1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
|
From stdpp Require Export countable.
From stdpp Require Import gmap.
From stdpp Require ssreflect. (* don't import yet, but we'll later do that to use ssreflect rewrite *)
From stdpp Require Import options.
(** Multisets [gmultiset A] are represented as maps from [A] to natural numbers,
which represent the multiplicity. To ensure we have canonical representations,
the multiplicity is a [positive]. Therefore, [gmultiset_car !! x = None] means
[x] has multiplicity [0] and [gmultiset_car !! x = Some 1] means [x] has
multiplicity 1. *)
Record gmultiset A `{Countable A} := GMultiSet { gmultiset_car : gmap A positive }.
Global Arguments GMultiSet {_ _ _} _ : assert.
Global Arguments gmultiset_car {_ _ _} _ : assert.
Global Instance gmultiset_eq_dec `{Countable A} : EqDecision (gmultiset A).
Proof. solve_decision. Defined.
Global Program Instance gmultiset_countable `{Countable A} :
Countable (gmultiset A) := {|
encode X := encode (gmultiset_car X); decode p := GMultiSet <$> decode p
|}.
Next Obligation. intros A ?? [X]; simpl. by rewrite decode_encode. Qed.
Section definitions.
Context `{Countable A}.
Definition multiplicity (x : A) (X : gmultiset A) : nat :=
match gmultiset_car X !! x with Some n => Pos.to_nat n | None => 0 end.
Global Instance gmultiset_elem_of : ElemOf A (gmultiset A) := λ x X,
0 < multiplicity x X.
Global Instance gmultiset_subseteq : SubsetEq (gmultiset A) := λ X Y, ∀ x,
multiplicity x X ≤ multiplicity x Y.
Global Instance gmultiset_equiv : Equiv (gmultiset A) := λ X Y, ∀ x,
multiplicity x X = multiplicity x Y.
Global Instance gmultiset_elements : Elements A (gmultiset A) := λ X,
let (X) := X in '(x,n) ← map_to_list X; replicate (Pos.to_nat n) x.
Global Instance gmultiset_size : Size (gmultiset A) := length ∘ elements.
Global Instance gmultiset_empty : Empty (gmultiset A) := GMultiSet ∅.
Global Instance gmultiset_singleton : SingletonMS A (gmultiset A) := λ x,
GMultiSet {[ x := 1%positive ]}.
Global Instance gmultiset_union : Union (gmultiset A) := λ X Y,
let (X) := X in let (Y) := Y in
GMultiSet $ union_with (λ x y, Some (x `max` y)%positive) X Y.
Global Instance gmultiset_intersection : Intersection (gmultiset A) := λ X Y,
let (X) := X in let (Y) := Y in
GMultiSet $ intersection_with (λ x y, Some (x `min` y)%positive) X Y.
(** Often called the "sum" *)
Global Instance gmultiset_disj_union : DisjUnion (gmultiset A) := λ X Y,
let (X) := X in let (Y) := Y in
GMultiSet $ union_with (λ x y, Some (x + y)%positive) X Y.
Global Instance gmultiset_difference : Difference (gmultiset A) := λ X Y,
let (X) := X in let (Y) := Y in
GMultiSet $ difference_with (λ x y,
guard (y < x)%positive;; Some (x - y)%positive) X Y.
Global Instance gmultiset_scalar_mul : ScalarMul nat (gmultiset A) := λ n X,
let (X) := X in GMultiSet $
match n with 0 => ∅ | _ => fmap (λ m, m * Pos.of_nat n)%positive X end.
Global Instance gmultiset_dom : Dom (gmultiset A) (gset A) := λ X,
let (X) := X in dom X.
Definition gmultiset_map `{Countable B} (f : A → B)
(X : gmultiset A) : gmultiset B :=
GMultiSet $ map_fold
(λ x n, partial_alter (Some ∘ from_option (Pos.add n) n) (f x))
∅
(gmultiset_car X).
End definitions.
Global Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq.
Global Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty.
Global Typeclasses Opaque gmultiset_singleton gmultiset_union gmultiset_difference.
Global Typeclasses Opaque gmultiset_scalar_mul gmultiset_dom gmultiset_map.
Section basic_lemmas.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.
Lemma gmultiset_eq X Y : X = Y ↔ ∀ x, multiplicity x X = multiplicity x Y.
Proof.
split; [by intros ->|intros HXY].
destruct X as [X], Y as [Y]; f_equal; apply map_eq; intros x.
specialize (HXY x); unfold multiplicity in *; simpl in *.
repeat case_match; naive_solver lia.
Qed.
Global Instance gmultiset_leibniz : LeibnizEquiv (gmultiset A).
Proof. intros X Y. by rewrite gmultiset_eq. Qed.
Global Instance gmultiset_equiv_equivalence : Equivalence (≡@{gmultiset A}).
Proof. constructor; repeat intro; naive_solver. Qed.
(* Multiplicity *)
Lemma multiplicity_empty x : multiplicity x ∅ = 0.
Proof. done. Qed.
Lemma multiplicity_singleton x : multiplicity x {[+ x +]} = 1.
Proof. unfold multiplicity; simpl. by rewrite lookup_singleton. Qed.
Lemma multiplicity_singleton_ne x y : x ≠ y → multiplicity x {[+ y +]} = 0.
Proof. intros. unfold multiplicity; simpl. by rewrite lookup_singleton_ne. Qed.
Lemma multiplicity_singleton' x y :
multiplicity x {[+ y +]} = if decide (x = y) then 1 else 0.
Proof.
destruct (decide _) as [->|].
- by rewrite multiplicity_singleton.
- by rewrite multiplicity_singleton_ne.
Qed.
Lemma multiplicity_union X Y x :
multiplicity x (X ∪ Y) = multiplicity x X `max` multiplicity x Y.
