File: list.v

package info (click to toggle)
coq-stdpp 1.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,696 kB
  • sloc: makefile: 52; sh: 35; sed: 1
file content (5499 lines) | stat: -rw-r--r-- 235,596 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
From Coq Require Export Permutation.
From stdpp Require Export numbers base option.
From stdpp Require Import options.

Global Arguments length {_} _ : assert.
Global Arguments cons {_} _ _ : assert.
Global Arguments app {_} _ _ : assert.

Global Instance: Params (@length) 1 := {}.
Global Instance: Params (@cons) 1 := {}.
Global Instance: Params (@app) 1 := {}.

(** [head] and [tail] are defined as [parsing only] for [hd_error] and [tl] in
the Coq standard library. We redefine these notations to make sure they also
pretty print properly. *)
Notation head := hd_error.
Notation tail := tl.

Notation take := firstn.
Notation drop := skipn.

Global Arguments head {_} _ : assert.
Global Arguments tail {_} _ : assert.

Global Arguments take {_} !_ !_ / : assert.
Global Arguments drop {_} !_ !_ / : assert.

Global Instance: Params (@head) 1 := {}.
Global Instance: Params (@tail) 1 := {}.
Global Instance: Params (@take) 1 := {}.
Global Instance: Params (@drop) 1 := {}.
Global Instance: Params (@Forall) 1 := {}.
Global Instance: Params (@Exists) 1 := {}.
Global Instance: Params (@NoDup) 1 := {}.

Global Arguments Permutation {_} _ _ : assert.
Global Arguments Forall_cons {_} _ _ _ _ _ : assert.

Notation "(::)" := cons (only parsing) : list_scope.
Notation "( x ::.)" := (cons x) (only parsing) : list_scope.
Notation "(.:: l )" := (λ x, cons x l) (only parsing) : list_scope.
Notation "(++)" := app (only parsing) : list_scope.
Notation "( l ++.)" := (app l) (only parsing) : list_scope.
Notation "(.++ k )" := (λ l, app l k) (only parsing) : list_scope.

Infix "≡ₚ" := Permutation (at level 70, no associativity) : stdpp_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : stdpp_scope.
Notation "( x ≡ₚ.)" := (Permutation x) (only parsing) : stdpp_scope.
Notation "(.≡ₚ x )" := (λ y, y ≡ₚ x) (only parsing) : stdpp_scope.
Notation "(≢ₚ)" := (λ x y, ¬x ≡ₚ y) (only parsing) : stdpp_scope.
Notation "x ≢ₚ y":= (¬x ≡ₚ y) (at level 70, no associativity) : stdpp_scope.
Notation "( x ≢ₚ.)" := (λ y, x ≢ₚ y) (only parsing) : stdpp_scope.
Notation "(.≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : stdpp_scope.

Infix "≡ₚ@{ A }" :=
  (@Permutation A) (at level 70, no associativity, only parsing) : stdpp_scope.
Notation "(≡ₚ@{ A } )" := (@Permutation A) (only parsing) : stdpp_scope.

Global Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

(** * Definitions *)
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : [] ≡ []
  | cons_equiv x y l k : x ≡ y → l ≡ k → x :: l ≡ y :: k.
Global Existing Instance list_equiv.

(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Global Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
  match l with
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
  end.

(** The operation [l !!! i] is a total version of the lookup operation
[l !! i]. *)
Global Instance list_lookup_total `{!Inhabited A} : LookupTotal nat A (list A) :=
  fix go i l {struct l} : A := let _ : LookupTotal _ _ _ := @go in
  match l with
  | [] => inhabitant
  | x :: l => match i with 0 => x | S i => l !!! i end
  end.

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
Global Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
  match l with
  | [] => []
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
  end.

(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
Global Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
Global Instance: Params (@list_inserts) 1 := {}.

(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
Global Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
  match l with
  | [] => []
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
  end.

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Definition option_list {A} : option A → list A := option_rect _ (λ x, [x]) [].
Global Instance: Params (@option_list) 1 := {}.
Global Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
  match l with [x] => Some x | _ => None end.

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Global Instance list_filter {A} : Filter A (list A) :=
  fix go P _ l := let _ : Filter _ _ := @go in
  match l with
  | [] => []
  | x :: l => if decide (P x) then x :: filter P l else filter P l
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{∀ x, Decision (P x)} : list A → option (nat * A) :=
  fix go l :=
  match l with
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
  end.
Global Instance: Params (@list_find) 3 := {}.

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
  match n with 0 => [] | S n => x :: replicate n x end.
Global Instance: Params (@replicate) 2 := {}.

(** The function [rotate n l] rotates the list [l] by [n], e.g., [rotate 1
[x0; x1; ...; xm]] becomes [x1; ...; xm; x0]. Rotating by a multiple of
[length l] is the identity function. **)
Definition rotate {A} (n : nat) (l : list A) : list A :=
  drop (n `mod` length l) l ++ take (n `mod` length l) l.
Global Instance: Params (@rotate) 2 := {}.

(** The function [rotate_take s e l] returns the range between the
indices [s] (inclusive) and [e] (exclusive) of [l]. If [e ≤ s], all
elements after [s] and before [e] are returned. *)
Definition rotate_take {A} (s e : nat) (l : list A) : list A :=
  take (rotate_nat_sub s e (length l)) (rotate s l).
Global Instance: Params (@rotate_take) 3 := {}.

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
Global Instance: Params (@reverse) 1 := {}.

(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
Global Instance: Params (@last) 1 := {}.
Global Arguments last : simpl nomatch.

(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
  end.
Global Arguments resize {_} !_ _ !_ : assert.
Global Instance: Params (@resize) 2 := {}.

(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
  end.
Global Instance: Params (@reshape) 2 := {}.

Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
  guard (i + n ≤ length l);; Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A → list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.

(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A → B → A) : A → list B → A :=
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.

(** The monadic operations. *)
Global Instance list_ret: MRet list := λ A x, x :: @nil A.
Global Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
Global Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
Global Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
Global Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.

(** The Cartesian product on lists satisfies (lemma [elem_of_list_cprod]):

  x ∈ cprod l k ↔ x.1 ∈ l ∧ x.2 ∈ k

There are little meaningful things to say about the order of the elements in
[cprod] (so there are no lemmas for that). It thus only makes sense to use
[cprod] when treating the lists as a set-like structure (i.e., up to duplicates
and permutations). *)
Global Instance list_cprod {A B} : CProd (list A) (list B) (list (A * B)) :=
  λ l k, x ← l; (x,.) <$> k.

Definition mapM `{MBind M, MRet M} {A B} (f : A → M B) : list A → M (list B) :=
  fix go l :=
  match l with [] => mret [] | x :: l => y ← f x; k ← go l; mret (y :: k) end.
Global Instance: Params (@mapM) 5 := {}.

(** We define stronger variants of the map function that allow the mapped
function to use the index of the elements. *)
Fixpoint imap {A B} (f : nat → A → B) (l : list A) : list B :=
  match l with
  | [] => []
  | x :: l => f 0 x :: imap (f ∘ S) l
  end.
Global Instance: Params (@imap) 2 := {}.

Definition zipped_map {A B} (f : list A → list A → A → B) :
    list A → list A → list B := fix go l k :=
  match k with
  | [] => []
  | x :: k => f l k x :: go (x :: l) k
  end.
Global Instance: Params (@zipped_map) 2 := {}.

Fixpoint imap2 {A B C} (f : nat → A → B → C) (l : list A) (k : list B) : list C :=
  match l, k with
  | [], _ | _, [] => []
  | x :: l, y :: k => f 0 x y :: imap2 (f ∘ S) l k
  end.
Global Instance: Params (@imap2) 3 := {}.

Inductive zipped_Forall {A} (P : list A → list A → A → Prop) :
    list A → list A → Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x → zipped_Forall P (x :: l) k → zipped_Forall P l (x :: k).
Global Arguments zipped_Forall_nil {_ _} _ : assert.
Global Arguments zipped_Forall_cons {_ _} _ _ _ _ _ : assert.

(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A → A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::.) <$> interleave x l)
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
  match l with [] => [[]] | x :: l => permutations l ≫= interleave x end.

(** The predicate [suffix] holds if the first list is a suffix of the second.
The predicate [prefix] holds if the first list is a prefix of the second. *)
Definition suffix {A} : relation (list A) := λ l1 l2, ∃ k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2, ∃ k, l2 = l1 ++ k.
Infix "`suffix_of`" := suffix (at level 70) : stdpp_scope.
Infix "`prefix_of`" := prefix (at level 70) : stdpp_scope.
Global Hint Extern 0 (_ `prefix_of` _) => reflexivity : core.
Global Hint Extern 0 (_ `suffix_of` _) => reflexivity : core.

Section prefix_suffix_ops.
  Context `{EqDecision A}.

  Definition max_prefix : list A → list A → list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
      if decide_rel (=) x1 x2
      then prod_map id (x1 ::.) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
    end.
  Definition max_suffix (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
  Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
End prefix_suffix_ops.

(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
  | sublist_skip x l1 l2 : sublist l1 l2 → sublist (x :: l1) (x :: l2)
  | sublist_cons x l1 l2 : sublist l1 l2 → sublist l1 (x :: l2).
Infix "`sublist_of`" := sublist (at level 70) : stdpp_scope.
Global Hint Extern 0 (_ `sublist_of` _) => reflexivity : core.

(** A list [l2] submseteq a list [l1] if [l2] is obtained by removing elements
from [l1] while possibly changing the order. *)
Inductive submseteq {A} : relation (list A) :=
  | submseteq_nil : submseteq [] []
  | submseteq_skip x l1 l2 : submseteq l1 l2 → submseteq (x :: l1) (x :: l2)
  | submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
  | submseteq_cons x l1 l2 : submseteq l1 l2 → submseteq l1 (x :: l2)
  | submseteq_trans l1 l2 l3 : submseteq l1 l2 → submseteq l2 l3 → submseteq l1 l3.
Infix "⊆+" := submseteq (at level 70) : stdpp_scope.
Global Hint Extern 0 (_ ⊆+ _) => reflexivity : core.

(** Removes [x] from the list [l]. The function returns a [Some] when the
removal succeeds and [None] when [x] is not in [l]. *)
Fixpoint list_remove `{EqDecision A} (x : A) (l : list A) : option (list A) :=
  match l with
  | [] => None
  | y :: l => if decide (x = y) then Some l else (y ::.) <$> list_remove x l
  end.

(** Removes all elements in the list [k] from the list [l]. The function returns
a [Some] when the removal succeeds and [None] some element of [k] is not in [l]. *)
Fixpoint list_remove_list `{EqDecision A} (k : list A) (l : list A) : option (list A) :=
  match k with
  | [] => Some l | x :: k => list_remove x l ≫= list_remove_list k
  end.

Inductive Forall3 {A B C} (P : A → B → C → Prop) :
     list A → list B → list C → Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z → Forall3 P l k k' → Forall3 P (x :: l) (y :: k) (z :: k').

(** Set operations on lists *)
Global Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2, ∀ x, x ∈ l1 → x ∈ l2.

Section list_set.
  Context `{dec : EqDecision A}.
  Global Instance elem_of_list_dec : RelDecision (∈@{list A}).
  Proof using Type*.
   refine (
    fix go x l :=
    match l return Decision (x ∈ l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go x l)
    end); clear go dec; subst; try (by constructor); abstract by inv 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x k
      then list_difference l k else x :: list_difference l k
    end.
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x k
      then x :: list_intersection l k else list_intersection l k
    end.
  Definition list_intersection_with (f : A → A → option A) :
    list A → list A → list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::.) end) (go l k) k
    end.
End list_set.

(** These next functions allow to efficiently encode lists of positives (bit
strings) into a single positive and go in the other direction as well. This is
for example used for the countable instance of lists and in namespaces.
 The main functions are [positives_flatten] and [positives_unflatten]. *)
Fixpoint positives_flatten_go (xs : list positive) (acc : positive) : positive :=
  match xs with
  | [] => acc
  | x :: xs => positives_flatten_go xs (acc~1~0 ++ Pos.reverse (Pos.dup x))
  end.

(** Flatten a list of positives into a single positive by duplicating the bits
of each element, so that:

- [0 -> 00]
- [1 -> 11]

and then separating each element with [10]. *)
Definition positives_flatten (xs : list positive) : positive :=
  positives_flatten_go xs 1.

Fixpoint positives_unflatten_go
        (p : positive)
        (acc_xs : list positive)
        (acc_elm : positive)
  : option (list positive) :=
  match p with
  | 1 => Some acc_xs
  | p'~0~0 => positives_unflatten_go p' acc_xs (acc_elm~0)
  | p'~1~1 => positives_unflatten_go p' acc_xs (acc_elm~1)
  | p'~1~0 => positives_unflatten_go p' (acc_elm :: acc_xs) 1
  | _ => None
  end%positive.

(* TODO: Coq 8.20 has the same lemma under the same name, so remove our version
once we require Coq 8.20. In Coq 8.19 and before, this lemma is called
[app_length]. *)
Lemma length_app {A} (l l' : list A) : length (l ++ l') = length l + length l'.
Proof. induction l; f_equal/=; auto. Qed.

(** Unflatten a positive into a list of positives, assuming the encoding
used by [positives_flatten]. *)
Definition positives_unflatten (p : positive) : option (list positive) :=
  positives_unflatten_go p [] 1.

(** * Basic tactics on lists *)
(** The tactic [discriminate_list] discharges a goal if it submseteq
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
Tactic Notation "discriminate_list" hyp(H) :=
  apply (f_equal length) in H;
  repeat (csimpl in H || rewrite length_app in H); exfalso; lia.
Tactic Notation "discriminate_list" :=
  match goal with H : _ =@{list _} _ |- _ => discriminate_list H end.

(** The tactic [simplify_list_eq] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
  length l1 = length k1 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
  length l2 = length k2 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof.
  intros ? Hl. apply app_inj_1; auto.
  apply (f_equal length) in Hl. rewrite !length_app in Hl. lia.
Qed.
Ltac simplify_list_eq :=
  repeat match goal with
  | _ => progress simplify_eq/=
  | H : _ ++ _ = _ ++ _ |- _ => first
    [ apply app_inv_head in H | apply app_inv_tail in H
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
  | H : [?x] !! ?i = Some ?y |- _ =>
    destruct i; [change (Some x = Some y) in H | discriminate]
  end.

(** * General theorems *)
Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

Global Instance cons_eq_inj : Inj2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.

Global Instance: ∀ k, Inj (=) (=) (k ++.).
Proof. intros ???. apply app_inv_head. Qed.
Global Instance: ∀ k, Inj (=) (=) (.++ k).
Proof. intros ???. apply app_inv_tail. Qed.
Global Instance: Assoc (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.

Lemma app_nil l1 l2 : l1 ++ l2 = [] ↔ l1 = [] ∧ l2 = [].
Proof. split; [apply app_eq_nil|]. by intros [-> ->]. Qed.
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x] ↔ l1 = [] ∧ l2 = [x] ∨ l1 = [x] ∧ l2 = [].
Proof. split; [apply app_eq_unit|]. by intros [[-> ->]|[-> ->]]. Qed.
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : (∀ i, l1 !! i = l2 !! i) → l1 = l2.
Proof.
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
Qed.
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l ≠ 1) (maybe (λ x, [x]) l).
Proof. by destruct l as [|? []]; constructor. Defined.

Lemma list_eq_Forall2 l1 l2 : l1 = l2 ↔ Forall2 eq l1 l2.
Proof.
  split.
  - intros <-. induction l1; eauto using Forall2.
  - induction 1; naive_solver.
Qed.

Definition length_nil : length (@nil A) = 0 := eq_refl.
Definition length_cons x l : length (x :: l) = S (length l) := eq_refl.

Lemma nil_or_length_pos l : l = [] ∨ length l ≠ 0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length_inv l : length l = 0 → l = [].
Proof. by destruct l. Qed.
Lemma lookup_cons_ne_0 l x i : i ≠ 0 → (x :: l) !! i = l !! pred i.
Proof. by destruct i. Qed.
Lemma lookup_total_cons_ne_0 `{!Inhabited A} l x i :
  i ≠ 0 → (x :: l) !!! i = l !!! pred i.
Proof. by destruct i. Qed.
Lemma lookup_nil i : @nil A !! i = None.
Proof. by destruct i. Qed.
Lemma lookup_total_nil `{!Inhabited A} i : @nil A !!! i = inhabitant.
Proof. by destruct i. Qed.
Lemma lookup_tail l i : tail l !! i = l !! S i.
Proof. by destruct l. Qed.
Lemma lookup_total_tail `{!Inhabited A} l i : tail l !!! i = l !!! S i.
Proof. by destruct l. Qed.
Lemma lookup_lt_Some l i x : l !! i = Some x → i < length l.
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i) → i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l → is_Some (l !! i).
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with lia. Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i) ↔ i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None ↔ length l ≤ i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None → length l ≤ i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l ≤ i → l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.

Lemma list_eq_same_length l1 l2 n :
  length l2 = n → length l1 = n →
  (∀ i x y, i < n → l1 !! i = Some x → l2 !! i = Some y → x = y) → l1 = l2.
Proof.
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Qed.

Lemma nth_lookup l i d : nth i l d = default d (l !! i).
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x → nth i l d = x.
Proof. rewrite nth_lookup. by intros ->. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l ≤ i}.
Proof.
  rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Qed.

