j; apply option_eq; intros y.
rewrite lookup_delete_Some, !lookup_gset_to_gmap_Some, elem_of_difference,
elem_of_singleton; destruct (decide (i = j)); intuition.
Qed.
Lemma fmap_gset_to_gmap {A B} (f : A → B) (X : gset K) (x : A) :
f <$> gset_to_gmap x X = gset_to_gmap (f x) X.
Proof.
apply map_eq; intros j. rewrite lookup_fmap, !lookup_gset_to_gmap.
by simplify_option_eq.
Qed.
Lemma gset_to_gmap_dom {A B} (m : gmap K A) (y : B) :
gset_to_gmap y (dom m) = const y <$> m.
Proof.
apply map_eq; intros j. rewrite lookup_fmap, lookup_gset_to_gmap.
destruct (m !! j) as [x|] eqn:?.
- by rewrite option_guard_True by (rewrite elem_of_dom; eauto).
- by rewrite option_guard_False by (rewrite not_elem_of_dom; eauto).
Qed.
Lemma dom_gset_to_gmap {A} (X : gset K) (x : A) :
dom (gset_to_gmap x X) = X.
Proof.
induction X as [| y X not_in IH] using set_ind_L.
- rewrite gset_to_gmap_empty, dom_empty_L; done.
- rewrite gset_to_gmap_union_singleton, dom_insert_L, IH; done.
Qed.
Lemma gset_to_gmap_set_to_map {A} (X : gset K) (x : A) :
gset_to_gmap x X = set_to_map (.,x) X.
Proof.
apply map_eq; intros k. apply option_eq; intros y.
rewrite lookup_gset_to_gmap_Some, lookup_set_to_map; naive_solver.
Qed.
Lemma map_to_list_gset_to_gmap {A} (X : gset K) (x : A) :
map_to_list (gset_to_gmap x X) ≡ₚ (., x) <$> elements X.
Proof.
induction X as [| y X not_in IH] using set_ind_L.
- rewrite gset_to_gmap_empty, elements_empty, map_to_list_empty. done.
- rewrite gset_to_gmap_union_singleton, elements_union_singleton by done.
rewrite map_to_list_insert.
2:{ rewrite lookup_gset_to_gmap_None. done. }
rewrite IH. done.
Qed.
End gset.
Section gset_cprod.
Context `{Countable A, Countable B}.
Global Instance gset_cprod : CProd (gset A) (gset B) (gset (A * B)) :=
λ X Y, set_bind (λ e1, set_map (e1,.) Y) X.
Lemma elem_of_gset_cprod (X : gset A) (Y : gset B) x :
x ∈ cprod X Y ↔ x.1 ∈ X ∧ x.2 ∈ Y.
Proof. unfold cprod, gset_cprod. destruct x. set_solver. Qed.
Global Instance set_unfold_gset_cprod (X : gset A) (Y : gset B) x (P : Prop) Q :
SetUnfoldElemOf x.1 X P → SetUnfoldElemOf x.2 Y Q →
SetUnfoldElemOf x (cprod X Y) (P ∧ Q).
Proof using.
intros ??; constructor.
by rewrite elem_of_gset_cprod, (set_unfold_elem_of x.1 X P),
(set_unfold_elem_of x.2 Y Q).
Qed.
End gset_cprod.
Global Typeclasses Opaque gset.
|