Proof.
destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_intersection X Y x :
multiplicity x (X ∩ Y) = multiplicity x X `min` multiplicity x Y.
Proof.
destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
rewrite lookup_intersection_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_disj_union X Y x :
multiplicity x (X ⊎ Y) = multiplicity x X + multiplicity x Y.
Proof.
destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
rewrite lookup_union_with. destruct (X !! _), (Y !! _); simpl; lia.
Qed.
Lemma multiplicity_difference X Y x :
multiplicity x (X ∖ Y) = multiplicity x X - multiplicity x Y.
Proof.
destruct X as [X], Y as [Y]; unfold multiplicity; simpl.
rewrite lookup_difference_with.
destruct (X !! _), (Y !! _); simplify_option_eq; lia.
Qed.
Lemma multiplicity_scalar_mul n X x :
multiplicity x (n *: X) = n * multiplicity x X.
Proof.
destruct X as [X]; unfold multiplicity; simpl. destruct n as [|n]; [done|].
rewrite lookup_fmap. destruct (X !! _); simpl; lia.
Qed.
(* Set *)
Lemma elem_of_multiplicity x X : x ∈ X ↔ 0 < multiplicity x X.
Proof. done. Qed.
Lemma gmultiset_elem_of_empty x : x ∈@{gmultiset A} ∅ ↔ False.
Proof. rewrite elem_of_multiplicity, multiplicity_empty. lia. Qed.
Lemma gmultiset_elem_of_singleton x y : x ∈@{gmultiset A} {[+ y +]} ↔ x = y.
Proof.
rewrite elem_of_multiplicity, multiplicity_singleton'.
case_decide; naive_solver lia.
Qed.
Lemma gmultiset_elem_of_union X Y x : x ∈ X ∪ Y ↔ x ∈ X ∨ x ∈ Y.
Proof. rewrite !elem_of_multiplicity, multiplicity_union. lia. Qed.
Lemma gmultiset_elem_of_disj_union X Y x : x ∈ X ⊎ Y ↔ x ∈ X ∨ x ∈ Y.
Proof. rewrite !elem_of_multiplicity, multiplicity_disj_union. lia. Qed.
Lemma gmultiset_elem_of_intersection X Y x : x ∈ X ∩ Y ↔ x ∈ X ∧ x ∈ Y.
Proof. rewrite !elem_of_multiplicity, multiplicity_intersection. lia. Qed.
Lemma gmultiset_elem_of_scalar_mul n X x : x ∈ n *: X ↔ n ≠ 0 ∧ x ∈ X.
Proof. rewrite !elem_of_multiplicity, multiplicity_scalar_mul. lia. Qed.
Global Instance gmultiset_elem_of_dec : RelDecision (∈@{gmultiset A}).
Proof. refine (λ x X, cast_if (decide (0 < multiplicity x X))); done. Defined.
End basic_lemmas.
(** * A solver for multisets *)
(** We define a tactic [multiset_solver] that solves goals involving multisets.
The strategy of this tactic is as follows:
1. Turn all equalities ([=]), equivalences ([≡]), inclusions ([⊆] and [⊂]),
and set membership relations ([∈]) into arithmetic (in)equalities
involving [multiplicity]. The multiplicities of [∅], [∪], [∩], [⊎] and [∖]
are turned into [0], [max], [min], [+], and [-], respectively.
2. Decompose the goal into smaller subgoals through intuitionistic reasoning.
3. Instantiate universally quantified hypotheses in hypotheses to obtain a
goal that can be solved using [lia].
4. Simplify multiplicities of singletons [{[ x ]}].
Step (1) and (2) are implemented using the [set_solver] tactic, which internally
calls [naive_solver] for step (2). Step (1) is implemented by extending the
[SetUnfold] mechanism with a class [MultisetUnfold].
Step (3) is implemented using the tactic [multiset_instantiate], which
instantiates universally quantified hypotheses [H : ∀ x : A, P x] in two ways:
- If the goal or some hypothesis contains [multiplicity y X] it adds the
hypothesis [H y].
- If [P] contains a multiset singleton [{[ y ]}] it adds the hypothesis [H y].
This is needed, for example, to prove [¬ ({[ x ]} ⊆ ∅)], which is turned
into hypothesis [H : ∀ y, multiplicity y {[ x ]} ≤ 0] and goal [False]. The
only way to make progress is to instantiate [H] with the singleton appearing
in [H], so variable [x].
Step (4) is implemented using the tactic [multiset_simplify_singletons], which
simplifies occurrences of [multiplicity x {[ y ]}] as follows:
- First, we try to turn these occurencess into [1] or [0] if either [x = y] or
[x ≠ y] can be proved using [done], respectively.
- Second, we try to turn these occurrences into a fresh [z ≤ 1] if [y] does not
occur elsewhere in the hypotheses or goal.
- Finally, we make a case distinction between [x = y] or [x ≠ y]. This step is
done last so as to avoid needless exponential blow-ups.
The tests [test_big_X] in [tests/multiset_solver.v] show the second step reduces
the running time significantly (from >10 seconds to <1 second). *)
Class MultisetUnfold `{Countable A} (x : A) (X : gmultiset A) (n : nat) :=
{ multiset_unfold : multiplicity x X = n }.
Global Arguments multiset_unfold {_ _ _} _ _ _ {_} : assert.
Global Hint Mode MultisetUnfold + + + - + - : typeclass_instances.
Section multiset_unfold.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.
Global Instance multiset_unfold_default x X :
MultisetUnfold x X (multiplicity x X) | 1000.
Proof. done. Qed.
Global Instance multiset_unfold_empty x : MultisetUnfold x ∅ 0.
Proof. constructor. by rewrite multiplicity_empty. Qed.
Global Instance multiset_unfold_singleton x :
MultisetUnfold x {[+ x +]} 1.