Lemma list_lookup_total_alt `{!Inhabited A} l i :
  l !!! i = default inhabitant (l !! i).
Proof. revert i. induction l; intros []; naive_solver. Qed.
Lemma list_lookup_total_correct `{!Inhabited A} l i x :
  l !! i = Some x → l !!! i = x.
Proof. rewrite list_lookup_total_alt. by intros ->. Qed.
Lemma list_lookup_lookup_total `{!Inhabited A} l i :
  is_Some (l !! i) → l !! i = Some (l !!! i).
Proof. rewrite list_lookup_total_alt; by intros [x ->]. Qed.
Lemma list_lookup_lookup_total_lt `{!Inhabited A} l i :
  i < length l → l !! i = Some (l !!! i).
Proof. intros ?. by apply list_lookup_lookup_total, lookup_lt_is_Some_2. Qed.
Lemma list_lookup_alt `{!Inhabited A} l i x :
  l !! i = Some x ↔ i < length l ∧ l !!! i = x.
Proof.
  naive_solver eauto using list_lookup_lookup_total_lt,
    list_lookup_total_correct, lookup_lt_Some.
Qed.

Lemma lookup_app l1 l2 i :
  (l1 ++ l2) !! i =
    match l1 !! i with Some x => Some x | None => l2 !! (i - length l1) end.
Proof. revert i. induction l1 as [|x l1 IH]; intros [|i]; naive_solver. Qed.
Lemma lookup_app_l l1 l2 i : i < length l1 → (l1 ++ l2) !! i = l1 !! i.
Proof. rewrite lookup_app. by intros [? ->]%lookup_lt_is_Some. Qed.
Lemma lookup_total_app_l `{!Inhabited A} l1 l2 i :
  i < length l1 → (l1 ++ l2) !!! i = l1 !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_app_l. Qed.
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x → (l1 ++ l2) !! i = Some x.
Proof. rewrite lookup_app. by intros ->. Qed.
Lemma lookup_app_r l1 l2 i :
  length l1 ≤ i → (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. rewrite lookup_app. by intros ->%lookup_ge_None. Qed.
Lemma lookup_total_app_r `{!Inhabited A} l1 l2 i :
  length l1 ≤ i → (l1 ++ l2) !!! i = l2 !!! (i - length l1).
Proof. intros. by rewrite !list_lookup_total_alt, lookup_app_r. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x ↔
    l1 !! i = Some x ∨ length l1 ≤ i ∧ l2 !! (i - length l1) = Some x.
Proof.
  rewrite lookup_app. destruct (l1 !! i) eqn:Hi.
  - apply lookup_lt_Some in Hi. naive_solver lia.
  - apply lookup_ge_None in Hi. naive_solver lia.
Qed.

Lemma lookup_cons x l i :
  (x :: l) !! i =
    match i with 0 => Some x | S i => l !! i end.
Proof. reflexivity. Qed.
Lemma lookup_cons_Some x l i y :
  (x :: l) !! i = Some y ↔
    (i = 0 ∧ x = y) ∨ (1 ≤ i ∧ l !! (i - 1) = Some y).
Proof.
  rewrite lookup_cons. destruct i as [|i].
  - naive_solver lia.
  - replace (S i - 1) with i by lia. naive_solver lia.
Qed.

Lemma list_lookup_singleton x i :
  [x] !! i =
    match i with 0 => Some x | S _ => None end.
Proof. reflexivity. Qed.
Lemma list_lookup_singleton_Some x i y :
  [x] !! i = Some y ↔ i = 0 ∧ x = y.
Proof. rewrite lookup_cons_Some. naive_solver. Qed.

Lemma lookup_snoc_Some x l i y :
  (l ++ [x]) !! i = Some y ↔
    (i < length l ∧ l !! i = Some y) ∨ (i = length l ∧ x = y).
Proof.
  rewrite lookup_app_Some, list_lookup_singleton_Some.
  naive_solver auto using lookup_lt_is_Some_1 with lia.
Qed.

Lemma list_lookup_middle l1 l2 x n :
  n = length l1 → (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
Lemma list_lookup_total_middle `{!Inhabited A} l1 l2 x n :
  n = length l1 → (l1 ++ x :: l2) !!! n = x.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_middle. Qed.

Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
Lemma length_alter f l i : length (alter f i l) = length l.
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Lemma length_insert l i x : length (<[i:=x]>l) = length l.
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
Proof.
  revert i.
  induction l as [|?? IHl]; [done|].
  intros [|i]; [done|]. apply (IHl i).
Qed.
Lemma list_lookup_total_alter `{!Inhabited A} f l i :
  i < length l → alter f i l !!! i = f (l !!! i).
Proof.
  intros [x Hx]%lookup_lt_is_Some_2.
  by rewrite !list_lookup_total_alt, list_lookup_alter, Hx.
Qed.
Lemma list_lookup_alter_ne f l i j : i ≠ j → alter f i l !! j = l !! j.
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Lemma list_lookup_total_alter_ne `{!Inhabited A} f l i j :
  i ≠ j → alter f i l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_alter_ne. Qed.

Lemma list_lookup_insert l i x : i < length l → <[i:=x]>l !! i = Some x.
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma list_lookup_total_insert `{!Inhabited A} l i x :
  i < length l → <[i:=x]>l !!! i = x.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_insert. Qed.
Lemma list_lookup_insert_ne l i j x : i ≠ j → <[i:=x]>l !! j = l !! j.
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Lemma list_lookup_total_insert_ne `{!Inhabited A} l i j x :
  i ≠ j → <[i:=x]>l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_insert_ne. Qed.
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y ↔
    i = j ∧ x = y ∧ j < length l ∨ i ≠ j ∧ l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
  - intros Hy. assert (j < length l).
    { rewrite <-(length_insert l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
Qed.
Lemma list_insert_commute l i j x y :
  i ≠ j → <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Lemma list_insert_id' l i x : (i < length l → l !! i = Some x) → <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] ?; f_equal/=; naive_solver lia. Qed.
Lemma list_insert_id l i x : l !! i = Some x → <[i:=x]>l = l.
Proof. intros ?. by apply list_insert_id'. Qed.
Lemma list_insert_ge l i x : length l ≤ i → <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] ?; f_equal/=; auto with lia. Qed.
Lemma list_insert_insert l i x y : <[i:=x]> (<[i:=y]> l) = <[i:=x]> l.
Proof. revert i. induction l; intros [|i]; f_equal/=; auto. Qed.

Lemma list_lookup_other l i x :
  length l ≠ 1 → l !! i = Some x → ∃ j y, j ≠ i ∧ l !! j = Some y.
Proof.
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
  - by exists 1, x1.
  - by exists 0, x0.
Qed.

Lemma alter_app_l f l1 l2 i :
  i < length l1 → alter f i (l1 ++ l2) = alter f i l1 ++ l2.
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma alter_app_r f l1 l2 i :
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Lemma alter_app_r_alt f l1 l2 i :
  length l1 ≤ i → alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
Lemma list_alter_id f l i : (∀ x, f x = x) → alter f i l = l.
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma list_alter_ext f g l k i :
  (∀ x, l !! i = Some x → f x = g x) → l = k → alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
Lemma list_alter_compose f g l i :
  alter (f ∘ g) i l = alter f i (alter g i l).
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma list_alter_commute f g l i j :
  i ≠ j → alter f i (alter g j l) = alter g j (alter f i l).
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Lemma insert_app_l l1 l2 i x :
  i < length l1 → <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Lemma insert_app_r_alt l1 l2 i x :
  length l1 ≤ i → <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.

Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
Proof. induction l1; f_equal/=; auto. Qed.
Lemma length_delete l i :
  is_Some (l !! i) → length (delete i l) = length l - 1.
Proof.
  rewrite lookup_lt_is_Some. revert i.
  induction l as [|x l IH]; intros [|i] ?; simpl in *; [lia..|].
  rewrite IH by lia. lia.
Qed.
Lemma lookup_delete_lt l i j : j < i → delete i l !! j = l !! j.
Proof. revert i j; induction l; intros [] []; naive_solver eauto with lia. Qed.
Lemma lookup_total_delete_lt `{!Inhabited A} l i j :
  j < i → delete i l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_delete_lt. Qed.
Lemma lookup_delete_ge l i j : i ≤ j → delete i l !! j = l !! S j.
Proof. revert i j; induction l; intros [] []; naive_solver eauto with lia. Qed.
Lemma lookup_total_delete_ge `{!Inhabited A} l i j :
  i ≤ j → delete i l !!! j = l !!! S j.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_delete_ge. Qed.

Lemma length_inserts l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?length_insert; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i ≤ j < i + length k → j < length l →
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite length_inserts; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_total_inserts `{!Inhabited A} l i k j :
  i ≤ j < i + length k → j < length l →
  list_inserts i k l !!! j = k !!! (j - i).
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_inserts. Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i → list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_total_inserts_lt `{!Inhabited A}l i k j :
  j < i → list_inserts i k l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_inserts_lt. Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k ≤ j → list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_total_inserts_ge `{!Inhabited A} l i k j :
  i + length k ≤ j → list_inserts i k l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_inserts_ge. Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y ↔
    (j < i ∨ i + length k ≤ j) ∧ l !! j = Some y ∨
    i ≤ j < i + length k ∧ j < length l ∧ k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k ≤ j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
  - intros Hy. assert (j < length l).
    { rewrite <-(length_inserts l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
  - intuition. by rewrite list_lookup_inserts by lia.
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j → <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.
Lemma list_inserts_app_l l1 l2 l3 i :
  list_inserts i (l1 ++ l2) l3 = list_inserts (length l1 + i) l2 (list_inserts i l1 l3).
Proof.
  revert i; induction l1 as [|x l1 IH]; [done|].
  intro i. simpl. rewrite IH, Nat.add_succ_r. apply list_insert_inserts_lt. lia.
Qed.
Lemma list_inserts_app_r l1 l2 l3 i :
  list_inserts (length l2 + i) l1 (l2 ++ l3) = l2 ++ list_inserts i l1 l3.
Proof.
  revert i; induction l1 as [|x l1 IH]; [done|].
  intros i. simpl. by rewrite plus_n_Sm, IH, insert_app_r.
Qed.
Lemma list_inserts_nil l1 i : list_inserts i l1 [] = [].
Proof.
  revert i; induction l1 as [|x l1 IH]; [done|].
  intro i. simpl. by rewrite IH.
Qed.
Lemma list_inserts_cons l1 l2 i x :
  list_inserts (S i) l1 (x :: l2) = x :: list_inserts i l1 l2.
Proof.
  revert i; induction l1 as [|y l1 IH]; [done|].
  intro i. simpl. by rewrite IH.
Qed.
Lemma list_inserts_0_r l1 l2 l3 :
  length l1 = length l2 → list_inserts 0 l1 (l2 ++ l3) = l1 ++ l3.
Proof.
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] ?; simplify_eq/=; [done|].
  rewrite list_inserts_cons. simpl. by rewrite IH.
Qed.
Lemma list_inserts_0_l l1 l2 l3 :
  length l1 = length l3 → list_inserts 0 (l1 ++ l2) l3 = l1.
Proof.
  revert l3. induction l1 as [|x l1 IH]; intros [|z l3] ?; simplify_eq/=.
  { by rewrite list_inserts_nil. }
  rewrite list_inserts_cons. simpl. by rewrite IH.
Qed.

(** ** Properties of the [reverse] function *)
Lemma reverse_nil : reverse [] =@{list A} [].
Proof. done. Qed.
Lemma reverse_singleton x : reverse [x] = [x].
Proof. done. Qed.
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Lemma length_reverse l : length (reverse l) = length l.
Proof.
  induction l as [|x l IH]; [done|].
  rewrite reverse_cons, length_app, IH. simpl. lia.
Qed.
Lemma reverse_involutive l : reverse (reverse l) = l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
Lemma reverse_lookup l i :
  i < length l →
  reverse l !! i = l !! (length l - S i).
Proof.
  revert i. induction l as [|x l IH]; simpl; intros i Hi; [done|].
  rewrite reverse_cons.
  destruct (decide (i = length l)); subst.
  + by rewrite list_lookup_middle, Nat.sub_diag by by rewrite length_reverse.
  + rewrite lookup_app_l by (rewrite length_reverse; lia).
    rewrite IH by lia.
    by assert (length l - i = S (length l - S i)) as -> by lia.
Qed.
Lemma reverse_lookup_Some l i x :
  reverse l !! i = Some x ↔ l !! (length l - S i) = Some x ∧ i < length l.
Proof.
  split.
  - destruct (decide (i < length l)); [ by rewrite reverse_lookup|].
    rewrite lookup_ge_None_2; [done|]. rewrite length_reverse. lia.
  - intros [??]. by rewrite reverse_lookup.
Qed.
Global Instance: Inj (=) (=) (@reverse A).
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.

(** ** Properties of the [elem_of] predicate *)
Lemma not_elem_of_nil x : x ∉ [].
Proof. by inv 1. Qed.
Lemma elem_of_nil x : x ∈ [] ↔ False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Lemma elem_of_nil_inv l : (∀ x, x ∉ l) → l = [].
Proof. destruct l; [done|]. by edestruct 1; constructor. Qed.
Lemma elem_of_not_nil x l : x ∈ l → l ≠ [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
Lemma elem_of_cons l x y : x ∈ y :: l ↔ x = y ∨ x ∈ l.
Proof. by split; [inv 1; subst|intros [->|?]]; constructor. Qed.
Lemma not_elem_of_cons l x y : x ∉ y :: l ↔ x ≠ y ∧ x ∉ l.
Proof. rewrite elem_of_cons. tauto. Qed.
Lemma elem_of_app l1 l2 x : x ∈ l1 ++ l2 ↔ x ∈ l1 ∨ x ∈ l2.
Proof.
  induction l1 as [|y l1 IH]; simpl.
  - rewrite elem_of_nil. naive_solver.
  - rewrite !elem_of_cons, IH. naive_solver.
Qed.
Lemma not_elem_of_app l1 l2 x : x ∉ l1 ++ l2 ↔ x ∉ l1 ∧ x ∉ l2.
Proof. rewrite elem_of_app. tauto. Qed.
Lemma elem_of_list_singleton x y : x ∈ [y] ↔ x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Lemma elem_of_reverse_2 x l : x ∈ l → x ∈ reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x ∈ reverse l ↔ x ∈ l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.

Lemma elem_of_list_lookup_1 l x : x ∈ l → ∃ i, l !! i = Some x.
Proof.
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
Qed.
Lemma elem_of_list_lookup_total_1 `{!Inhabited A} l x :
  x ∈ l → ∃ i, i < length l ∧ l !!! i = x.
Proof.
  intros [i Hi]%elem_of_list_lookup_1.
  eauto using lookup_lt_Some, list_lookup_total_correct.
Qed.
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x → x ∈ l.
Proof.
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
Qed.
Lemma elem_of_list_lookup_total_2 `{!Inhabited A} l i :
  i < length l → l !!! i ∈ l.
Proof. intros. by eapply elem_of_list_lookup_2, list_lookup_lookup_total_lt. Qed.
Lemma elem_of_list_lookup l x : x ∈ l ↔ ∃ i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
Lemma elem_of_list_lookup_total `{!Inhabited A} l x :
  x ∈ l ↔ ∃ i, i < length l ∧ l !!! i = x.
Proof.
  naive_solver eauto using elem_of_list_lookup_total_1, elem_of_list_lookup_total_2.
Qed.
Lemma elem_of_list_split_length l i x :
  l !! i = Some x → ∃ l1 l2, l = l1 ++ x :: l2 ∧ i = length l1.
Proof.
  revert i; induction l as [|y l IH]; intros [|i] Hl; simplify_eq/=.
  - exists []; eauto.
  - destruct (IH _ Hl) as (?&?&?&?); simplify_eq/=.
    eexists (y :: _); eauto.
Qed.
Lemma elem_of_list_split l x : x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2.
Proof.
  intros [? (?&?&?&_)%elem_of_list_split_length]%elem_of_list_lookup_1; eauto.
Qed.
Lemma elem_of_list_split_l `{EqDecision A} l x :
  x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2 ∧ x ∉ l1.
Proof.
  induction 1 as [x l|x y l ? IH].
  { exists [], l. rewrite elem_of_nil. naive_solver. }
  destruct (decide (x = y)) as [->|?].
  - exists [], l. rewrite elem_of_nil. naive_solver.
  - destruct IH as (l1 & l2 & -> & ?).
    exists (y :: l1), l2. rewrite elem_of_cons. naive_solver.
Qed.
Lemma elem_of_list_split_r `{EqDecision A} l x :
  x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2 ∧ x ∉ l2.
Proof.
  induction l as [|y l IH] using rev_ind.
  { by rewrite elem_of_nil. }
  destruct (decide (x = y)) as [->|].
  - exists l, []. rewrite elem_of_nil. naive_solver.
  - rewrite elem_of_app, elem_of_list_singleton. intros [?| ->]; try done.
    destruct IH as (l1 & l2 & -> & ?); auto.
    exists l1, (l2 ++ [y]).
    rewrite elem_of_app, elem_of_list_singleton, <-(assoc_L (++)). naive_solver.
Qed.
Lemma list_elem_of_insert l i x : i < length l → x ∈ <[i:=x]>l.
Proof. intros. by eapply elem_of_list_lookup_2, list_lookup_insert. Qed.
Lemma nth_elem_of l i d : i < length l → nth i l d ∈ l.
Proof.
  intros; eapply elem_of_list_lookup_2.
  destruct (nth_lookup_or_length l i d); [done | by lia].
Qed.