Proof. constructor. by rewrite multiplicity_singleton. Qed.
Global Instance multiset_unfold_union x X Y n m :
MultisetUnfold x X n → MultisetUnfold x Y m →
MultisetUnfold x (X ∪ Y) (n `max` m).
Proof. intros [HX] [HY]; constructor. by rewrite multiplicity_union, HX, HY. Qed.
Global Instance multiset_unfold_intersection x X Y n m :
MultisetUnfold x X n → MultisetUnfold x Y m →
MultisetUnfold x (X ∩ Y) (n `min` m).
Proof. intros [HX] [HY]; constructor. by rewrite multiplicity_intersection, HX, HY. Qed.
Global Instance multiset_unfold_disj_union x X Y n m :
MultisetUnfold x X n → MultisetUnfold x Y m →
MultisetUnfold x (X ⊎ Y) (n + m).
Proof. intros [HX] [HY]; constructor. by rewrite multiplicity_disj_union, HX, HY. Qed.
Global Instance multiset_unfold_difference x X Y n m :
MultisetUnfold x X n → MultisetUnfold x Y m →
MultisetUnfold x (X ∖ Y) (n - m).
Proof. intros [HX] [HY]; constructor. by rewrite multiplicity_difference, HX, HY. Qed.
Global Instance multiset_unfold_scalar_mul x m X n :
MultisetUnfold x X n →
MultisetUnfold x (m *: X) (m * n).
Proof. intros [HX]; constructor. by rewrite multiplicity_scalar_mul, HX. Qed.
Global Instance set_unfold_multiset_equiv X Y f g :
(∀ x, MultisetUnfold x X (f x)) → (∀ x, MultisetUnfold x Y (g x)) →
SetUnfold (X ≡ Y) (∀ x, f x = g x) | 0.
Proof.
constructor. apply forall_proper; intros x.
by rewrite (multiset_unfold x X (f x)), (multiset_unfold x Y (g x)).
Qed.
Global Instance set_unfold_multiset_eq X Y f g :
(∀ x, MultisetUnfold x X (f x)) → (∀ x, MultisetUnfold x Y (g x)) →
SetUnfold (X = Y) (∀ x, f x = g x) | 0.
Proof. constructor. unfold_leibniz. by apply set_unfold_multiset_equiv. Qed.
Global Instance set_unfold_multiset_subseteq X Y f g :
(∀ x, MultisetUnfold x X (f x)) → (∀ x, MultisetUnfold x Y (g x)) →
SetUnfold (X ⊆ Y) (∀ x, f x ≤ g x) | 0.
Proof.
constructor. apply forall_proper; intros x.
by rewrite (multiset_unfold x X (f x)), (multiset_unfold x Y (g x)).
Qed.
Global Instance set_unfold_multiset_subset X Y f g :
(∀ x, MultisetUnfold x X (f x)) → (∀ x, MultisetUnfold x Y (g x)) →
SetUnfold (X ⊂ Y) ((∀ x, f x ≤ g x) ∧ (¬∀ x, g x ≤ f x)) | 0.
Proof.
constructor. unfold strict. f_equiv.
- by apply set_unfold_multiset_subseteq.
- f_equiv. by apply set_unfold_multiset_subseteq.
Qed.
Global Instance set_unfold_multiset_elem_of X x n :
MultisetUnfold x X n → SetUnfoldElemOf x X (0 < n) | 100.
Proof. constructor. by rewrite <-(multiset_unfold x X n). Qed.
Global Instance set_unfold_gmultiset_empty x :
SetUnfoldElemOf x (∅ : gmultiset A) False.
Proof. constructor. apply gmultiset_elem_of_empty. Qed.
Global Instance set_unfold_gmultiset_singleton x y :
SetUnfoldElemOf x ({[+ y +]} : gmultiset A) (x = y).
Proof. constructor; apply gmultiset_elem_of_singleton. Qed.
Global Instance set_unfold_gmultiset_union x X Y P Q :
SetUnfoldElemOf x X P → SetUnfoldElemOf x Y Q →
SetUnfoldElemOf x (X ∪ Y) (P ∨ Q).
Proof.
intros ??; constructor. by rewrite gmultiset_elem_of_union,
(set_unfold_elem_of x X P), (set_unfold_elem_of x Y Q).
Qed.
Global Instance set_unfold_gmultiset_disj_union x X Y P Q :
SetUnfoldElemOf x X P → SetUnfoldElemOf x Y Q →
SetUnfoldElemOf x (X ⊎ Y) (P ∨ Q).
Proof.
intros ??; constructor. rewrite gmultiset_elem_of_disj_union.
by rewrite <-(set_unfold_elem_of x X P), <-(set_unfold_elem_of x Y Q).
Qed.
Global Instance set_unfold_gmultiset_intersection x X Y P Q :
SetUnfoldElemOf x X P → SetUnfoldElemOf x Y Q →
SetUnfoldElemOf x (X ∩ Y) (P ∧ Q).
Proof.
intros ??; constructor. rewrite gmultiset_elem_of_intersection.
by rewrite (set_unfold_elem_of x X P), (set_unfold_elem_of x Y Q).
Qed.
End multiset_unfold.
(** Step 3: instantiate hypotheses *)
(** For these tactics we want to use ssreflect rewrite. ssreflect matching
interacts better with canonical structures (see
<https://gitlab.mpi-sws.org/iris/stdpp/-/issues/195>). *)
Module Export tactics.
Import ssreflect.
Ltac multiset_instantiate :=
repeat match goal with
| H : (∀ x : ?A, @?P x) |- _ =>
let e := mk_evar A in
lazymatch constr:(P e) with
| context [ {[+ ?y +]} ] => unify y e; learn_hyp (H y)
end
| H : (∀ x : ?A, _), _ : context [multiplicity ?y _] |- _ => learn_hyp (H y)
| H : (∀ x : ?A, _) |- context [multiplicity ?y _] => learn_hyp (H y)
end.
(** Step 4: simplify singletons *)
(** This lemma results in information loss if there are other occurrences of
[y] in the goal. In the tactic [multiset_simplify_singletons] we use [clear y]
to ensure we do not use the lemma if it leads to information loss. *)
Local Lemma multiplicity_singleton_forget `{Countable A} x y :
∃ n, multiplicity (A:=A) x {[+ y +]} = n ∧ n ≤ 1.
Proof. rewrite multiplicity_singleton'. case_decide; eauto with lia. Qed.
Ltac multiset_simplify_singletons :=
repeat match goal with
| H : context [multiplicity ?x {[+ ?y +]}] |- _ =>
first
[progress rewrite ?multiplicity_singleton ?multiplicity_singleton_ne in H; [|done..]
(* This second case does *not* use ssreflect matching (due to [destruct]
and the [->] pattern). If the default Coq matching goes wrong it will
fail and fall back to the third case, which is strictly more general,
just slower. *)
|destruct (multiplicity_singleton_forget x y) as (?&->&?); clear y
|rewrite multiplicity_singleton' in H; destruct (decide (x = y)); simplify_eq/=]
| |- context [multiplicity ?x {[+ ?y +]}] =>
first
[progress rewrite ?multiplicity_singleton ?multiplicity_singleton_ne; [|done..]
(* Similar to above, this second case does *not* use ssreflect matching. *)
|destruct (multiplicity_singleton_forget x y) as (?&->&?); clear y
|rewrite multiplicity_singleton'; destruct (decide (x = y)); simplify_eq/=]
end.
End tactics.
(** Putting it all together *)
(** Similar to [set_solver] and [naive_solver], [multiset_solver] has a [by]
parameter whose default is [eauto]. *)
Tactic Notation "multiset_solver" "by" tactic3(tac) :=
set_solver by (multiset_instantiate;
multiset_simplify_singletons;
(* [fast_done] to solve trivial equalities or contradictions,
[lia] for the common case that involves arithmetic,
[tac] if all else fails *)
solve [fast_done|lia|tac]).
Tactic Notation "multiset_solver" := multiset_solver by eauto.
Section more_lemmas.
Context `{Countable A}.
Implicit Types x y : A.
Implicit Types X Y : gmultiset A.
(* Algebraic laws *)
(** For union *)
Global Instance gmultiset_union_comm : Comm (=@{gmultiset A}) (∪).
Proof. unfold Comm. multiset_solver. Qed.
Global Instance gmultiset_union_assoc : Assoc (=@{gmultiset A}) (∪).
Proof. unfold Assoc. multiset_solver. Qed.
Global Instance gmultiset_union_left_id : LeftId (=@{gmultiset A}) ∅ (∪).
Proof. unfold LeftId. multiset_solver. Qed.
Global Instance gmultiset_union_right_id : RightId (=@{gmultiset A}) ∅ (∪).
Proof. unfold RightId. multiset_solver. Qed.
Global Instance gmultiset_union_idemp : IdemP (=@{gmultiset A}) (∪).
Proof. unfold IdemP. multiset_solver. Qed.
(** For intersection *)
Global Instance gmultiset_intersection_comm : Comm (=@{gmultiset A}) (∩).
Proof. unfold Comm. multiset_solver. Qed.
Global Instance gmultiset_intersection_assoc : Assoc (=@{gmultiset A}) (∩).
Proof. unfold Assoc. multiset_solver. Qed.
Global Instance gmultiset_intersection_left_absorb : LeftAbsorb (=@{gmultiset A}) ∅ (∩).
Proof. unfold LeftAbsorb. multiset_solver. Qed.
Global Instance gmultiset_intersection_right_absorb : RightAbsorb (=@{gmultiset A}) ∅ (∩).
Proof. unfold RightAbsorb. multiset_solver. Qed.
Global Instance gmultiset_intersection_idemp : IdemP (=@{gmultiset A}) (∩).
Proof. unfold IdemP. multiset_solver. Qed.
Lemma gmultiset_union_intersection_l X Y Z : X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_union_intersection_r X Y Z : (X ∩ Y) ∪ Z = (X ∪ Z) ∩ (Y ∪ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_intersection_union_l X Y Z : X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_intersection_union_r X Y Z : (X ∪ Y) ∩ Z = (X ∩ Z) ∪ (Y ∩ Z).
Proof. multiset_solver. Qed.
(** For disjoint union (aka sum) *)
Global Instance gmultiset_disj_union_comm : Comm (=@{gmultiset A}) (⊎).
Proof. unfold Comm. multiset_solver. Qed.
Global Instance gmultiset_disj_union_assoc : Assoc (=@{gmultiset A}) (⊎).
Proof. unfold Assoc. multiset_solver. Qed.
Global Instance gmultiset_disj_union_left_id : LeftId (=@{gmultiset A}) ∅ (⊎).
Proof. unfold LeftId. multiset_solver. Qed.
Global Instance gmultiset_disj_union_right_id : RightId (=@{gmultiset A}) ∅ (⊎).
Proof. unfold RightId. multiset_solver. Qed.
Global Instance gmultiset_disj_union_inj_1 X : Inj (=) (=) (X ⊎.).
Proof. unfold Inj. multiset_solver. Qed.
Global Instance gmultiset_disj_union_inj_2 X : Inj (=) (=) (.⊎ X).
Proof. unfold Inj. multiset_solver. Qed.