Lemma not_elem_of_app_cons_inv_l x y l1 l2 k1 k2 :
  x ∉ k1 → y ∉ l1 →
  l1 ++ x :: l2 = k1 ++ y :: k2 →
  l1 = k1 ∧ x = y ∧ l2 = k2.
Proof.
  revert k1. induction l1 as [|x' l1 IH]; intros [|y' k1] Hx Hy ?; simplify_eq/=;
    try apply not_elem_of_cons in Hx as [??];
    try apply not_elem_of_cons in Hy as [??]; naive_solver.
Qed.
Lemma not_elem_of_app_cons_inv_r x y l1 l2 k1 k2 :
  x ∉ k2 → y ∉ l2 →
  l1 ++ x :: l2 = k1 ++ y :: k2 →
  l1 = k1 ∧ x = y ∧ l2 = k2.
Proof.
  intros. destruct (not_elem_of_app_cons_inv_l x y (reverse l2) (reverse l1)
    (reverse k2) (reverse k1)); [..|naive_solver].
  - by rewrite elem_of_reverse.
  - by rewrite elem_of_reverse.
  - rewrite <-!reverse_snoc, <-!reverse_app, <-!(assoc_L (++)). by f_equal.
Qed.

(** The Cartesian product *)
(** Correspondence to [list_prod] from the stdlib, a version that does not use
the [CProd] class for the interface, nor the monad classes for the definition *)
Lemma list_cprod_list_prod {B} l (k : list B) : cprod l k = list_prod l k.
Proof. unfold cprod, list_cprod. induction l; f_equal/=; auto. Qed.

Lemma elem_of_list_cprod {B} l (k : list B) (x : A * B) :
  x ∈ cprod l k ↔ x.1 ∈ l ∧ x.2 ∈ k.
Proof.
  rewrite list_cprod_list_prod, !elem_of_list_In.
  destruct x. apply in_prod_iff.
Qed.

(** ** Properties of the [NoDup] predicate *)
Lemma NoDup_nil : NoDup (@nil A) ↔ True.
Proof. split; constructor. Qed.
Lemma NoDup_cons x l : NoDup (x :: l) ↔ x ∉ l ∧ NoDup l.
Proof. split; [by inv 1|]. intros [??]. by constructor. Qed.
Lemma NoDup_cons_1_1 x l : NoDup (x :: l) → x ∉ l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_1_2 x l : NoDup (x :: l) → NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_singleton x : NoDup [x].
Proof. constructor; [apply not_elem_of_nil | constructor]. Qed.
Lemma NoDup_app l k : NoDup (l ++ k) ↔ NoDup l ∧ (∀ x, x ∈ l → x ∉ k) ∧ NoDup k.
Proof.
  induction l; simpl.
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Qed.
Lemma NoDup_lookup l i j x :
  NoDup l → l !! i = Some x → l !! j = Some x → i = j.
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
Lemma NoDup_alt l :
  NoDup l ↔ ∀ i j x, l !! i = Some x → l !! j = Some x → i = j.
Proof.
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  - rewrite elem_of_list_lookup. intros [i ?].
    opose proof* (Hl (S i) 0); by auto.
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
Qed.

Section no_dup_dec.
  Context `{!EqDecision A}.
  Global Instance NoDup_dec: ∀ l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
    | x :: l =>
      match decide_rel (∈) x l with
      | left Hin => right (λ H, NoDup_cons_1_1 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H ∘ NoDup_cons_1_2 _ _)
        end
      end
    end.
  Lemma elem_of_remove_dups l x : x ∈ remove_dups l ↔ x ∈ l.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
  Qed.
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
End no_dup_dec.

(** ** Set operations on lists *)
Section list_set.
  Lemma elem_of_list_intersection_with f l k x :
    x ∈ list_intersection_with f l k ↔ ∃ x1 x2,
        x1 ∈ l ∧ x2 ∈ k ∧ f x1 x2 = Some x.
  Proof.
    split.
    - induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut ((∃ x2, x2 ∈ k ∧ f x1 x2 = Some x)
           ∨ x ∈ list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    - intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1 l|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.

  Context `{!EqDecision A}.
  Lemma elem_of_list_difference l k x : x ∈ list_difference l k ↔ x ∈ l ∧ x ∉ k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l → NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    - constructor.
    - done.
    - constructor; [|done]. rewrite elem_of_list_difference; intuition.
  Qed.
  Lemma elem_of_list_union l k x : x ∈ list_union l k ↔ x ∈ l ∨ x ∈ k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x ∈ k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l → NoDup k → NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    - by apply NoDup_list_difference.
    - intro. rewrite elem_of_list_difference. intuition.
    - done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x ∈ list_intersection l k ↔ x ∈ l ∧ x ∈ k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l → NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    - constructor.
    - constructor; [|done]. rewrite elem_of_list_intersection; intuition.
    - done.
  Qed.
End list_set.

(** ** Properties of the [last] function *)
Lemma last_nil : last [] =@{option A} None.
Proof. done. Qed.
Lemma last_singleton x : last [x] = Some x.
Proof. done. Qed.
Lemma last_cons_cons x1 x2 l : last (x1 :: x2 :: l) = last (x2 :: l).
Proof. done. Qed.
Lemma last_app_cons l1 l2 x :
  last (l1 ++ x :: l2) = last (x :: l2).
Proof. induction l1 as [|y [|y' l1] IHl]; done. Qed.
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
Lemma last_None l : last l = None ↔ l = [].
Proof.
  split; [|by intros ->].
  induction l as [|x1 [|x2 l] IH]; naive_solver.
Qed.
Lemma last_Some l x : last l = Some x ↔ ∃ l', l = l' ++ [x].
Proof.
  split.
  - destruct l as [|x' l'] using rev_ind; [done|].
    rewrite last_snoc. naive_solver.
  - intros [l' ->]. by rewrite last_snoc.
Qed.
Lemma last_is_Some l : is_Some (last l) ↔ l ≠ [].
Proof. rewrite <-not_eq_None_Some, last_None. naive_solver. Qed.
Lemma last_app l1 l2 :
  last (l1 ++ l2) = match last l2 with Some y => Some y | None => last l1 end.
Proof.
  destruct l2 as [|x l2 _] using rev_ind.
  - by rewrite (right_id_L _ (++)).
  - by rewrite (assoc_L (++)), !last_snoc.
Qed.
Lemma last_cons x l :
  last (x :: l) = match last l with Some y => Some y | None => Some x end.
Proof. by apply (last_app [x]). Qed.
Lemma last_cons_Some_ne x y l :
  x ≠ y → last (x :: l) = Some y → last l = Some y.
Proof. rewrite last_cons. destruct (last l); naive_solver. Qed.
Lemma last_lookup l : last l = l !! pred (length l).
Proof. by induction l as [| ?[]]. Qed.
Lemma last_reverse l : last (reverse l) = head l.
Proof. destruct l as [|x l]; simpl; by rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma last_Some_elem_of l x :
  last l = Some x → x ∈ l.
Proof.
  rewrite last_Some. intros [l' ->]. apply elem_of_app. right.
  by apply elem_of_list_singleton.
Qed.

(** ** Properties of the [head] function *)
Lemma head_nil : head [] =@{option A} None.
Proof. done. Qed.
Lemma head_cons x l : head (x :: l) = Some x.
Proof. done. Qed.

Lemma head_None l : head l = None ↔ l = [].
Proof. split; [|by intros ->]. by destruct l. Qed.
Lemma head_Some l x : head l = Some x ↔ ∃ l', l = x :: l'.
Proof. split; [destruct l as [|x' l]; naive_solver | by intros [l' ->]]. Qed.
Lemma head_is_Some l : is_Some (head l) ↔ l ≠ [].
Proof. rewrite <-not_eq_None_Some, head_None. naive_solver. Qed.

Lemma head_snoc x l :
  head (l ++ [x]) = match head l with Some y => Some y | None => Some x end.
Proof. by destruct l. Qed.
Lemma head_snoc_snoc x1 x2 l :
  head (l ++ [x1; x2]) = head (l ++ [x1]).
Proof. by destruct l. Qed.
Lemma head_lookup l : head l = l !! 0.
Proof. by destruct l. Qed.

Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.
Lemma head_Some_elem_of l x :
  head l = Some x → x ∈ l.
Proof. rewrite head_Some. intros [l' ->]. left. Qed.

(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x → take i l ++ x :: drop (S i) l = l.
Proof.
  revert i x. induction l; intros [|?] ??; simplify_eq/=; f_equal; auto.
Qed.
Lemma take_0 l : take 0 l = [].
Proof. reflexivity. Qed.
Lemma take_nil n : take n [] =@{list A} [].
Proof. by destruct n. Qed.
Lemma take_S_r l n x : l !! n = Some x → take (S n) l = take n l ++ [x].
Proof. revert n. induction l; intros []; naive_solver eauto with f_equal. Qed.
Lemma take_ge l n : length l ≤ n → take n l = l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.

(** [take_app] is the most general lemma for [take] and [app]. Below that we
establish a number of useful corollaries. *)
Lemma take_app l k n : take n (l ++ k) = take n l ++ take (n - length l) k.
Proof. apply firstn_app. Qed.

Lemma take_app_ge l k n :
  length l ≤ n → take n (l ++ k) = l ++ take (n - length l) k.
Proof. intros. by rewrite take_app, take_ge. Qed.
Lemma take_app_le l k n : n ≤ length l → take n (l ++ k) = take n l.
Proof.
  intros. by rewrite take_app, (proj2 (Nat.sub_0_le _ _)), take_0, (right_id _ _).
Qed.
Lemma take_app_add l k m :
  take (length l + m) (l ++ k) = l ++ take m k.
Proof. rewrite take_app, take_ge by lia. repeat f_equal; lia. Qed.
Lemma take_app_add' l k n m :
  n = length l → take (n + m) (l ++ k) = l ++ take m k.
Proof. intros ->. apply take_app_add. Qed.
Lemma take_app_length l k : take (length l) (l ++ k) = l.
Proof. by rewrite take_app, take_ge, Nat.sub_diag, take_0, (right_id _ _). Qed.
Lemma take_app_length' l k n : n = length l → take n (l ++ k) = l.
Proof. intros ->. by apply take_app_length. Qed.
Lemma take_app3_length l1 l2 l3 : take (length l1) ((l1 ++ l2) ++ l3) = l1.
Proof. by rewrite <-(assoc_L (++)), take_app_length. Qed.
Lemma take_app3_length' l1 l2 l3 n :
  n = length l1 → take n ((l1 ++ l2) ++ l3) = l1.
Proof. intros ->. by apply take_app3_length. Qed.

Lemma take_take l n m : take n (take m l) = take (min n m) l.
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
Lemma take_idemp l n : take n (take n l) = take n l.
Proof. by rewrite take_take, Nat.min_id. Qed.
Lemma length_take l n : length (take n l) = min n (length l).
Proof. revert n. induction l; intros [|?]; f_equal/=; done. Qed.
Lemma length_take_le l n : n ≤ length l → length (take n l) = n.
Proof. rewrite length_take. apply Nat.min_l. Qed.
Lemma length_take_ge l n : length l ≤ n → length (take n l) = length l.
Proof. rewrite length_take. apply Nat.min_r. Qed.
Lemma take_drop_commute l n m : take n (drop m l) = drop m (take (m + n) l).
Proof.
  revert n m. induction l; intros [|?][|?]; simpl; auto using take_nil with lia.
Qed.

Lemma lookup_take l n i : i < n → take n l !! i = l !! i.
Proof. revert n i. induction l; intros [|n] [|i] ?; simpl; auto with lia. Qed.
Lemma lookup_total_take `{!Inhabited A} l n i : i < n → take n l !!! i = l !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_take. Qed.
Lemma lookup_take_ge l n i : n ≤ i → take n l !! i = None.
Proof. revert n i. induction l; intros [|?] [|?] ?; simpl; auto with lia. Qed.
Lemma lookup_total_take_ge `{!Inhabited A} l n i : n ≤ i → take n l !!! i = inhabitant.
Proof. intros. by rewrite list_lookup_total_alt, lookup_take_ge. Qed.
Lemma lookup_take_Some l n i a : take n l !! i = Some a ↔ l !! i = Some a ∧ i < n.
Proof.
  split.
  - destruct (decide (i < n)).
    + rewrite lookup_take; naive_solver.
    + rewrite lookup_take_ge; [done|lia].
  - intros [??]. by rewrite lookup_take.
Qed.

Lemma elem_of_take x n l : x ∈ take n l ↔ ∃ i, l !! i = Some x ∧ i < n.
Proof.
  rewrite elem_of_list_lookup. setoid_rewrite lookup_take_Some. naive_solver.
Qed.

Lemma take_alter f l n i : n ≤ i → take n (alter f i l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Qed.
Lemma take_insert l n i x : n ≤ i → take n (<[i:=x]>l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_insert_ne by lia.
Qed.
Lemma take_insert_lt l n i x : i < n → take n (<[i:=x]>l) = <[i:=x]>(take n l).
Proof.
  revert l i. induction n as [|? IHn]; auto; simpl.
  intros [|] [|] ?; auto; simpl. by rewrite IHn by lia.
Qed.

(** ** Properties of the [drop] function *)
Lemma drop_0 l : drop 0 l = l.
Proof. done. Qed.
Lemma drop_nil n : drop n [] =@{list A} [].
Proof. by destruct n. Qed.
Lemma drop_S l x n :
  l !! n = Some x → drop n l = x :: drop (S n) l.
Proof. revert n. induction l; intros []; naive_solver. Qed.
Lemma length_drop l n : length (drop n l) = length l - n.
Proof. revert n. by induction l; intros [|i]; f_equal/=. Qed.
Lemma drop_ge l n : length l ≤ n → drop n l = [].
Proof. revert n. induction l; intros [|?]; simpl in *; auto with lia. Qed.
Lemma drop_all l : drop (length l) l = [].
Proof. by apply drop_ge. Qed.
Lemma drop_drop l n1 n2 : drop n1 (drop n2 l) = drop (n2 + n1) l.
Proof. revert n2. induction l; intros [|?]; simpl; rewrite ?drop_nil; auto. Qed.

(** [drop_app] is the most general lemma for [drop] and [app]. Below we prove a
number of useful corollaries. *)
Lemma drop_app l k n : drop n (l ++ k) = drop n l ++ drop (n - length l) k.
Proof. apply skipn_app. Qed.

Lemma drop_app_ge l k n :
  length l ≤ n → drop n (l ++ k) = drop (n - length l) k.
Proof. intros. by rewrite drop_app, drop_ge. Qed.
Lemma drop_app_le l k n :
  n ≤ length l → drop n (l ++ k) = drop n l ++ k.
Proof. intros. by rewrite drop_app, (proj2 (Nat.sub_0_le _ _)), drop_0. Qed.
Lemma drop_app_add l k m :
  drop (length l + m) (l ++ k) = drop m k.
Proof. rewrite drop_app, drop_ge by lia. simpl. f_equal; lia. Qed.
Lemma drop_app_add' l k n m :
  n = length l → drop (n + m) (l ++ k) = drop m k.
Proof. intros ->. apply drop_app_add. Qed.
Lemma drop_app_length l k : drop (length l) (l ++ k) = k.
Proof. by rewrite drop_app_le, drop_all. Qed.
Lemma drop_app_length' l k n : n = length l → drop n (l ++ k) = k.
Proof. intros ->. by apply drop_app_length. Qed.
Lemma drop_app3_length l1 l2 l3 :
  drop (length l1) ((l1 ++ l2) ++ l3) = l2 ++ l3.
Proof. by rewrite <-(assoc_L (++)), drop_app_length. Qed.
Lemma drop_app3_length' l1 l2 l3 n :
  n = length l1 → drop n ((l1 ++ l2) ++ l3) = l2 ++ l3.
Proof. intros ->. apply drop_app3_length. Qed.

Lemma lookup_drop l n i : drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Lemma lookup_total_drop `{!Inhabited A} l n i : drop n l !!! i = l !!! (n + i).
Proof. by rewrite !list_lookup_total_alt, lookup_drop. Qed.
Lemma drop_alter f l n i : i < n → drop n (alter f i l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Lemma drop_insert_le l n i x : n ≤ i → drop n (<[i:=x]>l) = <[i-n:=x]>(drop n l).
Proof. revert i n. induction l; intros [] []; naive_solver lia. Qed.
Lemma drop_insert_gt l n i x : i < n → drop n (<[i:=x]>l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_insert_ne by lia.
Qed.
Lemma delete_take_drop l i : delete i l = take i l ++ drop (S i) l.
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma take_take_drop l n m : take n l ++ take m (drop n l) = take (n + m) l.
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
Lemma drop_take_drop l n m : n ≤ m → drop n (take m l) ++ drop m l = drop n l.
Proof.
  revert n m. induction l; intros [|?] [|?] ?;
    f_equal/=; auto using take_drop with lia.
Qed.
Lemma insert_take_drop l i x :
  i < length l →
  <[i:=x]> l = take i l ++ x :: drop (S i) l.
Proof.
  intros Hi.
  rewrite <-(take_drop_middle (<[i:=x]> l) i x).
  2:{ by rewrite list_lookup_insert. }
  rewrite take_insert by done.
  rewrite drop_insert_gt by lia.
  done.
Qed.