Lemma gmultiset_disj_union_intersection_l X Y Z : X ⊎ (Y ∩ Z) = (X ⊎ Y) ∩ (X ⊎ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_intersection_r X Y Z : (X ∩ Y) ⊎ Z = (X ⊎ Z) ∩ (Y ⊎ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_union_l X Y Z : X ⊎ (Y ∪ Z) = (X ⊎ Y) ∪ (X ⊎ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_union_r X Y Z : (X ∪ Y) ⊎ Z = (X ⊎ Z) ∪ (Y ⊎ Z).
Proof. multiset_solver. Qed.
(** Element of operation *)
Lemma gmultiset_not_elem_of_empty x : x ∉@{gmultiset A} ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_not_elem_of_singleton x y : x ∉@{gmultiset A} {[+ y +]} ↔ x ≠ y.
Proof. multiset_solver. Qed.
Lemma gmultiset_not_elem_of_union x X Y : x ∉ X ∪ Y ↔ x ∉ X ∧ x ∉ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_not_elem_of_intersection x X Y : x ∉ X ∩ Y ↔ x ∉ X ∨ x ∉ Y.
Proof. multiset_solver. Qed.
(** Misc *)
Global Instance gmultiset_singleton_inj : Inj (=) (=@{gmultiset A}) singletonMS.
Proof.
intros x1 x2 Hx. rewrite gmultiset_eq in Hx. specialize (Hx x1).
rewrite multiplicity_singleton, multiplicity_singleton' in Hx.
case_decide; [done|lia].
Qed.
Lemma gmultiset_non_empty_singleton x : {[+ x +]} ≠@{gmultiset A} ∅.
Proof. multiset_solver. Qed.
(** Scalar *)
Lemma gmultiset_scalar_mul_0 X : 0 *: X = ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_S_l n X : S n *: X = X ⊎ (n *: X).
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_S_r n X : S n *: X = (n *: X) ⊎ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_1 X : 1 *: X = X.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_2 X : 2 *: X = X ⊎ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_empty n : n *: ∅ =@{gmultiset A} ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_disj_union n X Y :
n *: (X ⊎ Y) =@{gmultiset A} (n *: X) ⊎ (n *: Y).
Proof. multiset_solver. Qed.
Lemma gmultiset_scalar_mul_union n X Y :
n *: (X ∪ Y) =@{gmultiset A} (n *: X) ∪ (n *: Y).
Proof. set_unfold. intros x; by rewrite Nat.mul_max_distr_l. Qed.
Lemma gmultiset_scalar_mul_intersection n X Y :
n *: (X ∩ Y) =@{gmultiset A} (n *: X) ∩ (n *: Y).
Proof. set_unfold. intros x; by rewrite Nat.mul_min_distr_l. Qed.
Lemma gmultiset_scalar_mul_difference n X Y :
n *: (X ∖ Y) =@{gmultiset A} (n *: X) ∖ (n *: Y).
Proof. set_unfold. intros x; by rewrite Nat.mul_sub_distr_l. Qed.
Lemma gmultiset_scalar_mul_inj_ne_0 n X1 X2 :
n ≠ 0 → n *: X1 = n *: X2 → X1 = X2.
Proof. set_unfold. intros ? HX x. apply (Nat.mul_reg_l _ _ n); auto. Qed.
(** Specialized to [S n] so that type class search can find it. *)
Global Instance gmultiset_scalar_mul_inj_S n :
Inj (=) (=@{gmultiset A}) (S n *:.).
Proof. intros x1 x2. apply gmultiset_scalar_mul_inj_ne_0. lia. Qed.
(** Conversion from lists *)
Lemma list_to_set_disj_nil : list_to_set_disj [] =@{gmultiset A} ∅.
Proof. done. Qed.
Lemma list_to_set_disj_cons x l :
list_to_set_disj (x :: l) =@{gmultiset A} {[+ x +]} ⊎ list_to_set_disj l.
Proof. done. Qed.
Lemma list_to_set_disj_app l1 l2 :
list_to_set_disj (l1 ++ l2) =@{gmultiset A} list_to_set_disj l1 ⊎ list_to_set_disj l2.
Proof. induction l1; multiset_solver. Qed.
Lemma elem_of_list_to_set_disj x l :
x ∈@{gmultiset A} list_to_set_disj l ↔ x ∈ l.
Proof. induction l; set_solver. Qed.
Global Instance list_to_set_disj_perm :
Proper ((≡ₚ) ==> (=)) (list_to_set_disj (C:=gmultiset A)).
Proof. induction 1; multiset_solver. Qed.
Lemma list_to_set_disj_replicate n x :
list_to_set_disj (replicate n x) =@{gmultiset A} n *: {[+ x +]}.
Proof. induction n; multiset_solver. Qed.
(** Properties of the elements operation *)
Lemma gmultiset_elements_empty : elements (∅ : gmultiset A) = [].
Proof.
unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_empty.
Qed.
Lemma gmultiset_elements_empty_iff X : elements X = [] ↔ X = ∅.
Proof.
split; [|intros ->; by rewrite gmultiset_elements_empty].
destruct X as [X]; unfold elements, gmultiset_elements; simpl.
intros; apply (f_equal GMultiSet).
destruct (map_to_list X) as [|[x p]] eqn:?; simpl in *.
- by apply map_to_list_empty_iff.
- pose proof (Pos2Nat.is_pos p). destruct (Pos.to_nat); naive_solver lia.
Qed.
Lemma gmultiset_elements_empty_inv X : elements X = [] → X = ∅.
Proof. apply gmultiset_elements_empty_iff. Qed.
Lemma gmultiset_elements_singleton x : elements ({[+ x +]} : gmultiset A) = [ x ].
Proof.
unfold elements, gmultiset_elements; simpl. by rewrite map_to_list_singleton.
Qed.
Lemma gmultiset_elements_disj_union X Y :
elements (X ⊎ Y) ≡ₚ elements X ++ elements Y.
Proof.
destruct X as [X], Y as [Y]; unfold elements, gmultiset_elements.
set (f xn := let '(x, n) := xn in replicate (Pos.to_nat n) x); simpl.
revert Y; induction X as [|x n X HX IH] using map_ind; intros Y.
{ by rewrite (left_id_L _ _ Y), map_to_list_empty. }
destruct (Y !! x) as [n'|] eqn:HY.
- rewrite <-(insert_delete Y x n') by done.
erewrite <-insert_union_with by done.
rewrite !map_to_list_insert, !bind_cons
by (by rewrite ?lookup_union_with, ?lookup_delete, ?HX).
rewrite (assoc_L _), <-(comm (++) (f (_,n'))), <-!(assoc_L _), <-IH.
rewrite (assoc_L _). f_equiv.
rewrite (comm _); simpl. by rewrite Pos2Nat.inj_add, replicate_add.
- rewrite <-insert_union_with_l, !map_to_list_insert, !bind_cons
by (by rewrite ?lookup_union_with, ?HX, ?HY).
by rewrite <-(assoc_L (++)), <-IH.
Qed.
Lemma gmultiset_elements_scalar_mul n X :
elements (n *: X) ≡ₚ mjoin (replicate n (elements X)).
Proof.
induction n as [|n IH]; simpl.
- by rewrite gmultiset_scalar_mul_0, gmultiset_elements_empty.
- by rewrite gmultiset_scalar_mul_S_l, gmultiset_elements_disj_union, IH.
Qed.
Lemma gmultiset_elem_of_elements x X : x ∈ elements X ↔ x ∈ X.
Proof.
destruct X as [X]. unfold elements, gmultiset_elements.
set (f xn := let '(x, n) := xn in replicate (Pos.to_nat n) x); simpl.
unfold elem_of at 2, gmultiset_elem_of, multiplicity; simpl.
rewrite elem_of_list_bind. split.
- intros [[??] [[<- ?]%elem_of_replicate ->%elem_of_map_to_list]]; lia.
- intros. destruct (X !! x) as [n|] eqn:Hx; [|lia].
exists (x,n); split; [|by apply elem_of_map_to_list].
apply elem_of_replicate; auto with lia.
Qed.
Lemma gmultiset_elem_of_dom x X : x ∈ dom X ↔ x ∈ X.
Proof.
unfold dom, gmultiset_dom, elem_of at 2, gmultiset_elem_of, multiplicity.
destruct X as [X]; simpl; rewrite elem_of_dom, <-not_eq_None_Some.
destruct (X !! x); naive_solver lia.
Qed.
(** Properties of the set_fold operation *)
Lemma gmultiset_set_fold_empty {B} (f : A → B → B) (b : B) :
set_fold f b (∅ : gmultiset A) = b.
Proof. by unfold set_fold; simpl; rewrite gmultiset_elements_empty. Qed.
Lemma gmultiset_set_fold_singleton {B} (f : A → B → B) (b : B) (a : A) :
set_fold f b ({[+ a +]} : gmultiset A) = f a b.
Proof. by unfold set_fold; simpl; rewrite gmultiset_elements_singleton. Qed.
Lemma gmultiset_set_fold_disj_union_strong {B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (b : B) X Y :
(∀ x, Proper (R ==> R) (f x)) →
(∀ x1 x2 c, x1 ∈ X ⊎ Y → x2 ∈ X ⊎ Y → R (f x1 (f x2 c)) (f x2 (f x1 c))) →
R (set_fold f b (X ⊎ Y)) (set_fold f (set_fold f b X) Y).
Proof.
intros ? Hf. unfold set_fold; simpl.
rewrite <-foldr_app. apply (foldr_permutation R f b).
- intros j1 a1 j2 a2 c ? Ha1%elem_of_list_lookup_2 Ha2%elem_of_list_lookup_2.
rewrite gmultiset_elem_of_elements in Ha1, Ha2. eauto.
- rewrite (comm (++)). apply gmultiset_elements_disj_union.
Qed.
Lemma gmultiset_set_fold_disj_union (f : A → A → A) (b : A) X Y :
Comm (=) f →
Assoc (=) f →
set_fold f b (X ⊎ Y) = set_fold f (set_fold f b X) Y.
Proof.
intros ??; apply gmultiset_set_fold_disj_union_strong; [apply _..|].
intros x1 x2 ? _ _. by rewrite 2!assoc, (comm f x1 x2).
Qed.
Lemma gmultiset_set_fold_scalar_mul (f : A → A → A) (b : A) n X :
Comm (=) f →
Assoc (=) f →
set_fold f b (n *: X) = Nat.iter n (flip (set_fold f) X) b.
Proof.
intros Hcomm Hassoc. induction n as [|n IH]; simpl.
- by rewrite gmultiset_scalar_mul_0, gmultiset_set_fold_empty.
- rewrite gmultiset_scalar_mul_S_r.
by rewrite (gmultiset_set_fold_disj_union _ _ _ _ _ _), IH.
Qed.
Lemma gmultiset_set_fold_comm_acc_strong {B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (g : B → B) b X :
(∀ x, Proper (R ==> R) (f x)) →
(∀ x (y : B), x ∈ X → R (f x (g y)) (g (f x y))) →
R (set_fold f (g b) X) (g (set_fold f b X)).
Proof.
intros ? Hfg. unfold set_fold; simpl.
apply foldr_comm_acc_strong; [done|solve_proper|].
intros. by apply Hfg, gmultiset_elem_of_elements.
Qed.
Lemma gmultiset_set_fold_comm_acc {B} (f : A → B → B) (g : B → B) (b : B) X :
(∀ x c, g (f x c) = f x (g c)) →
set_fold f (g b) X = g (set_fold f b X).
Proof.
intros. apply (gmultiset_set_fold_comm_acc_strong _); [solve_proper|done].
Qed.