(** ** Interaction between the [take]/[drop]/[reverse] functions *)
Lemma take_reverse l n : take n (reverse l) = reverse (drop (length l - n) l).
Proof. unfold reverse; rewrite <-!rev_alt. apply firstn_rev. Qed.
Lemma drop_reverse l n : drop n (reverse l) = reverse (take (length l - n) l).
Proof. unfold reverse; rewrite <-!rev_alt. apply skipn_rev. Qed.
Lemma reverse_take l n : reverse (take n l) = drop (length l - n) (reverse l).
Proof.
  rewrite drop_reverse. destruct (decide (n ≤ length l)).
  - repeat f_equal; lia.
  - by rewrite !take_ge by lia.
Qed.
Lemma reverse_drop l n : reverse (drop n l) = take (length l - n) (reverse l).
Proof.
  rewrite take_reverse. destruct (decide (n ≤ length l)).
  - repeat f_equal; lia.
  - by rewrite !drop_ge by lia.
Qed.

(** ** Other lemmas that use [take]/[drop] in their proof. *)
Lemma app_eq_inv l1 l2 k1 k2 :
  l1 ++ l2 = k1 ++ k2 →
  (∃ k, l1 = k1 ++ k ∧ k2 = k ++ l2) ∨ (∃ k, k1 = l1 ++ k ∧ l2 = k ++ k2).
Proof.
  intros Hlk. destruct (decide (length l1 < length k1)).
  - right. rewrite <-(take_drop (length l1) k1), <-(assoc_L _) in Hlk.
    apply app_inj_1 in Hlk as [Hl1 Hl2]; [|rewrite length_take; lia].
    exists (drop (length l1) k1). by rewrite Hl1 at 1; rewrite take_drop.
  - left. rewrite <-(take_drop (length k1) l1), <-(assoc_L _) in Hlk.
    apply app_inj_1 in Hlk as [Hk1 Hk2]; [|rewrite length_take; lia].
    exists (drop (length k1) l1). by rewrite <-Hk1 at 1; rewrite take_drop.
Qed.

(** ** Properties of the [replicate] function *)
Lemma length_replicate n x : length (replicate n x) = n.
Proof. induction n; simpl; auto. Qed.
Lemma lookup_replicate n x y i :
  replicate n x !! i = Some y ↔ y = x ∧ i < n.
Proof.
  split.
  - revert i. induction n; intros [|?]; naive_solver auto with lia.
  - intros [-> Hi]. revert i Hi.
    induction n; intros [|?]; naive_solver auto with lia.
Qed.
Lemma elem_of_replicate n x y : y ∈ replicate n x ↔ y = x ∧ n ≠ 0.
Proof.
  rewrite elem_of_list_lookup, Nat.neq_0_lt_0.
  setoid_rewrite lookup_replicate; naive_solver eauto with lia.
Qed.
Lemma lookup_replicate_1 n x y i :
  replicate n x !! i = Some y → y = x ∧ i < n.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_replicate_2 n x i : i < n → replicate n x !! i = Some x.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_total_replicate_2 `{!Inhabited A} n x i :
  i < n → replicate n x !!! i = x.
Proof. intros. by rewrite list_lookup_total_alt, lookup_replicate_2. Qed.
Lemma lookup_replicate_None n x i : n ≤ i ↔ replicate n x !! i = None.
Proof.
  rewrite eq_None_not_Some, Nat.le_ngt. split.
  - intros Hin [x' Hx']; destruct Hin. rewrite lookup_replicate in Hx'; tauto.
  - intros Hx ?. destruct Hx. exists x; auto using lookup_replicate_2.
Qed.
Lemma insert_replicate x n i : <[i:=x]>(replicate n x) = replicate n x.
Proof. revert i. induction n; intros [|?]; f_equal/=; auto. Qed.
Lemma insert_replicate_lt x y n i :
  i < n →
  <[i:=y]>(replicate n x) = replicate i x ++ y :: replicate (n - S i) x.
Proof.
  revert i. induction n as [|n IH]; intros [|i] Hi; simpl; [lia..| |].
  - by rewrite Nat.sub_0_r.
  - by rewrite IH by lia.
Qed.
Lemma elem_of_replicate_inv x n y : x ∈ replicate n y → x = y.
Proof. induction n; simpl; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Lemma replicate_S n x : replicate (S n) x = x :: replicate n x.
Proof. done. Qed.
Lemma replicate_S_end n x : replicate (S n) x = replicate n x ++ [x].
Proof. induction n; f_equal/=; auto. Qed.
Lemma replicate_add n m x :
  replicate (n + m) x = replicate n x ++ replicate m x.
Proof. induction n; f_equal/=; auto. Qed.
Lemma replicate_cons_app n x :
  x :: replicate n x = replicate n x ++ [x].
Proof. induction n; f_equal/=; eauto.  Qed.
Lemma take_replicate n m x : take n (replicate m x) = replicate (min n m) x.
Proof. revert m. by induction n; intros [|?]; f_equal/=. Qed.
Lemma take_replicate_add n m x : take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Lemma drop_replicate n m x : drop n (replicate m x) = replicate (m - n) x.
Proof. revert m. by induction n; intros [|?]; f_equal/=. Qed.
Lemma drop_replicate_add n m x : drop n (replicate (n + m) x) = replicate m x.
Proof. rewrite drop_replicate. f_equal. lia. Qed.
Lemma replicate_as_elem_of x n l :
  replicate n x = l ↔ length l = n ∧ ∀ y, y ∈ l → y = x.
Proof.
  split; [intros <-; eauto using elem_of_replicate_inv, length_replicate|].
  intros [<- Hl]. symmetry. induction l as [|y l IH]; f_equal/=.
  - apply Hl. by left.
  - apply IH. intros ??. apply Hl. by right.
Qed.
Lemma reverse_replicate n x : reverse (replicate n x) = replicate n x.
Proof.
  symmetry. apply replicate_as_elem_of.
  rewrite length_reverse, length_replicate. split; auto.
  intros y. rewrite elem_of_reverse. by apply elem_of_replicate_inv.
Qed.
Lemma replicate_false βs n : length βs = n → replicate n false =.>* βs.
Proof. intros <-. by induction βs; simpl; constructor. Qed.
Lemma tail_replicate x n : tail (replicate n x) = replicate (pred n) x.
Proof. by destruct n. Qed.
Lemma head_replicate_Some x n : head (replicate n x) = Some x ↔ 0 < n.
Proof. destruct n; naive_solver lia. Qed.

(** ** Properties of the [resize] function *)
Lemma resize_spec l n x : resize n x l = take n l ++ replicate (n - length l) x.
Proof. revert n. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_0 l x : resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n x : resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. f_equal/=. lia. Qed.
Lemma resize_ge l n x :
  length l ≤ n → resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le l n x : n ≤ length l → resize n x l = take n l.
Proof.
  intros. rewrite resize_spec, (proj2 (Nat.sub_0_le _ _)) by done.
  simpl. by rewrite (right_id_L [] (++)).
Qed.
Lemma resize_all l x : resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt l n x : n = length l → resize n x l = l.
Proof. intros ->. by rewrite resize_all. Qed.
Lemma resize_add l n m x :
  resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
  revert n m. induction l; intros [|?] [|?]; f_equal/=; auto.
  - by rewrite Nat.add_0_r, (right_id_L [] (++)).
  - by rewrite replicate_add.
Qed.
Lemma resize_add_eq l n m x :
  length l = n → resize (n + m) x l = l ++ replicate m x.
Proof. intros <-. by rewrite resize_add, resize_all, drop_all, resize_nil. Qed.
Lemma resize_app_le l1 l2 n x :
  n ≤ length l1 → resize n x (l1 ++ l2) = resize n x l1.
Proof.
  intros. by rewrite !resize_le, take_app_le by (rewrite ?length_app; lia).
Qed.
Lemma resize_app l1 l2 n x : n = length l1 → resize n x (l1 ++ l2) = l1.
Proof. intros ->. by rewrite resize_app_le, resize_all. Qed.
Lemma resize_app_ge l1 l2 n x :
  length l1 ≤ n → resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
  intros. rewrite !resize_spec, take_app_ge, (assoc_L (++)) by done.
  do 2 f_equal. rewrite length_app. lia.
Qed.
Lemma length_resize l n x : length (resize n x l) = n.
Proof. rewrite resize_spec, length_app, length_replicate, length_take. lia. Qed.
Lemma resize_replicate x n m : resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_resize l n m x : n ≤ m → resize n x (resize m x l) = resize n x l.
Proof.
  revert n m. induction l; simpl.
  - intros. by rewrite !resize_nil, resize_replicate.
  - intros [|?] [|?] ?; f_equal/=; auto with lia.
Qed.
Lemma resize_idemp l n x : resize n x (resize n x l) = resize n x l.
Proof. by rewrite resize_resize. Qed.
Lemma resize_take_le l n m x : n ≤ m → resize n x (take m l) = resize n x l.
Proof. revert n m. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Lemma resize_take_eq l n x : resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.
Lemma take_resize l n m x : take n (resize m x l) = resize (min n m) x l.
Proof.
  revert n m. induction l; intros [|?][|?]; f_equal/=; auto using take_replicate.
Qed.
Lemma take_resize_le l n m x : n ≤ m → take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_eq l n x : take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_add l n m x : take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.
Lemma drop_resize_le l n m x :
  n ≤ m → drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
  revert n m. induction l; simpl.
  - intros. by rewrite drop_nil, !resize_nil, drop_replicate.
  - intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_add l n m x :
  drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
Lemma lookup_resize l n x i : i < n → i < length l → resize n x l !! i = l !! i.
Proof.
  intros ??. destruct (decide (n < length l)).
  - by rewrite resize_le, lookup_take by lia.
  - by rewrite resize_ge, lookup_app_l by lia.
Qed.
Lemma lookup_total_resize `{!Inhabited A} l n x i :
  i < n → i < length l → resize n x l !!! i = l !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize. Qed.
Lemma lookup_resize_new l n x i :
  length l ≤ i → i < n → resize n x l !! i = Some x.
Proof.
  intros ??. rewrite resize_ge by lia.
  replace i with (length l + (i - length l)) by lia.
  by rewrite lookup_app_r, lookup_replicate_2 by lia.
Qed.
Lemma lookup_total_resize_new `{!Inhabited A} l n x i :
  length l ≤ i → i < n → resize n x l !!! i = x.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_new. Qed.
Lemma lookup_resize_old l n x i : n ≤ i → resize n x l !! i = None.
Proof. intros ?. apply lookup_ge_None_2. by rewrite length_resize. Qed.
Lemma lookup_total_resize_old `{!Inhabited A} l n x i :
  n ≤ i → resize n x l !!! i = inhabitant.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_old. Qed.

(** ** Properties of the [rotate] function *)
Lemma rotate_replicate n1 n2 x:
  rotate n1 (replicate n2 x) = replicate n2 x.
Proof.
  unfold rotate. rewrite drop_replicate, take_replicate, <-replicate_add.
  f_equal. lia.
Qed.

Lemma length_rotate l n:
  length (rotate n l) = length l.
Proof. unfold rotate. rewrite length_app, length_drop, length_take. lia. Qed.

Lemma lookup_rotate_r l n i:
  i < length l →
  rotate n l !! i = l !! rotate_nat_add n i (length l).
Proof.
  intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?.
  unfold rotate. rewrite rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
  remember (n `mod` length l) as n'.
  case_decide.
  - by rewrite lookup_app_l, lookup_drop by (rewrite length_drop; lia).
  - rewrite lookup_app_r, lookup_take, length_drop by (rewrite length_drop; lia).
    f_equal. lia.
Qed.

Lemma lookup_rotate_r_Some l n i x:
  rotate n l !! i = Some x ↔
  l !! rotate_nat_add n i (length l) = Some x ∧ i < length l.
Proof.
  split.
  - intros Hl. pose proof (lookup_lt_Some _ _ _ Hl) as Hlen.
    rewrite length_rotate in Hlen. by rewrite <-lookup_rotate_r.
  - intros [??]. by rewrite lookup_rotate_r.
Qed.

Lemma lookup_rotate_l l n i:
  i < length l → rotate n l !! rotate_nat_sub n i (length l) = l !! i.
Proof.
  intros ?. rewrite lookup_rotate_r, rotate_nat_add_sub;[done..|].
  apply rotate_nat_sub_lt. lia.
Qed.

Lemma elem_of_rotate l n x:
  x ∈ rotate n l ↔ x ∈ l.
Proof.
  unfold rotate. rewrite <-(take_drop (n `mod` length l) l) at 5.
  rewrite !elem_of_app. naive_solver.
Qed.

Lemma rotate_insert_l l n i x:
  i < length l →
  rotate n (<[rotate_nat_add n i (length l):=x]> l) = <[i:=x]> (rotate n l).
Proof.
  intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?. unfold rotate.
  rewrite length_insert, rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
  remember (n `mod` length l) as n'.
  case_decide.
  - rewrite take_insert, drop_insert_le, insert_app_l
      by (rewrite ?length_drop; lia). do 2 f_equal. lia.
  - rewrite take_insert_lt, drop_insert_gt, insert_app_r_alt, length_drop
      by (rewrite ?length_drop; lia). do 2 f_equal. lia.
Qed.

Lemma rotate_insert_r l n i x:
  i < length l →
  rotate n (<[i:=x]> l) = <[rotate_nat_sub n i (length l):=x]> (rotate n l).
Proof.
  intros ?. rewrite <-rotate_insert_l, rotate_nat_add_sub;[done..|].
  apply rotate_nat_sub_lt. lia.
Qed.

(** ** Properties of the [rotate_take] function *)
Lemma rotate_take_insert l s e i x:
  i < length l →
  rotate_take s e (<[i:=x]>l) =
  if decide (rotate_nat_sub s i (length l) < rotate_nat_sub s e (length l)) then
    <[rotate_nat_sub s i (length l):=x]> (rotate_take s e l) else rotate_take s e l.
Proof.
  intros ?. unfold rotate_take. rewrite rotate_insert_r, length_insert by done.
  case_decide; [rewrite take_insert_lt | rewrite take_insert]; naive_solver lia.
Qed.

Lemma rotate_take_add l b i :
  i < length l →
  rotate_take b (rotate_nat_add b i (length l)) l = take i (rotate b l).
Proof. intros ?. unfold rotate_take. by rewrite rotate_nat_sub_add. Qed.

(** ** Properties of the [reshape] function *)
Lemma length_reshape szs l : length (reshape szs l) = length szs.
Proof. revert l. by induction szs; intros; f_equal/=. Qed.
End general_properties.