(** Properties of the size operation *)
Lemma gmultiset_size_empty : size (∅ : gmultiset A) = 0.
Proof. done. Qed.
Lemma gmultiset_size_empty_iff X : size X = 0 ↔ X = ∅.
Proof.
unfold size, gmultiset_size; simpl.
by rewrite length_zero_iff_nil, gmultiset_elements_empty_iff.
Qed.
Lemma gmultiset_size_empty_inv X : size X = 0 → X = ∅.
Proof. apply gmultiset_size_empty_iff. Qed.
Lemma gmultiset_size_non_empty_iff X : size X ≠ 0 ↔ X ≠ ∅.
Proof. by rewrite gmultiset_size_empty_iff. Qed.
Lemma gmultiset_choose_or_empty X : (∃ x, x ∈ X) ∨ X = ∅.
Proof.
destruct (elements X) as [|x l] eqn:HX; [right|left].
- by apply gmultiset_elements_empty_iff.
- exists x. rewrite <-gmultiset_elem_of_elements, HX. by left.
Qed.
Lemma gmultiset_choose X : X ≠ ∅ → ∃ x, x ∈ X.
Proof. intros. by destruct (gmultiset_choose_or_empty X). Qed.
Lemma gmultiset_size_pos_elem_of X : 0 < size X → ∃ x, x ∈ X.
Proof.
intros Hsz. destruct (gmultiset_choose_or_empty X) as [|HX]; [done|].
contradict Hsz. rewrite HX, gmultiset_size_empty; lia.
Qed.
Lemma gmultiset_size_singleton x : size ({[+ x +]} : gmultiset A) = 1.
Proof.
unfold size, gmultiset_size; simpl. by rewrite gmultiset_elements_singleton.
Qed.
Lemma gmultiset_size_disj_union X Y : size (X ⊎ Y) = size X + size Y.
Proof.
unfold size, gmultiset_size; simpl.
by rewrite gmultiset_elements_disj_union, length_app.
Qed.
Lemma gmultiset_size_scalar_mul n X : size (n *: X) = n * size X.
Proof.
induction n as [|n IH].
- by rewrite gmultiset_scalar_mul_0, gmultiset_size_empty.
- rewrite gmultiset_scalar_mul_S_l, gmultiset_size_disj_union, IH. lia.
Qed.
(** Order stuff *)
Global Instance gmultiset_po : PartialOrder (⊆@{gmultiset A}).
Proof. repeat split; repeat intro; multiset_solver. Qed.
Local Lemma gmultiset_subseteq_alt X Y :
X ⊆ Y ↔
map_relation (λ _, Pos.le) (λ _ _, False) (λ _ _, True)
(gmultiset_car X) (gmultiset_car Y).
Proof.
apply forall_proper; intros x. unfold multiplicity.
destruct (gmultiset_car X !! x), (gmultiset_car Y !! x); naive_solver lia.
Qed.
Global Instance gmultiset_subseteq_dec : RelDecision (⊆@{gmultiset A}).
Proof.
refine (λ X Y, cast_if (decide (map_relation
(λ _, Pos.le) (λ _ _, False) (λ _ _, True)
(gmultiset_car X) (gmultiset_car Y))));
by rewrite gmultiset_subseteq_alt.
Defined.
Lemma gmultiset_subset_subseteq X Y : X ⊂ Y → X ⊆ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_empty_subseteq X : ∅ ⊆ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_subseteq_l X Y : X ⊆ X ∪ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_subseteq_r X Y : Y ⊆ X ∪ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_mono X1 X2 Y1 Y2 : X1 ⊆ X2 → Y1 ⊆ Y2 → X1 ∪ Y1 ⊆ X2 ∪ Y2.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_mono_l X Y1 Y2 : Y1 ⊆ Y2 → X ∪ Y1 ⊆ X ∪ Y2.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_mono_r X1 X2 Y : X1 ⊆ X2 → X1 ∪ Y ⊆ X2 ∪ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_subseteq_l X Y : X ⊆ X ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_subseteq_r X Y : Y ⊆ X ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_mono X1 X2 Y1 Y2 : X1 ⊆ X2 → Y1 ⊆ Y2 → X1 ⊎ Y1 ⊆ X2 ⊎ Y2.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_mono_l X Y1 Y2 : Y1 ⊆ Y2 → X ⊎ Y1 ⊆ X ⊎ Y2.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_mono_r X1 X2 Y : X1 ⊆ X2 → X1 ⊎ Y ⊆ X2 ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_subset X Y : X ⊆ Y → size X < size Y → X ⊂ Y.
Proof. intros. apply strict_spec_alt; split; naive_solver auto with lia. Qed.
Lemma gmultiset_disj_union_subset_l X Y : Y ≠ ∅ → X ⊂ X ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_union_subset_r X Y : X ≠ ∅ → Y ⊂ X ⊎ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_singleton_subseteq_l x X : {[+ x +]} ⊆ X ↔ x ∈ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_singleton_subseteq x y :
{[+ x +]} ⊆@{gmultiset A} {[+ y +]} ↔ x = y.
Proof. multiset_solver. Qed.
Lemma gmultiset_elem_of_subseteq X1 X2 x : x ∈ X1 → X1 ⊆ X2 → x ∈ X2.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_difference X Y : X ⊆ Y → Y = X ⊎ Y ∖ X.
Proof. multiset_solver. Qed.
Lemma gmultiset_disj_union_difference' x Y :
x ∈ Y → Y = {[+ x +]} ⊎ Y ∖ {[+ x +]}.
Proof. multiset_solver. Qed.
Lemma gmultiset_size_difference X Y : Y ⊆ X → size (X ∖ Y) = size X - size Y.
Proof.
intros HX%gmultiset_disj_union_difference.
rewrite HX at 2; rewrite gmultiset_size_disj_union. lia.
Qed.