Section more_general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

(** ** Properties of [sublist_lookup] and [sublist_alter] *)
Lemma sublist_lookup_length l i n k :
  sublist_lookup i n l = Some k → length k = n.
Proof.
  unfold sublist_lookup; intros; simplify_option_eq.
  rewrite length_take, length_drop; lia.
Qed.
Lemma sublist_lookup_all l n : length l = n → sublist_lookup 0 n l = Some l.
Proof.
  intros. unfold sublist_lookup; case_guard; [|lia].
  by rewrite take_ge by (rewrite length_drop; lia).
Qed.
Lemma sublist_lookup_Some l i n :
  i + n ≤ length l → sublist_lookup i n l = Some (take n (drop i l)).
Proof. by unfold sublist_lookup; intros; simplify_option_eq. Qed.
Lemma sublist_lookup_Some' l i n l' :
  sublist_lookup i n l = Some l' ↔ l' = take n (drop i l) ∧ i + n ≤ length l.
Proof. unfold sublist_lookup. case_guard; naive_solver lia. Qed.
Lemma sublist_lookup_None l i n :
  length l < i + n → sublist_lookup i n l = None.
Proof. by unfold sublist_lookup; intros; simplify_option_eq by lia. Qed.
Lemma sublist_eq l k n :
  (n | length l) → (n | length k) →
  (∀ i, sublist_lookup (i * n) n l = sublist_lookup (i * n) n k) → l = k.
Proof.
  revert l k. assert (∀ l i,
    n ≠ 0 → (n | length l) → ¬n * i `div` n + n ≤ length l → length l ≤ i).
  { intros l i ? [j ->] Hjn. apply Nat.nlt_ge; contradict Hjn.
    rewrite <-Nat.mul_succ_r, (Nat.mul_comm n).
    apply Nat.mul_le_mono_r, Nat.le_succ_l, Nat.div_lt_upper_bound; lia. }
  intros l k Hl Hk Hlookup. destruct (decide (n = 0)) as [->|].
  { by rewrite (nil_length_inv l),
      (nil_length_inv k) by eauto using Nat.divide_0_l. }
  apply list_eq; intros i. specialize (Hlookup (i `div` n)).
  rewrite (Nat.mul_comm _ n) in Hlookup.
  unfold sublist_lookup in *; simplify_option_eq;
    [|by rewrite !lookup_ge_None_2 by auto].
  apply (f_equal (.!! i `mod` n)) in Hlookup.
  by rewrite !lookup_take, !lookup_drop, <-!Nat.div_mod in Hlookup
    by (auto using Nat.mod_upper_bound with lia).
Qed.
Lemma sublist_eq_same_length l k j n :
  length l = j * n → length k = j * n →
  (∀ i,i < j → sublist_lookup (i * n) n l = sublist_lookup (i * n) n k) → l = k.
Proof.
  intros Hl Hk ?. destruct (decide (n = 0)) as [->|].
  { by rewrite (nil_length_inv l), (nil_length_inv k) by lia. }
  apply sublist_eq with n; [by exists j|by exists j|].
  intros i. destruct (decide (i < j)); [by auto|].
  assert (∀ m, m = j * n → m < i * n + n).
  { intros ? ->. replace (i * n + n) with (S i * n) by lia.
    apply Nat.mul_lt_mono_pos_r; lia. }
  by rewrite !sublist_lookup_None by auto.
Qed.
Lemma sublist_lookup_reshape l i n m :
  0 < n → length l = m * n →
  reshape (replicate m n) l !! i = sublist_lookup (i * n) n l.
Proof.
  intros Hn Hl. unfold sublist_lookup.  apply option_eq; intros x; split.
  - intros Hx. case_guard as Hi; simplify_eq/=.
    { f_equal. clear Hi. revert i l Hl Hx.
      induction m as [|m IH]; intros [|i] l ??; simplify_eq/=; auto.
      rewrite <-drop_drop. apply IH; rewrite ?length_drop; auto with lia. }
    destruct Hi. rewrite Hl, <-Nat.mul_succ_l.
    apply Nat.mul_le_mono_r, Nat.le_succ_l. apply lookup_lt_Some in Hx.
    by rewrite length_reshape, length_replicate in Hx.
  - intros Hx. case_guard as Hi; simplify_eq/=.
    revert i l Hl Hi. induction m as [|m IH]; [auto with lia|].
    intros [|i] l ??; simpl; [done|]. rewrite <-drop_drop.
    rewrite IH; rewrite ?length_drop; auto with lia.
Qed.
Lemma sublist_lookup_compose l1 l2 l3 i n j m :
  sublist_lookup i n l1 = Some l2 → sublist_lookup j m l2 = Some l3 →
  sublist_lookup (i + j) m l1 = Some l3.
Proof.
  unfold sublist_lookup; intros; simplify_option_eq;
    repeat match goal with
    | H : _ ≤ length _ |- _ => rewrite length_take, length_drop in H
    end; rewrite ?take_drop_commute, ?drop_drop, ?take_take,
      ?Nat.min_l, Nat.add_assoc by lia; auto with lia.
Qed.
Lemma length_sublist_alter f l i n k :
  sublist_lookup i n l = Some k → length (f k) = n →
  length (sublist_alter f i n l) = length l.
Proof.
  unfold sublist_alter, sublist_lookup. intros Hk ?; simplify_option_eq.
  rewrite !length_app, Hk, !length_take, !length_drop; lia.
Qed.
Lemma sublist_lookup_alter f l i n k :
  sublist_lookup i n l = Some k → length (f k) = n →
  sublist_lookup i n (sublist_alter f i n l) = f <$> sublist_lookup i n l.
Proof.
  unfold sublist_lookup. intros Hk ?. erewrite length_sublist_alter by eauto.
  unfold sublist_alter; simplify_option_eq.
  by rewrite Hk, drop_app_length', take_app_length' by (rewrite ?length_take; lia).
Qed.
Lemma sublist_lookup_alter_ne f l i j n k :
  sublist_lookup j n l = Some k → length (f k) = n → i + n ≤ j ∨ j + n ≤ i →
  sublist_lookup i n (sublist_alter f j n l) = sublist_lookup i n l.
Proof.
  unfold sublist_lookup. intros Hk Hi ?. erewrite length_sublist_alter by eauto.
  unfold sublist_alter; simplify_option_eq; f_equal; rewrite Hk.
  apply list_eq; intros ii.
  destruct (decide (ii < length (f k))); [|by rewrite !lookup_take_ge by lia].
  rewrite !lookup_take, !lookup_drop by done. destruct (decide (i + ii < j)).
  { by rewrite lookup_app_l, lookup_take by (rewrite ?length_take; lia). }
  rewrite lookup_app_r by (rewrite length_take; lia).
  rewrite length_take_le, lookup_app_r, lookup_drop by lia. f_equal; lia.
Qed.
Lemma sublist_alter_all f l n : length l = n → sublist_alter f 0 n l = f l.
Proof.
  intros <-. unfold sublist_alter; simpl.
  by rewrite drop_all, (right_id_L [] (++)), take_ge.
Qed.
Lemma sublist_alter_compose f g l i n k :
  sublist_lookup i n l = Some k → length (f k) = n → length (g k) = n →
  sublist_alter (f ∘ g) i n l = sublist_alter f i n (sublist_alter g i n l).
Proof.
  unfold sublist_alter, sublist_lookup. intros Hk ??; simplify_option_eq.
  by rewrite !take_app_length', drop_app_length', !(assoc_L (++)), drop_app_length',
    take_app_length' by (rewrite ?length_app, ?length_take, ?Hk; lia).
Qed.

(** ** Properties of the [mask] function *)
Lemma mask_nil f βs : mask f βs [] =@{list A} [].
Proof. by destruct βs. Qed.
Lemma length_mask f βs l : length (mask f βs l) = length l.
Proof. revert βs. induction l; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_true f l n : length l ≤ n → mask f (replicate n true) l = f <$> l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma mask_false f l n : mask f (replicate n false) l = l.
Proof. revert l. induction n; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_app f βs1 βs2 l :
  mask f (βs1 ++ βs2) l
  = mask f βs1 (take (length βs1) l) ++ mask f βs2 (drop (length βs1) l).
Proof. revert l. induction βs1;intros [|??]; f_equal/=; auto using mask_nil. Qed.
Lemma mask_app_2 f βs l1 l2 :
  mask f βs (l1 ++ l2)
  = mask f (take (length l1) βs) l1 ++ mask f (drop (length l1) βs) l2.
Proof. revert βs. induction l1; intros [|??]; f_equal/=; auto. Qed.
Lemma take_mask f βs l n : take n (mask f βs l) = mask f (take n βs) (take n l).
Proof. revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto. Qed.
Lemma drop_mask f βs l n : drop n (mask f βs l) = mask f (drop n βs) (drop n l).
Proof.
  revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto using mask_nil.
Qed.
Lemma sublist_lookup_mask f βs l i n :
  sublist_lookup i n (mask f βs l)
  = mask f (take n (drop i βs)) <$> sublist_lookup i n l.
Proof.
  unfold sublist_lookup; rewrite length_mask; simplify_option_eq; auto.
  by rewrite drop_mask, take_mask.
Qed.
Lemma mask_mask f g βs1 βs2 l :
  (∀ x, f (g x) = f x) → βs1 =.>* βs2 →
  mask f βs2 (mask g βs1 l) = mask f βs2 l.
Proof.
  intros ? Hβs. revert l. by induction Hβs as [|[] []]; intros [|??]; f_equal/=.
Qed.
Lemma lookup_mask f βs l i :
  βs !! i = Some true → mask f βs l !! i = f <$> l !! i.
Proof.
  revert i βs. induction l; intros [] [] ?; simplify_eq/=; f_equal; auto.
Qed.
Lemma lookup_mask_notin f βs l i :
  βs !! i ≠ Some true → mask f βs l !! i = l !! i.
Proof.
  revert i βs. induction l; intros [] [|[]] ?; simplify_eq/=; auto.
Qed.

(** ** Properties of the [Permutation] predicate *)
Lemma Permutation_nil_r l : l ≡ₚ [] ↔ l = [].
Proof. split; [by intro; apply Permutation_nil | by intros ->]. Qed.
Lemma Permutation_singleton_r l x : l ≡ₚ [x] ↔ l = [x].
Proof. split; [by intro; apply Permutation_length_1_inv | by intros ->]. Qed.
Lemma Permutation_nil_l l : [] ≡ₚ l ↔ [] = l.
Proof. by rewrite (symmetry_iff (≡ₚ)), Permutation_nil_r. Qed.
Lemma Permutation_singleton_l l x : [x] ≡ₚ l ↔ [x] = l.
Proof. by rewrite (symmetry_iff (≡ₚ)), Permutation_singleton_r. Qed.

Lemma Permutation_skip x l l' : l ≡ₚ l' → x :: l ≡ₚ x :: l'.
Proof. apply perm_skip. Qed.
Lemma Permutation_swap x y l : y :: x :: l ≡ₚ x :: y :: l.
Proof. apply perm_swap. Qed.
Lemma Permutation_singleton_inj x y : [x] ≡ₚ [y] → x = y.
Proof. apply Permutation_length_1. Qed.

Global Instance length_Permutation_proper : Proper ((≡ₚ) ==> (=)) (@length A).
Proof. induction 1; simpl; auto with lia. Qed.
Global Instance elem_of_Permutation_proper x : Proper ((≡ₚ) ==> iff) (x ∈.).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Global Instance NoDup_Permutation_proper: Proper ((≡ₚ) ==> iff) (@NoDup A).
Proof.
  induction 1 as [|x l k Hlk IH | |].
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
Qed.

Global Instance app_Permutation_comm : Comm (≡ₚ) (@app A).
Proof.
  intros l1. induction l1 as [|x l1 IH]; intros l2; simpl.
  - by rewrite (right_id_L [] (++)).
  - rewrite Permutation_middle, IH. simpl. by rewrite Permutation_middle.
Qed.

Global Instance cons_Permutation_inj_r x : Inj (≡ₚ) (≡ₚ) (x ::.).
Proof. red. eauto using Permutation_cons_inv. Qed.
Global Instance app_Permutation_inj_r k : Inj (≡ₚ) (≡ₚ) (k ++.).
Proof.
  induction k as [|x k IH]; intros l1 l2; simpl; auto.
  intros. by apply IH, (inj (x ::.)).
Qed.
Global Instance cons_Permutation_inj_l k : Inj (=) (≡ₚ) (.:: k).
Proof.
  intros x1 x2 Hperm. apply Permutation_singleton_inj.
  apply (inj (k ++.)). by rewrite !(comm (++) k).
Qed.
Global Instance app_Permutation_inj_l k : Inj (≡ₚ) (≡ₚ) (.++ k).
Proof. intros l1 l2. rewrite !(comm (++) _ k). by apply (inj (k ++.)). Qed.

Lemma replicate_Permutation n x l : replicate n x ≡ₚ l → replicate n x = l.
Proof.
  intros Hl. apply replicate_as_elem_of. split.
  - by rewrite <-Hl, length_replicate.
  - intros y. rewrite <-Hl. by apply elem_of_replicate_inv.
Qed.
Lemma reverse_Permutation l : reverse l ≡ₚ l.
Proof.
  induction l as [|x l IH]; [done|].
  by rewrite reverse_cons, (comm (++)), IH.
Qed.
Lemma delete_Permutation l i x : l !! i = Some x → l ≡ₚ x :: delete i l.
Proof.
  revert i; induction l as [|y l IH]; intros [|i] ?; simplify_eq/=; auto.
  by rewrite Permutation_swap, <-(IH i).
Qed.
Lemma elem_of_Permutation l x : x ∈ l ↔ ∃ k, l ≡ₚ x :: k.
Proof.
  split.
  - intros [i ?]%elem_of_list_lookup. eexists. by apply delete_Permutation.
  - intros [k ->]. by left.
Qed.

Lemma Permutation_cons_inv_r l k x :
  k ≡ₚ x :: l → ∃ k1 k2, k = k1 ++ x :: k2 ∧ l ≡ₚ k1 ++ k2.
Proof.
  intros Hk. assert (∃ i, k !! i = Some x) as [i Hi].
  { apply elem_of_list_lookup. rewrite Hk, elem_of_cons; auto. }
  exists (take i k), (drop (S i) k). split.
  - by rewrite take_drop_middle.
  - rewrite <-delete_take_drop. apply (inj (x ::.)).
    by rewrite <-Hk, <-(delete_Permutation k) by done.
Qed.
Lemma Permutation_cons_inv_l l k x :
  x :: l ≡ₚ k → ∃ k1 k2, k = k1 ++ x :: k2 ∧ l ≡ₚ k1 ++ k2.
Proof. by intros ?%(symmetry_iff (≡ₚ))%Permutation_cons_inv_r. Qed.

Lemma Permutation_cross_split (la lb lc ld : list A) :
  la ++ lb ≡ₚ lc ++ ld →
  ∃ lac lad lbc lbd,
    lac ++ lad ≡ₚ la ∧ lbc ++ lbd ≡ₚ lb ∧ lac ++ lbc ≡ₚ lc ∧ lad ++ lbd ≡ₚ ld.
Proof.
  revert lc ld.
  induction la as [|x la IH]; simpl; intros lc ld Hperm.
  { exists [], [], lc, ld. by rewrite !(right_id_L [] (++)). }
  assert (x ∈ lc ++ ld)
    as [[lc' Hlc]%elem_of_Permutation|[ld' Hld]%elem_of_Permutation]%elem_of_app.
  { rewrite <-Hperm, elem_of_cons. auto. }
  - rewrite Hlc in Hperm. simpl in Hperm. apply (inj (x ::.)) in Hperm.
    apply IH in Hperm as (lac&lad&lbc&lbd&Ha&Hb&Hc&Hd).
    exists (x :: lac), lad, lbc, lbd; simpl. by rewrite Ha, Hb, Hc, Hd.
  - rewrite Hld, <-Permutation_middle in Hperm. apply (inj (x ::.)) in Hperm.
    apply IH in Hperm as (lac&lad&lbc&lbd&Ha&Hb&Hc&Hd).
    exists lac, (x :: lad), lbc, lbd; simpl.
    by rewrite <-Permutation_middle, Ha, Hb, Hc, Hd.
Qed.

Lemma Permutation_inj l1 l2 :
  Permutation l1 l2 ↔
    length l1 = length l2 ∧
    ∃ f : nat → nat, Inj (=) (=) f ∧ ∀ i, l1 !! i = l2 !! f i.
Proof.
  split.
  - intros Hl; split; [by apply Permutation_length|].
    induction Hl as [|x l1 l2 _ [f [??]]|x y l|l1 l2 l3 _ [f [? Hf]] _ [g [? Hg]]].
    + exists id; split; [apply _|done].
    + exists (λ i, match i with 0 => 0 | S i => S (f i) end); split.
      * by intros [|i] [|j] ?; simplify_eq/=.
      * intros [|i]; simpl; auto.
    + exists (λ i, match i with 0 => 1 | 1 => 0 | _ => i end); split.
      * intros [|[|i]] [|[|j]]; congruence.
      * by intros [|[|i]].
    + exists (g ∘ f); split; [apply _|]. intros i; simpl. by rewrite <-Hg, <-Hf.
  - intros (Hlen & f & Hf & Hl). revert l2 f Hlen Hf Hl.
    induction l1 as [|x l1 IH]; intros l2 f Hlen Hf Hl; [by destruct l2|].
    rewrite (delete_Permutation l2 (f 0) x) by (by rewrite <-Hl).
    pose (g n := let m := f (S n) in if lt_eq_lt_dec m (f 0) then m else m - 1).
    apply Permutation_skip, (IH _ g).
    + rewrite length_delete by (rewrite <-Hl; eauto); simpl in *; lia.
    + unfold g. intros i j Hg.
      repeat destruct (lt_eq_lt_dec _ _) as [[?|?]|?]; simplify_eq/=; try lia.
      apply (inj S), (inj f); lia.
    + intros i. unfold g. destruct (lt_eq_lt_dec _ _) as [[?|?]|?].
      * by rewrite lookup_delete_lt, <-Hl.
      * simplify_eq.
      * rewrite lookup_delete_ge, <-Nat.sub_succ_l by lia; simpl.
        by rewrite Nat.sub_0_r, <-Hl.
Qed.

(** ** Properties of the [filter] function *)
Section filter.
  Context (P : A → Prop) `{∀ x, Decision (P x)}.
  Local Arguments filter {_ _ _} _ {_} !_ /.

  Lemma filter_nil : filter P [] = [].
  Proof. done. Qed.
  Lemma filter_cons x l :
    filter P (x :: l) = if decide (P x) then x :: filter P l else filter P l.
  Proof. done. Qed.
  Lemma filter_cons_True x l : P x → filter P (x :: l) = x :: filter P l.
  Proof. intros. by rewrite filter_cons, decide_True. Qed.
  Lemma filter_cons_False x l : ¬P x → filter P (x :: l) = filter P l.
  Proof. intros. by rewrite filter_cons, decide_False. Qed.

  Lemma filter_app l1 l2 : filter P (l1 ++ l2) = filter P l1 ++ filter P l2.
  Proof.
    induction l1 as [|x l1 IH]; simpl; [done| ].
    case_decide; [|done].
    by rewrite IH.
  Qed.

  Lemma elem_of_list_filter l x : x ∈ filter P l ↔ P x ∧ x ∈ l.
  Proof.
    induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
  Lemma NoDup_filter l : NoDup l → NoDup (filter P l).
  Proof.
    induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.

  Global Instance filter_Permutation : Proper ((≡ₚ) ==> (≡ₚ)) (filter P).
  Proof. induction 1; repeat (simpl; repeat case_decide); by econstructor. Qed.

  Lemma length_filter l : length (filter P l) ≤ length l.
  Proof. induction l; simpl; repeat case_decide; simpl; lia. Qed.
  Lemma length_filter_lt l x : x ∈ l → ¬P x → length (filter P l) < length l.
  Proof.
    intros [k ->]%elem_of_Permutation ?; simpl.
    rewrite decide_False, Nat.lt_succ_r by done. apply length_filter.
  Qed.
  Lemma filter_nil_not_elem_of l x : filter P l = [] → P x → x ∉ l.
  Proof. induction 3; simplify_eq/=; case_decide; naive_solver. Qed.
  Lemma filter_reverse l : filter P (reverse l) = reverse (filter P l).
  Proof.
    induction l as [|x l IHl]; [done|].
    rewrite reverse_cons, filter_app, IHl, !filter_cons.
    case_decide; [by rewrite reverse_cons|by rewrite filter_nil, app_nil_r].
  Qed.