Lemma gmultiset_empty_difference X Y : Y ⊆ X → Y ∖ X = ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_non_empty_difference X Y : X ⊂ Y → Y ∖ X ≠ ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_difference_diag X : X ∖ X = ∅.
Proof. multiset_solver. Qed.
Lemma gmultiset_difference_subset X Y : X ≠ ∅ → X ⊆ Y → Y ∖ X ⊂ Y.
Proof. multiset_solver. Qed.
Lemma gmultiset_difference_disj_union_r X Y Z : X ∖ Y = (X ⊎ Z) ∖ (Y ⊎ Z).
Proof. multiset_solver. Qed.
Lemma gmultiset_difference_disj_union_l X Y Z : X ∖ Y = (Z ⊎ X) ∖ (Z ⊎ Y).
Proof. multiset_solver. Qed.
(** Mononicity *)
Lemma gmultiset_elements_submseteq X Y : X ⊆ Y → elements X ⊆+ elements Y.
Proof.
intros ->%gmultiset_disj_union_difference. rewrite gmultiset_elements_disj_union.
by apply submseteq_inserts_r.
Qed.
Lemma gmultiset_subseteq_size X Y : X ⊆ Y → size X ≤ size Y.
Proof. intros. by apply submseteq_length, gmultiset_elements_submseteq. Qed.
Lemma gmultiset_subset_size X Y : X ⊂ Y → size X < size Y.
Proof.
intros HXY. assert (size (Y ∖ X) ≠ 0).
{ by apply gmultiset_size_non_empty_iff, gmultiset_non_empty_difference. }
rewrite (gmultiset_disj_union_difference X Y),
gmultiset_size_disj_union by auto using gmultiset_subset_subseteq. lia.
Qed.
(** Well-foundedness *)
Lemma gmultiset_wf : well_founded (⊂@{gmultiset A}).
Proof.
apply (wf_projected (<) size); auto using gmultiset_subset_size, lt_wf.
Qed.
Lemma gmultiset_ind (P : gmultiset A → Prop) :
P ∅ → (∀ x X, P X → P ({[+ x +]} ⊎ X)) → ∀ X, P X.
Proof.
intros Hemp Hinsert X. induction (gmultiset_wf X) as [X _ IH].
destruct (gmultiset_choose_or_empty X) as [[x Hx]| ->]; auto.
rewrite (gmultiset_disj_union_difference' x X) by done.
apply Hinsert, IH; multiset_solver.
Qed.
End more_lemmas.
(** * Map *)
Section map.
Context `{Countable A, Countable B}.
Context (f : A → B).
Lemma gmultiset_map_alt X :
gmultiset_map f X = list_to_set_disj (f <$> elements X).
Proof.
destruct X as [m]. unfold elements, gmultiset_map. simpl.
induction m as [|x n m ?? IH] using map_first_key_ind; [done|].
rewrite map_to_list_insert_first_key, map_fold_insert_first_key by done.
csimpl. rewrite fmap_app, fmap_replicate, list_to_set_disj_app, <-IH.
apply gmultiset_eq; intros y.
rewrite multiplicity_disj_union, list_to_set_disj_replicate.
rewrite multiplicity_scalar_mul, multiplicity_singleton'.
unfold multiplicity; simpl. destruct (decide (y = f x)) as [->|].
- rewrite lookup_partial_alter; simpl. destruct (_ !! f x); simpl; lia.
- rewrite lookup_partial_alter_ne by done. lia.
Qed.
Lemma gmultiset_map_empty : gmultiset_map f ∅ = ∅.
Proof. done. Qed.
Lemma gmultiset_map_disj_union X Y :
gmultiset_map f (X ⊎ Y) = gmultiset_map f X ⊎ gmultiset_map f Y.
Proof.
apply gmultiset_eq; intros x.
rewrite !gmultiset_map_alt, gmultiset_elements_disj_union, fmap_app.
by rewrite list_to_set_disj_app.
Qed.
Lemma gmultiset_map_singleton x :
gmultiset_map f {[+ x +]} = {[+ f x +]}.
Proof.
rewrite gmultiset_map_alt, gmultiset_elements_singleton.
multiset_solver.
Qed.
Lemma elem_of_gmultiset_map X y :
y ∈ gmultiset_map f X ↔ ∃ x, y = f x ∧ x ∈ X.
Proof.
rewrite gmultiset_map_alt, elem_of_list_to_set_disj, elem_of_list_fmap.
by setoid_rewrite gmultiset_elem_of_elements.
Qed.
Lemma multiplicity_gmultiset_map X x :
Inj (=) (=) f →
multiplicity (f x) (gmultiset_map f X) = multiplicity x X.
Proof.
intros. induction X as [|y X IH] using gmultiset_ind; [multiset_solver|].
rewrite gmultiset_map_disj_union, gmultiset_map_singleton,
!multiplicity_disj_union.
multiset_solver.
Qed.
Global Instance gmultiset_map_inj :
Inj (=) (=) f → Inj (=) (=) (gmultiset_map f).
Proof.
intros ? X Y HXY. apply gmultiset_eq; intros x.
by rewrite <-!(multiplicity_gmultiset_map _ _ _), HXY.
Qed.
Global Instance set_unfold_gmultiset_map X (P : A → Prop) y :
(∀ x, SetUnfoldElemOf x X (P x)) →
SetUnfoldElemOf y (gmultiset_map f X) (∃ x, y = f x ∧ P x).
Proof. constructor. rewrite elem_of_gmultiset_map; naive_solver. Qed.
Global Instance multiset_unfold_map x X n :
Inj (=) (=) f →
MultisetUnfold x X n →
MultisetUnfold (f x) (gmultiset_map f X) n.
Proof.
intros ? [HX]; constructor. by rewrite multiplicity_gmultiset_map, HX.
Qed.
End map.
|