  Lemma filter_app_complement l : filter P l ++ filter (λ x, ¬P x) l ≡ₚ l.
  Proof.
    induction l as [|x l IH]; simpl; [done|]. case_decide.
    - rewrite decide_False by naive_solver. simpl. by rewrite IH.
    - rewrite decide_True by done. by rewrite <-Permutation_middle, IH.
  Qed.
End filter.

Lemma list_filter_iff (P1 P2 : A → Prop)
    `{!∀ x, Decision (P1 x), !∀ x, Decision (P2 x)} (l : list A) :
  (∀ x, P1 x ↔ P2 x) →
  filter P1 l = filter P2 l.
Proof.
  intros HPiff. induction l as [|a l IH]; [done|].
  destruct (decide (P1 a)).
  - rewrite !filter_cons_True by naive_solver. by rewrite IH.
  - rewrite !filter_cons_False by naive_solver. by rewrite IH.
Qed.

Lemma list_filter_filter (P1 P2 : A → Prop)
    `{!∀ x, Decision (P1 x), !∀ x, Decision (P2 x)} (l : list A) :
  filter P1 (filter P2 l) = filter (λ a, P1 a ∧ P2 a) l.
Proof.
  induction l as [|x l IH]; [done|].
  rewrite !filter_cons. case (decide (P2 x)) as [HP2|HP2].
  - rewrite filter_cons, IH. apply decide_ext. naive_solver.
  - rewrite IH. symmetry. apply decide_False. by intros [_ ?].
Qed.

Lemma list_filter_filter_l (P1 P2 : A → Prop)
    `{!∀ x, Decision (P1 x), !∀ x, Decision (P2 x)} (l : list A) :
  (∀ x, P1 x → P2 x) →
  filter P1 (filter P2 l) = filter P1 l.
Proof.
  intros HPimp. rewrite list_filter_filter.
  apply list_filter_iff. naive_solver.
Qed.

Lemma list_filter_filter_r (P1 P2 : A → Prop)
    `{!∀ x, Decision (P1 x), !∀ x, Decision (P2 x)} (l : list A) :
  (∀ x, P2 x → P1 x) →
  filter P1 (filter P2 l) = filter P2 l.
Proof.
  intros HPimp. rewrite list_filter_filter.
  apply list_filter_iff. naive_solver.
Qed.

(** ** Properties of the [prefix] and [suffix] predicates *)
Global Instance: PartialOrder (@prefix A).
Proof.
  split; [split|].
  - intros ?. eexists []. by rewrite (right_id_L [] (++)).
  - intros ???[k1->] [k2->]. exists (k1 ++ k2). by rewrite (assoc_L (++)).
  - intros l1 l2 [k1 ?] [[|x2 k2] ->]; [|discriminate_list].
    by rewrite (right_id_L _ _).
Qed.
Lemma prefix_nil l : [] `prefix_of` l.
Proof. by exists l. Qed.
Lemma prefix_nil_inv l : l `prefix_of` [] → l = [].
Proof. intros [k ?]. by destruct l. Qed.
Lemma prefix_nil_not x l : ¬x :: l `prefix_of` [].
Proof. by intros [k ?]. Qed.
Lemma prefix_cons x l1 l2 : l1 `prefix_of` l2 → x :: l1 `prefix_of` x :: l2.
Proof. intros [k ->]. by exists k. Qed.
Lemma prefix_cons_alt x y l1 l2 :
  x = y → l1 `prefix_of` l2 → x :: l1 `prefix_of` y :: l2.
Proof. intros ->. apply prefix_cons. Qed.
Lemma prefix_cons_inv_1 x y l1 l2 : x :: l1 `prefix_of` y :: l2 → x = y.
Proof. by intros [k ?]; simplify_eq/=. Qed.
Lemma prefix_cons_inv_2 x y l1 l2 :
  x :: l1 `prefix_of` y :: l2 → l1 `prefix_of` l2.
Proof. intros [k ?]; simplify_eq/=. by exists k. Qed.
Lemma prefix_app k l1 l2 : l1 `prefix_of` l2 → k ++ l1 `prefix_of` k ++ l2.
Proof. intros [k' ->]. exists k'. by rewrite (assoc_L (++)). Qed.
Lemma prefix_app_alt k1 k2 l1 l2 :
  k1 = k2 → l1 `prefix_of` l2 → k1 ++ l1 `prefix_of` k2 ++ l2.
Proof. intros ->. apply prefix_app. Qed.
Lemma prefix_app_inv k l1 l2 :
  k ++ l1 `prefix_of` k ++ l2 → l1 `prefix_of` l2.
Proof.
  intros [k' E]. exists k'. rewrite <-(assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma prefix_app_l l1 l2 l3 : l1 ++ l3 `prefix_of` l2 → l1 `prefix_of` l2.
Proof. intros [k ->]. exists (l3 ++ k). by rewrite (assoc_L (++)). Qed.
Lemma prefix_app_r l1 l2 l3 : l1 `prefix_of` l2 → l1 `prefix_of` l2 ++ l3.
Proof. intros [k ->]. exists (k ++ l3). by rewrite (assoc_L (++)). Qed.
Lemma prefix_take l n : take n l `prefix_of` l.
Proof. rewrite <-(take_drop n l) at 2. apply prefix_app_r. done. Qed.
Lemma prefix_lookup_lt l1 l2 i :
  i < length l1 → l1 `prefix_of` l2 → l1 !! i = l2 !! i.
Proof. intros ? [? ->]. by rewrite lookup_app_l. Qed.
Lemma prefix_lookup_Some l1 l2 i x :
  l1 !! i = Some x → l1 `prefix_of` l2 → l2 !! i = Some x.
Proof. intros ? [k ->]. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
Lemma prefix_length l1 l2 : l1 `prefix_of` l2 → length l1 ≤ length l2.
Proof. intros [? ->]. rewrite length_app. lia. Qed.
Lemma prefix_snoc_not l x : ¬l ++ [x] `prefix_of` l.
Proof. intros [??]. discriminate_list. Qed.
Lemma elem_of_prefix l1 l2 x :
  x ∈ l1 → l1 `prefix_of` l2 → x ∈ l2.
Proof. intros Hin [l' ->]. apply elem_of_app. by left. Qed.
(* [prefix] is not a total order, but [l1] and [l2] are always comparable if
  they are both prefixes of some [l3]. *)
Lemma prefix_weak_total l1 l2 l3 :
  l1 `prefix_of` l3 → l2 `prefix_of` l3 → l1 `prefix_of` l2 ∨ l2 `prefix_of` l1.
Proof.
  intros [k1 H1] [k2 H2]. rewrite H2 in H1.
  apply app_eq_inv in H1 as [(k&?&?)|(k&?&?)]; [left|right]; exists k; eauto.
Qed.
Global Instance: PartialOrder (@suffix A).
Proof.
  split; [split|].
  - intros ?. by eexists [].
  - intros ???[k1->] [k2->]. exists (k2 ++ k1). by rewrite (assoc_L (++)).
  - intros l1 l2 [k1 ?] [[|x2 k2] ->]; [done|discriminate_list].
Qed.
Global Instance prefix_dec `{!EqDecision A} : RelDecision prefix :=
  fix go l1 l2 :=
  match l1, l2  with
  | [], _ => left (prefix_nil _)
  | _, [] => right (prefix_nil_not _ _)
  | x :: l1, y :: l2 =>
    match decide_rel (=) x y with
    | left Hxy =>
      match go l1 l2 with
      | left Hl1l2 => left (prefix_cons_alt _ _ _ _ Hxy Hl1l2)
      | right Hl1l2 => right (Hl1l2 ∘ prefix_cons_inv_2 _ _ _ _)
      end
    | right Hxy => right (Hxy ∘ prefix_cons_inv_1 _ _ _ _)
    end
  end.
Lemma prefix_not_elem_of_app_cons_inv x y l1 l2 k1 k2 :
  x ∉ k1 → y ∉ l1 →
  (l1 ++ x :: l2) `prefix_of` (k1 ++ y :: k2) →
  l1 = k1 ∧ x = y ∧ l2 `prefix_of` k2.
Proof.
  intros Hin1 Hin2 [k Hle]. rewrite <-(assoc_L (++)) in Hle.
  apply not_elem_of_app_cons_inv_l in Hle; [|done..]. unfold prefix. naive_solver.
Qed.

Lemma prefix_length_eq l1 l2 :
  l1 `prefix_of` l2 → length l2 ≤ length l1 → l1 = l2.
Proof.
  intros Hprefix Hlen. assert (length l1 = length l2).
  { apply prefix_length in Hprefix. lia. }
  eapply list_eq_same_length with (length l1); [done..|].
  intros i x y _ ??. assert (l2 !! i = Some x) by eauto using prefix_lookup_Some.
  congruence.
Qed.

Section prefix_ops.
  Context `{!EqDecision A}.
  Lemma max_prefix_fst l1 l2 :
    l1 = (max_prefix l1 l2).2 ++ (max_prefix l1 l2).1.1.
  Proof.
    revert l2. induction l1; intros [|??]; simpl;
      repeat case_decide; f_equal/=; auto.
  Qed.
  Lemma max_prefix_fst_alt l1 l2 k1 k2 k3 :
    max_prefix l1 l2 = (k1, k2, k3) → l1 = k3 ++ k1.
  Proof.
    intros. pose proof (max_prefix_fst l1 l2).
    by destruct (max_prefix l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_prefix_fst_prefix l1 l2 : (max_prefix l1 l2).2 `prefix_of` l1.
  Proof. eexists. apply max_prefix_fst. Qed.
  Lemma max_prefix_fst_prefix_alt l1 l2 k1 k2 k3 :
    max_prefix l1 l2 = (k1, k2, k3) → k3 `prefix_of` l1.
  Proof. eexists. eauto using max_prefix_fst_alt. Qed.
  Lemma max_prefix_snd l1 l2 :
    l2 = (max_prefix l1 l2).2 ++ (max_prefix l1 l2).1.2.
  Proof.
    revert l2. induction l1; intros [|??]; simpl;
      repeat case_decide; f_equal/=; auto.
  Qed.
  Lemma max_prefix_snd_alt l1 l2 k1 k2 k3 :
    max_prefix l1 l2 = (k1, k2, k3) → l2 = k3 ++ k2.
  Proof.
    intro. pose proof (max_prefix_snd l1 l2).
    by destruct (max_prefix l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_prefix_snd_prefix l1 l2 : (max_prefix l1 l2).2 `prefix_of` l2.
  Proof. eexists. apply max_prefix_snd. Qed.
  Lemma max_prefix_snd_prefix_alt l1 l2 k1 k2 k3 :
    max_prefix l1 l2 = (k1,k2,k3) → k3 `prefix_of` l2.
  Proof. eexists. eauto using max_prefix_snd_alt. Qed.
  Lemma max_prefix_max l1 l2 k :
    k `prefix_of` l1 → k `prefix_of` l2 → k `prefix_of` (max_prefix l1 l2).2.
  Proof.
    intros [l1' ->] [l2' ->]. by induction k; simpl; repeat case_decide;
      simpl; auto using prefix_nil, prefix_cons.
  Qed.
  Lemma max_prefix_max_alt l1 l2 k1 k2 k3 k :
    max_prefix l1 l2 = (k1,k2,k3) →
    k `prefix_of` l1 → k `prefix_of` l2 → k `prefix_of` k3.
  Proof.
    intro. pose proof (max_prefix_max l1 l2 k).
    by destruct (max_prefix l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_prefix_max_snoc l1 l2 k1 k2 k3 x1 x2 :
    max_prefix l1 l2 = (x1 :: k1, x2 :: k2, k3) → x1 ≠ x2.
  Proof.
    intros Hl ->. destruct (prefix_snoc_not k3 x2).
    eapply max_prefix_max_alt; eauto.
    - rewrite (max_prefix_fst_alt _ _ _ _ _ Hl).
      apply prefix_app, prefix_cons, prefix_nil.
    - rewrite (max_prefix_snd_alt _ _ _ _ _ Hl).
      apply prefix_app, prefix_cons, prefix_nil.
  Qed.
End prefix_ops.

Lemma prefix_suffix_reverse l1 l2 :
  l1 `prefix_of` l2 ↔ reverse l1 `suffix_of` reverse l2.
Proof.
  split; intros [k E]; exists (reverse k).
  - by rewrite E, reverse_app.
  - by rewrite <-(reverse_involutive l2), E, reverse_app, reverse_involutive.
Qed.
Lemma suffix_prefix_reverse l1 l2 :
  l1 `suffix_of` l2 ↔ reverse l1 `prefix_of` reverse l2.
Proof. by rewrite prefix_suffix_reverse, !reverse_involutive. Qed.
Lemma suffix_nil l : [] `suffix_of` l.
Proof. exists l. by rewrite (right_id_L [] (++)). Qed.
Lemma suffix_nil_inv l : l `suffix_of` [] → l = [].
Proof. by intros [[|?] ?]; simplify_list_eq. Qed.
Lemma suffix_cons_nil_inv x l : ¬x :: l `suffix_of` [].
Proof. by intros [[] ?]. Qed.
Lemma suffix_snoc l1 l2 x :
  l1 `suffix_of` l2 → l1 ++ [x] `suffix_of` l2 ++ [x].
Proof. intros [k ->]. exists k. by rewrite (assoc_L (++)). Qed.
Lemma suffix_snoc_alt x y l1 l2 :
  x = y → l1 `suffix_of` l2 → l1 ++ [x] `suffix_of` l2 ++ [y].
Proof. intros ->. apply suffix_snoc. Qed.
Lemma suffix_app l1 l2 k : l1 `suffix_of` l2 → l1 ++ k `suffix_of` l2 ++ k.
Proof. intros [k' ->]. exists k'. by rewrite (assoc_L (++)). Qed.
Lemma suffix_app_alt l1 l2 k1 k2 :
  k1 = k2 → l1 `suffix_of` l2 → l1 ++ k1 `suffix_of` l2 ++ k2.
Proof. intros ->. apply suffix_app. Qed.
Lemma suffix_snoc_inv_1 x y l1 l2 :
  l1 ++ [x] `suffix_of` l2 ++ [y] → x = y.
Proof. intros [k' E]. rewrite (assoc_L (++)) in E. by simplify_list_eq. Qed.
Lemma suffix_snoc_inv_2 x y l1 l2 :
  l1 ++ [x] `suffix_of` l2 ++ [y] → l1 `suffix_of` l2.
Proof.
  intros [k' E]. exists k'. rewrite (assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma suffix_app_inv l1 l2 k :
  l1 ++ k `suffix_of` l2 ++ k → l1 `suffix_of` l2.
Proof.
  intros [k' E]. exists k'. rewrite (assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma suffix_cons_l l1 l2 x : x :: l1 `suffix_of` l2 → l1 `suffix_of` l2.
Proof. intros [k ->]. exists (k ++ [x]). by rewrite <-(assoc_L (++)). Qed.
Lemma suffix_app_l l1 l2 l3 : l3 ++ l1 `suffix_of` l2 → l1 `suffix_of` l2.
Proof. intros [k ->]. exists (k ++ l3). by rewrite <-(assoc_L (++)). Qed.
Lemma suffix_cons_r l1 l2 x : l1 `suffix_of` l2 → l1 `suffix_of` x :: l2.
Proof. intros [k ->]. by exists (x :: k). Qed.
Lemma suffix_app_r l1 l2 l3 : l1 `suffix_of` l2 → l1 `suffix_of` l3 ++ l2.
Proof. intros [k ->]. exists (l3 ++ k). by rewrite (assoc_L (++)). Qed.
Lemma suffix_drop l n : drop n l `suffix_of` l.
Proof. rewrite <-(take_drop n l) at 2. apply suffix_app_r. done. Qed.
Lemma suffix_cons_inv l1 l2 x y :
  x :: l1 `suffix_of` y :: l2 → x :: l1 = y :: l2 ∨ x :: l1 `suffix_of` l2.
Proof.
  intros [[|? k] E]; [by left|]. right. simplify_eq/=. by apply suffix_app_r.
Qed.
Lemma suffix_lookup_lt l1 l2 i :
  i < length l1 →
  l1 `suffix_of` l2 →
  l1 !! i = l2 !! (i + (length l2 - length l1)).
Proof.
  intros Hi [k ->]. rewrite length_app, lookup_app_r by lia. f_equal; lia.
Qed.
Lemma suffix_lookup_Some l1 l2 i x :
  l1 !! i = Some x →
  l1 `suffix_of` l2 →
  l2 !! (i + (length l2 - length l1)) = Some x.
Proof. intros. by rewrite <-suffix_lookup_lt by eauto using lookup_lt_Some. Qed.
Lemma suffix_length l1 l2 : l1 `suffix_of` l2 → length l1 ≤ length l2.
Proof. intros [? ->]. rewrite length_app. lia. Qed.
Lemma suffix_cons_not x l : ¬x :: l `suffix_of` l.
Proof. intros [??]. discriminate_list. Qed.
Lemma elem_of_suffix l1 l2 x :
  x ∈ l1 → l1 `suffix_of` l2 → x ∈ l2.
Proof. intros Hin [l' ->]. apply elem_of_app. by right. Qed.
(* [suffix] is not a total order, but [l1] and [l2] are always comparable if
  they are both suffixes of some [l3]. *)
Lemma suffix_weak_total l1 l2 l3 :
  l1 `suffix_of` l3 → l2 `suffix_of` l3 → l1 `suffix_of` l2 ∨ l2 `suffix_of` l1.
Proof.
  intros [k1 Hl1] [k2 Hl2]. rewrite Hl1 in Hl2.
  apply app_eq_inv in Hl2 as [(k&?&?)|(k&?&?)]; [left|right]; exists k; eauto.
Qed.
Global Instance suffix_dec `{!EqDecision A} : RelDecision (@suffix A).
Proof.
  refine (λ l1 l2, cast_if (decide_rel prefix (reverse l1) (reverse l2)));
   abstract (by rewrite suffix_prefix_reverse).
Defined.
Lemma suffix_not_elem_of_app_cons_inv x y l1 l2 k1 k2 :
  x ∉ k2 → y ∉ l2 →
  (l1 ++ x :: l2) `suffix_of` (k1 ++ y :: k2) →
  l1 `suffix_of` k1 ∧ x = y ∧ l2 = k2.
Proof.
  intros Hin1 Hin2 [k Hle]. rewrite (assoc_L (++)) in Hle.
  apply not_elem_of_app_cons_inv_r in Hle; [|done..]. unfold suffix. naive_solver.
Qed.

Lemma suffix_length_eq l1 l2 :
  l1 `suffix_of` l2 → length l2 ≤ length l1 → l1 = l2.
Proof.
  intros. apply (inj reverse), prefix_length_eq.
  - by apply suffix_prefix_reverse.
  - by rewrite !length_reverse.
Qed.

Section max_suffix.
  Context `{!EqDecision A}.

  Lemma max_suffix_fst l1 l2 :
    l1 = (max_suffix l1 l2).1.1 ++ (max_suffix l1 l2).2.
  Proof.
    rewrite <-(reverse_involutive l1) at 1.
    rewrite (max_prefix_fst (reverse l1) (reverse l2)). unfold max_suffix.
    destruct (max_prefix (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
    by rewrite reverse_app.
  Qed.
  Lemma max_suffix_fst_alt l1 l2 k1 k2 k3 :
    max_suffix l1 l2 = (k1, k2, k3) → l1 = k1 ++ k3.
  Proof.
    intro. pose proof (max_suffix_fst l1 l2).
    by destruct (max_suffix l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_suffix_fst_suffix l1 l2 : (max_suffix l1 l2).2 `suffix_of` l1.
  Proof. eexists. apply max_suffix_fst. Qed.
  Lemma max_suffix_fst_suffix_alt l1 l2 k1 k2 k3 :
    max_suffix l1 l2 = (k1, k2, k3) → k3 `suffix_of` l1.
  Proof. eexists. eauto using max_suffix_fst_alt. Qed.
  Lemma max_suffix_snd l1 l2 :
    l2 = (max_suffix l1 l2).1.2 ++ (max_suffix l1 l2).2.
  Proof.
    rewrite <-(reverse_involutive l2) at 1.
    rewrite (max_prefix_snd (reverse l1) (reverse l2)). unfold max_suffix.
    destruct (max_prefix (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
    by rewrite reverse_app.
  Qed.
  Lemma max_suffix_snd_alt l1 l2 k1 k2 k3 :
    max_suffix l1 l2 = (k1,k2,k3) → l2 = k2 ++ k3.
  Proof.
    intro. pose proof (max_suffix_snd l1 l2).
    by destruct (max_suffix l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_suffix_snd_suffix l1 l2 : (max_suffix l1 l2).2 `suffix_of` l2.
  Proof. eexists. apply max_suffix_snd. Qed.
  Lemma max_suffix_snd_suffix_alt l1 l2 k1 k2 k3 :
    max_suffix l1 l2 = (k1,k2,k3) → k3 `suffix_of` l2.
  Proof. eexists. eauto using max_suffix_snd_alt. Qed.
  Lemma max_suffix_max l1 l2 k :
    k `suffix_of` l1 → k `suffix_of` l2 → k `suffix_of` (max_suffix l1 l2).2.
  Proof.
    generalize (max_prefix_max (reverse l1) (reverse l2)).
    rewrite !suffix_prefix_reverse. unfold max_suffix.
    destruct (max_prefix (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
    rewrite reverse_involutive. auto.
  Qed.
  Lemma max_suffix_max_alt l1 l2 k1 k2 k3 k :
    max_suffix l1 l2 = (k1, k2, k3) →
    k `suffix_of` l1 → k `suffix_of` l2 → k `suffix_of` k3.
  Proof.
    intro. pose proof (max_suffix_max l1 l2 k).
    by destruct (max_suffix l1 l2) as [[]?]; simplify_eq.
  Qed.
  Lemma max_suffix_max_snoc l1 l2 k1 k2 k3 x1 x2 :
    max_suffix l1 l2 = (k1 ++ [x1], k2 ++ [x2], k3) → x1 ≠ x2.
  Proof.
    intros Hl ->. destruct (suffix_cons_not x2 k3).
    eapply max_suffix_max_alt; eauto.
    - rewrite (max_suffix_fst_alt _ _ _ _ _ Hl).
      by apply (suffix_app [x2]), suffix_app_r.
    - rewrite (max_suffix_snd_alt _ _ _ _ _ Hl).
      by apply (suffix_app [x2]), suffix_app_r.
  Qed.
End max_suffix.

(** ** Properties of the [sublist] predicate *)
Lemma sublist_length l1 l2 : l1 `sublist_of` l2 → length l1 ≤ length l2.
Proof. induction 1; simpl; auto with arith. Qed.
Lemma sublist_nil_l l : [] `sublist_of` l.
Proof. induction l; try constructor; auto. Qed.
Lemma sublist_nil_r l : l `sublist_of` [] ↔ l = [].
Proof. split; [by inv 1|]. intros ->. constructor. Qed.
Lemma sublist_app l1 l2 k1 k2 :
  l1 `sublist_of` l2 → k1 `sublist_of` k2 → l1 ++ k1 `sublist_of` l2 ++ k2.
Proof. induction 1; simpl; try constructor; auto. Qed.
Lemma sublist_inserts_l k l1 l2 : l1 `sublist_of` l2 → l1 `sublist_of` k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma sublist_inserts_r k l1 l2 : l1 `sublist_of` l2 → l1 `sublist_of` l2 ++ k.
Proof. induction 1; simpl; try constructor; auto using sublist_nil_l. Qed.
Lemma sublist_cons_r x l k :
  l `sublist_of` x :: k ↔ l `sublist_of` k ∨ ∃ l', l = x :: l' ∧ l' `sublist_of` k.
Proof. split; [inv 1; eauto|]. intros [?|(?&->&?)]; constructor; auto. Qed.
Lemma sublist_cons_l x l k :
  x :: l `sublist_of` k ↔ ∃ k1 k2, k = k1 ++ x :: k2 ∧ l `sublist_of` k2.
Proof.
  split.
  - intros Hlk. induction k as [|y k IH]; inv Hlk.
    + eexists [], k. by repeat constructor.
    + destruct IH as (k1&k2&->&?); auto. by exists (y :: k1), k2.
  - intros (k1&k2&->&?). by apply sublist_inserts_l, sublist_skip.
Qed.
Lemma sublist_app_r l k1 k2 :
  l `sublist_of` k1 ++ k2 ↔
    ∃ l1 l2, l = l1 ++ l2 ∧ l1 `sublist_of` k1 ∧ l2 `sublist_of` k2.
Proof.
  split.
  - revert l k2. induction k1 as [|y k1 IH]; intros l k2; simpl.
    { eexists [], l. by repeat constructor. }
    rewrite sublist_cons_r. intros [?|(l' & ? &?)]; subst.
    + destruct (IH l k2) as (l1&l2&?&?&?); trivial; subst.
      exists l1, l2. auto using sublist_cons.
    + destruct (IH l' k2) as (l1&l2&?&?&?); trivial; subst.
      exists (y :: l1), l2. auto using sublist_skip.
  - intros (?&?&?&?&?); subst. auto using sublist_app.
Qed.
Lemma sublist_app_l l1 l2 k :
  l1 ++ l2 `sublist_of` k ↔
    ∃ k1 k2, k = k1 ++ k2 ∧ l1 `sublist_of` k1 ∧ l2 `sublist_of` k2.
Proof.
  split.
  - revert l2 k. induction l1 as [|x l1 IH]; intros l2 k; simpl.
    { eexists [], k. by repeat constructor. }
    rewrite sublist_cons_l. intros (k1 & k2 &?&?); subst.
    destruct (IH l2 k2) as (h1 & h2 &?&?&?); trivial; subst.
    exists (k1 ++ x :: h1), h2. rewrite <-(assoc_L (++)).
    auto using sublist_inserts_l, sublist_skip.
  - intros (?&?&?&?&?); subst. auto using sublist_app.
Qed.
Lemma sublist_app_inv_l k l1 l2 : k ++ l1 `sublist_of` k ++ l2 → l1 `sublist_of` l2.
Proof.
  induction k as [|y k IH]; simpl; [done |].
  rewrite sublist_cons_r. intros [Hl12|(?&?&?)]; [|simplify_eq; eauto].
  rewrite sublist_cons_l in Hl12. destruct Hl12 as (k1&k2&Hk&?).
  apply IH. rewrite Hk. eauto using sublist_inserts_l, sublist_cons.
Qed.
Lemma sublist_app_inv_r k l1 l2 : l1 ++ k `sublist_of` l2 ++ k → l1 `sublist_of` l2.
Proof.
  revert l1 l2. induction k as [|y k IH]; intros l1 l2.
  { by rewrite !(right_id_L [] (++)). }
  intros. opose proof* (IH (l1 ++ [_]) (l2 ++ [_])) as Hl12.
  { by rewrite <-!(assoc_L (++)). }
  rewrite sublist_app_l in Hl12. destruct Hl12 as (k1&k2&E&?&Hk2).
  destruct k2 as [|z k2] using rev_ind; [inv Hk2|].
  rewrite (assoc_L (++)) in E; simplify_list_eq.
  eauto using sublist_inserts_r.
Qed.
Global Instance: PartialOrder (@sublist A).
Proof.
  split; [split|].
  - intros l. induction l; constructor; auto.
  - intros l1 l2 l3 Hl12. revert l3. induction Hl12.
    + auto using sublist_nil_l.
    + intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
      eauto using sublist_inserts_l, sublist_skip.
    + intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
      eauto using sublist_inserts_l, sublist_cons.
  - intros l1 l2 Hl12 Hl21. apply sublist_length in Hl21.
    induction Hl12 as [| |??? Hl12]; f_equal/=; auto with arith.
    apply sublist_length in Hl12. lia.
Qed.
Lemma sublist_take l i : take i l `sublist_of` l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_inserts_r. Qed.
Lemma sublist_drop l i : drop i l `sublist_of` l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_inserts_l. Qed.
Lemma sublist_delete l i : delete i l `sublist_of` l.
Proof. revert i. by induction l; intros [|?]; simpl; constructor. Qed.
Lemma sublist_foldr_delete l is : foldr delete l is `sublist_of` l.
Proof.
  induction is as [|i is IH]; simpl; [done |].
  trans (foldr delete l is); auto using sublist_delete.
Qed.
Lemma sublist_alt l1 l2 : l1 `sublist_of` l2 ↔ ∃ is, l1 = foldr delete l2 is.
Proof.
  split; [|intros [is ->]; apply sublist_foldr_delete].
  intros Hl12. cut (∀ k, ∃ is, k ++ l1 = foldr delete (k ++ l2) is).
  { intros help. apply (help []). }
  induction Hl12 as [|x l1 l2 _ IH|x l1 l2 _ IH]; intros k.
  - by eexists [].
  - destruct (IH (k ++ [x])) as [is His]. exists is.
    by rewrite <-!(assoc_L (++)) in His.
  - destruct (IH k) as [is His]. exists (is ++ [length k]).
    rewrite fold_right_app. simpl. by rewrite delete_middle.
Qed.
Lemma Permutation_sublist l1 l2 l3 :
  l1 ≡ₚ l2 → l2 `sublist_of` l3 → ∃ l4, l1 `sublist_of` l4 ∧ l4 ≡ₚ l3.
Proof.
  intros Hl1l2. revert l3.
  induction Hl1l2 as [|x l1 l2 ? IH|x y l1|l1 l1' l2 ? IH1 ? IH2].
  - intros l3. by exists l3.
  - intros l3. rewrite sublist_cons_l. intros (l3'&l3''&?&?); subst.
    destruct (IH l3'') as (l4&?&Hl4); auto. exists (l3' ++ x :: l4).
    split.
    + by apply sublist_inserts_l, sublist_skip.
    + by rewrite Hl4.
  - intros l3. rewrite sublist_cons_l. intros (l3'&l3''&?& Hl3); subst.
    rewrite sublist_cons_l in Hl3. destruct Hl3 as (l5'&l5''&?& Hl5); subst.
    exists (l3' ++ y :: l5' ++ x :: l5''). split.
    + by do 2 apply sublist_inserts_l, sublist_skip.
    + by rewrite !Permutation_middle, Permutation_swap.
  - intros l3 ?. destruct (IH2 l3) as (l3'&?&?); trivial.
    destruct (IH1 l3') as (l3'' &?&?); trivial. exists l3''.
    split; [done|]. etrans; eauto.
Qed.
Lemma sublist_Permutation l1 l2 l3 :
  l1 `sublist_of` l2 → l2 ≡ₚ l3 → ∃ l4, l1 ≡ₚ l4 ∧ l4 `sublist_of` l3.
Proof.
  intros Hl1l2 Hl2l3. revert l1 Hl1l2.
  induction Hl2l3 as [|x l2 l3 ? IH|x y l2|l2 l2' l3 ? IH1 ? IH2].
  - intros l1. by exists l1.
  - intros l1. rewrite sublist_cons_r. intros [?|(l1'&l1''&?)]; subst.
    { destruct (IH l1) as (l4&?&?); trivial.
      exists l4. split.
      - done.
      - by constructor. }
    destruct (IH l1') as (l4&?&Hl4); auto. exists (x :: l4).
    split; [ by constructor | by constructor ].
  - intros l1. rewrite sublist_cons_r. intros [Hl1|(l1'&l1''&Hl1)]; subst.
    { exists l1. split; [done|]. rewrite sublist_cons_r in Hl1.
      destruct Hl1 as [?|(l1'&?&?)]; subst; by repeat constructor. }
    rewrite sublist_cons_r in Hl1. destruct Hl1 as [?|(l1''&?&?)]; subst.
    + exists (y :: l1'). by repeat constructor.
    + exists (x :: y :: l1''). by repeat constructor.
  - intros l1 ?. destruct (IH1 l1) as (l3'&?&?); trivial.
    destruct (IH2 l3') as (l3'' &?&?); trivial. exists l3''.
    split; [|done]. etrans; eauto.
Qed.

(** Properties of the [submseteq] predicate *)
Lemma submseteq_length l1 l2 : l1 ⊆+ l2 → length l1 ≤ length l2.
Proof. induction 1; simpl; auto with lia. Qed.
Lemma submseteq_nil_l l : [] ⊆+ l.
Proof. induction l; constructor; auto. Qed.
Lemma submseteq_nil_r l : l ⊆+ [] ↔ l = [].
Proof.
  split; [|intros ->; constructor].
  intros Hl. apply submseteq_length in Hl. destruct l; simpl in *; auto with lia.
Qed.
Global Instance: PreOrder (@submseteq A).
Proof.
  split.
  - intros l. induction l; constructor; auto.
  - red. apply submseteq_trans.
Qed.
Lemma Permutation_submseteq l1 l2 : l1 ≡ₚ l2 → l1 ⊆+ l2.
Proof. induction 1; econstructor; eauto. Qed.
Lemma sublist_submseteq l1 l2 : l1 `sublist_of` l2 → l1 ⊆+ l2.
Proof. induction 1; constructor; auto. Qed.
Lemma submseteq_Permutation l1 l2 : l1 ⊆+ l2 → ∃ k, l2 ≡ₚ l1 ++ k.
Proof.
  induction 1 as
    [|x y l ? [k Hk]| |x l1 l2 ? [k Hk]|l1 l2 l3 ? [k Hk] ? [k' Hk']].
  - by eexists [].
  - exists k. by rewrite Hk.
  - eexists []. rewrite (right_id_L [] (++)). by constructor.
  - exists (x :: k). by rewrite Hk, Permutation_middle.
  - exists (k ++ k'). by rewrite Hk', Hk, (assoc_L (++)).
Qed.

Global Instance: Proper ((≡ₚ) ==> (≡ₚ) ==> iff) (@submseteq A).
Proof.
  intros l1 l2 ? k1 k2 ?. split; intros.
  - trans l1; [by apply Permutation_submseteq|].
    trans k1; [done|]. by apply Permutation_submseteq.
  - trans l2; [by apply Permutation_submseteq|].
    trans k2; [done|]. by apply Permutation_submseteq.
Qed.

Lemma submseteq_length_Permutation l1 l2 :
  l1 ⊆+ l2 → length l2 ≤ length l1 → l1 ≡ₚ l2.
Proof.
  intros Hsub Hlen. destruct (submseteq_Permutation l1 l2) as [[|??] Hk]; auto.
  - by rewrite Hk, (right_id_L [] (++)).
  - rewrite Hk, length_app in Hlen. simpl in *; lia.
Qed.

Global Instance: AntiSymm (≡ₚ) (@submseteq A).
Proof.
  intros l1 l2 ??.
  apply submseteq_length_Permutation; auto using submseteq_length.
Qed.

Lemma elem_of_submseteq l k x : x ∈ l → l ⊆+ k → x ∈ k.
Proof. intros ? [l' ->]%submseteq_Permutation. apply elem_of_app; auto. Qed.
Lemma lookup_submseteq l k i x :
  l !! i = Some x →
  l ⊆+ k →
  ∃ j, k !! j = Some x.
Proof.
  intros Hsub Hlook.
  eapply elem_of_list_lookup_1, elem_of_submseteq;
    eauto using elem_of_list_lookup_2.
Qed.

Lemma submseteq_take l i : take i l ⊆+ l.
Proof. auto using sublist_take, sublist_submseteq. Qed.
Lemma submseteq_drop l i : drop i l ⊆+ l.
Proof. auto using sublist_drop, sublist_submseteq. Qed.
Lemma submseteq_delete l i : delete i l ⊆+ l.
Proof. auto using sublist_delete, sublist_submseteq. Qed.
Lemma submseteq_foldr_delete l is : foldr delete l is `sublist_of` l.
Proof. auto using sublist_foldr_delete, sublist_submseteq. Qed.
Lemma submseteq_sublist_l l1 l3 : l1 ⊆+ l3 ↔ ∃ l2, l1 `sublist_of` l2 ∧ l2 ≡ₚ l3.
Proof.
  split.
  { intros Hl13. elim Hl13; clear l1 l3 Hl13.
    - by eexists [].
    - intros x l1 l3 ? (l2&?&?). exists (x :: l2). by repeat constructor.
    - intros x y l. exists (y :: x :: l). by repeat constructor.
    - intros x l1 l3 ? (l2&?&?). exists (x :: l2). by repeat constructor.
    - intros l1 l3 l5 ? (l2&?&?) ? (l4&?&?).
      destruct (Permutation_sublist l2 l3 l4) as (l3'&?&?); trivial.
      exists l3'. split; etrans; eauto. }
  intros (l2&?&?).
  trans l2; auto using sublist_submseteq, Permutation_submseteq.
Qed.
Lemma submseteq_sublist_r l1 l3 :
  l1 ⊆+ l3 ↔ ∃ l2, l1 ≡ₚ l2 ∧ l2 `sublist_of` l3.
Proof.
  rewrite submseteq_sublist_l.
  split; intros (l2&?&?); eauto using sublist_Permutation, Permutation_sublist.
Qed.
Lemma submseteq_inserts_l k l1 l2 : l1 ⊆+ l2 → l1 ⊆+ k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma submseteq_inserts_r k l1 l2 : l1 ⊆+ l2 → l1 ⊆+ l2 ++ k.
Proof. rewrite (comm (++)). apply submseteq_inserts_l. Qed.
Lemma submseteq_skips_l k l1 l2 : l1 ⊆+ l2 → k ++ l1 ⊆+ k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma submseteq_skips_r k l1 l2 : l1 ⊆+ l2 → l1 ++ k ⊆+ l2 ++ k.
Proof. rewrite !(comm (++) _ k). apply submseteq_skips_l. Qed.
Lemma submseteq_app l1 l2 k1 k2 : l1 ⊆+ l2 → k1 ⊆+ k2 → l1 ++ k1 ⊆+ l2 ++ k2.
Proof. trans (l1 ++ k2); auto using submseteq_skips_l, submseteq_skips_r. Qed.
Lemma submseteq_cons_r x l k :
  l ⊆+ x :: k ↔ l ⊆+ k ∨ ∃ l', l ≡ₚ x :: l' ∧ l' ⊆+ k.
Proof.
  split.
  - rewrite submseteq_sublist_r. intros (l'&E&Hl').
    rewrite sublist_cons_r in Hl'. destruct Hl' as [?|(?&?&?)]; subst.
    + left. rewrite E. eauto using sublist_submseteq.
    + right. eauto using sublist_submseteq.
  - intros [?|(?&E&?)]; [|rewrite E]; by constructor.
Qed.
Lemma submseteq_cons_l x l k : x :: l ⊆+ k ↔ ∃ k', k ≡ₚ x :: k' ∧ l ⊆+ k'.
Proof.
  split.
  - rewrite submseteq_sublist_l. intros (l'&Hl'&E).
    rewrite sublist_cons_l in Hl'. destruct Hl' as (k1&k2&?&?); subst.
    exists (k1 ++ k2). split; eauto using submseteq_inserts_l, sublist_submseteq.
    by rewrite Permutation_middle.
  - intros (?&E&?). rewrite E. by constructor.
Qed.
Lemma submseteq_app_r l k1 k2 :
  l ⊆+ k1 ++ k2 ↔ ∃ l1 l2, l ≡ₚ l1 ++ l2 ∧ l1 ⊆+ k1 ∧ l2 ⊆+ k2.
Proof.
  split.
  - rewrite submseteq_sublist_r. intros (l'&E&Hl').
    rewrite sublist_app_r in Hl'. destruct Hl' as (l1&l2&?&?&?); subst.
    exists l1, l2. eauto using sublist_submseteq.
  - intros (?&?&E&?&?). rewrite E. eauto using submseteq_app.
Qed.
Lemma submseteq_app_l l1 l2 k :
  l1 ++ l2 ⊆+ k ↔ ∃ k1 k2, k ≡ₚ k1 ++ k2 ∧ l1 ⊆+ k1 ∧ l2 ⊆+ k2.
Proof.
  split.
  - rewrite submseteq_sublist_l. intros (l'&Hl'&E).
    rewrite sublist_app_l in Hl'. destruct Hl' as (k1&k2&?&?&?); subst.
    exists k1, k2. split; [done|]. eauto using sublist_submseteq.
  - intros (?&?&E&?&?). rewrite E. eauto using submseteq_app.
Qed.
Lemma submseteq_app_inv_l l1 l2 k : k ++ l1 ⊆+ k ++ l2 → l1 ⊆+ l2.
Proof.
  induction k as [|y k IH]; simpl; [done |]. rewrite submseteq_cons_l.
  intros (?&E%(inj (cons y))&?). apply IH. by rewrite E.
Qed.
Lemma submseteq_app_inv_r l1 l2 k : l1 ++ k ⊆+ l2 ++ k → l1 ⊆+ l2.
Proof. rewrite <-!(comm (++) k). apply submseteq_app_inv_l. Qed.
Lemma submseteq_cons_middle x l k1 k2 : l ⊆+ k1 ++ k2 → x :: l ⊆+ k1 ++ x :: k2.
Proof. rewrite <-Permutation_middle. by apply submseteq_skip. Qed.
Lemma submseteq_app_middle l1 l2 k1 k2 :
  l2 ⊆+ k1 ++ k2 → l1 ++ l2 ⊆+ k1 ++ l1 ++ k2.
Proof.
  rewrite !(assoc (++)), (comm (++) k1 l1), <-(assoc_L (++)).
  by apply submseteq_skips_l.
Qed.
Lemma submseteq_middle l k1 k2 : l ⊆+ k1 ++ l ++ k2.
Proof. by apply submseteq_inserts_l, submseteq_inserts_r. Qed.

Lemma NoDup_submseteq l k : NoDup l → (∀ x, x ∈ l → x ∈ k) → l ⊆+ k.
Proof.
  intros Hl. revert k. induction Hl as [|x l Hx ? IH].
  { intros k Hk. by apply submseteq_nil_l. }
  intros k Hlk. destruct (elem_of_list_split k x) as (l1&l2&?); subst.
  { apply Hlk. by constructor. }
  rewrite <-Permutation_middle. apply submseteq_skip, IH.
  intros y Hy. rewrite elem_of_app.
  specialize (Hlk y). rewrite elem_of_app, !elem_of_cons in Hlk.
  by destruct Hlk as [?|[?|?]]; subst; eauto.
Qed.
Lemma NoDup_Permutation l k : NoDup l → NoDup k → (∀ x, x ∈ l ↔ x ∈ k) → l ≡ₚ k.
Proof.
  intros. apply (anti_symm submseteq); apply NoDup_submseteq; naive_solver.
Qed.

Lemma submseteq_insert l1 l2 i j x y :
  l1 !! i = Some x →
  l2 !! j = Some x →
  l1 ⊆+ l2 →
  (<[i := y]> l1) ⊆+ (<[j := y]> l2).
Proof.
  intros ?? Hsub.
  rewrite !insert_take_drop,
    <-!Permutation_middle by eauto using lookup_lt_Some.
  rewrite <-(take_drop_middle l1 i x), <-(take_drop_middle l2 j x),
    <-!Permutation_middle in Hsub by done.
  by apply submseteq_skip, (submseteq_app_inv_l _ _ [x]).
Qed.

Lemma singleton_submseteq_l l x :
  [x] ⊆+ l ↔ x ∈ l.
Proof.
  split.
  - intros Hsub. eapply elem_of_submseteq; [|done].
    apply elem_of_list_singleton. done.
  - intros (l1&l2&->)%elem_of_list_split.
    apply submseteq_cons_middle, submseteq_nil_l.
Qed.
Lemma singleton_submseteq x y :
  [x] ⊆+ [y] ↔ x = y.
Proof. rewrite singleton_submseteq_l. apply elem_of_list_singleton. Qed.

Section submseteq_dec.
  Context `{!EqDecision A}.

  Lemma list_remove_Permutation l1 l2 k1 x :
    l1 ≡ₚ l2 → list_remove x l1 = Some k1 →
    ∃ k2, list_remove x l2 = Some k2 ∧ k1 ≡ₚ k2.
  Proof.
    intros Hl. revert k1. induction Hl
      as [|y l1 l2 ? IH|y1 y2 l|l1 l2 l3 ? IH1 ? IH2]; simpl; intros k1 Hk1.
    - done.
    - case_decide; simplify_eq; eauto.
      destruct (list_remove x l1) as [l|] eqn:?; simplify_eq.
      destruct (IH l) as (?&?&?); simplify_option_eq; eauto.
    - simplify_option_eq; eauto using Permutation_swap.
    - destruct (IH1 k1) as (k2&?&?); trivial.
      destruct (IH2 k2) as (k3&?&?); trivial.
      exists k3. split; eauto. by trans k2.
  Qed.
  Lemma list_remove_Some l k x : list_remove x l = Some k → l ≡ₚ x :: k.
  Proof.
    revert k. induction l as [|y l IH]; simpl; intros k ?; [done |].
    simplify_option_eq; auto. by rewrite Permutation_swap, <-IH.
  Qed.
  Lemma list_remove_Some_inv l k x :
    l ≡ₚ x :: k → ∃ k', list_remove x l = Some k' ∧ k ≡ₚ k'.
  Proof.
    intros. destruct (list_remove_Permutation (x :: k) l k x) as (k'&?&?).
    - done.
    - simpl; by case_decide.
    - by exists k'.
  Qed.
  Lemma list_remove_list_submseteq l1 l2 :
    l1 ⊆+ l2 ↔ is_Some (list_remove_list l1 l2).
  Proof.
    split.
    - revert l2. induction l1 as [|x l1 IH]; simpl.
      { intros l2 _. by exists l2. }
      intros l2. rewrite submseteq_cons_l. intros (k&Hk&?).
      destruct (list_remove_Some_inv l2 k x) as (k2&?&Hk2); trivial.
      simplify_option_eq. apply IH. by rewrite <-Hk2.
    - intros [k Hk]. revert l2 k Hk.
      induction l1 as [|x l1 IH]; simpl; intros l2 k.
      { intros. apply submseteq_nil_l. }
      destruct (list_remove x l2) as [k'|] eqn:?; intros; simplify_eq.
      rewrite submseteq_cons_l. eauto using list_remove_Some.
  Qed.
  Global Instance submseteq_dec : RelDecision (submseteq : relation (list A)).
  Proof using Type*.
   refine (λ l1 l2, cast_if (decide (is_Some (list_remove_list l1 l2))));
    abstract (rewrite list_remove_list_submseteq; tauto).
  Defined.
  Global Instance Permutation_dec : RelDecision (≡ₚ@{A}).
  Proof using Type*.
    refine (λ l1 l2, cast_if_and
      (decide (l1 ⊆+ l2)) (decide (length l2 ≤ length l1)));
      [by apply submseteq_length_Permutation
      |abstract (intros He; by rewrite He in *)..].
  Defined.
End submseteq_dec.

(** ** Properties of the [Forall] and [Exists] predicate *)
Lemma Forall_Exists_dec (P Q : A → Prop) (dec : ∀ x, {P x} + {Q x}) :
  ∀ l, {Forall P l} + {Exists Q l}.
Proof.
 refine (
  fix go l :=
  match l return {Forall P l} + {Exists Q l} with
  | [] => left _
  | x :: l => cast_if_and (dec x) (go l)
  end); clear go; intuition.
Defined.

(** Export the Coq stdlib constructors under different names,
because we use [Forall_nil] and [Forall_cons] for a version with a biimplication. *)
Definition Forall_nil_2 := @Forall_nil A.
Definition Forall_cons_2 := @Forall_cons A.
Global Instance Forall_proper:
  Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Forall A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Global Instance Exists_proper:
  Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Exists A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.

Section Forall_Exists.
  Context (P : A → Prop).

  Lemma Forall_forall l : Forall P l ↔ ∀ x, x ∈ l → P x.
  Proof.
    split; [induction 1; inv 1; auto|].
    intros Hin; induction l as [|x l IH]; constructor; [apply Hin; constructor|].
    apply IH. intros ??. apply Hin. by constructor.
  Qed.
  Lemma Forall_nil : Forall P [] ↔ True.
  Proof. done. Qed.
  Lemma Forall_cons_1 x l : Forall P (x :: l) → P x ∧ Forall P l.
  Proof. by inv 1. Qed.
  Lemma Forall_cons x l : Forall P (x :: l) ↔ P x ∧ Forall P l.
  Proof. split; [by inv 1|]. intros [??]. by constructor. Qed.
  Lemma Forall_singleton x : Forall P [x] ↔ P x.
  Proof. rewrite Forall_cons, Forall_nil; tauto. Qed.
  Lemma Forall_app_2 l1 l2 : Forall P l1 → Forall P l2 → Forall P (l1 ++ l2).
  Proof. induction 1; simpl; auto. Qed.
  Lemma Forall_app l1 l2 : Forall P (l1 ++ l2) ↔ Forall P l1 ∧ Forall P l2.
  Proof.
    split; [induction l1; inv 1; naive_solver|].
    intros [??]; auto using Forall_app_2.
  Qed.
  Lemma Forall_true l : (∀ x, P x) → Forall P l.
  Proof. intros ?. induction l; auto. Defined.
  Lemma Forall_impl (Q : A → Prop) l :
    Forall P l → (∀ x, P x → Q x) → Forall Q l.
  Proof. intros H ?. induction H; auto. Defined.
  Lemma Forall_iff l (Q : A → Prop) :
    (∀ x, P x ↔ Q x) → Forall P l ↔ Forall Q l.
  Proof. intros H. apply Forall_proper. { red; apply H. } done. Qed.
  Lemma Forall_not l : length l ≠ 0 → Forall (not ∘ P) l → ¬Forall P l.
  Proof. by destruct 2; inv 1. Qed.
  Lemma Forall_and {Q} l : Forall (λ x, P x ∧ Q x) l ↔ Forall P l ∧ Forall Q l.
  Proof.
    split; [induction 1; constructor; naive_solver|].
    intros [Hl Hl']; revert Hl'; induction Hl; inv 1; auto.
  Qed.
  Lemma Forall_and_l {Q} l : Forall (λ x, P x ∧ Q x) l → Forall P l.
  Proof. rewrite Forall_and; tauto. Qed.
  Lemma Forall_and_r {Q} l : Forall (λ x, P x ∧ Q x) l → Forall Q l.
  Proof. rewrite Forall_and; tauto. Qed.
  Lemma Forall_delete l i : Forall P l → Forall P (delete i l).
  Proof. intros H. revert i. by induction H; intros [|i]; try constructor. Qed.

  Lemma Forall_lookup l : Forall P l ↔ ∀ i x, l !! i = Some x → P x.
  Proof.
    rewrite Forall_forall. setoid_rewrite elem_of_list_lookup. naive_solver.
  Qed.
  Lemma Forall_lookup_total `{!Inhabited A} l :
    Forall P l ↔ ∀ i, i < length l → P (l !!! i).
  Proof. rewrite Forall_lookup. setoid_rewrite list_lookup_alt. naive_solver. Qed.
  Lemma Forall_lookup_1 l i x : Forall P l → l !! i = Some x → P x.
  Proof. rewrite Forall_lookup. eauto. Qed.
  Lemma Forall_lookup_total_1 `{!Inhabited A} l i :
    Forall P l → i < length l → P (l !!! i).
  Proof. rewrite Forall_lookup_total. eauto. Qed.
  Lemma Forall_lookup_2 l : (∀ i x, l !! i = Some x → P x) → Forall P l.
  Proof. by rewrite Forall_lookup. Qed.
  Lemma Forall_lookup_total_2 `{!Inhabited A} l :
    (∀ i, i < length l → P (l !!! i)) → Forall P l.
  Proof. by rewrite Forall_lookup_total. Qed.
  Lemma Forall_nth d l : Forall P l ↔ ∀ i, i < length l → P (nth i l d).
  Proof.
    rewrite Forall_lookup. split.
    - intros Hl ? [x Hl']%lookup_lt_is_Some_2.
      rewrite (nth_lookup_Some _ _ _ _ Hl'). by eapply Hl.
    - intros Hl i x Hl'. specialize (Hl _ (lookup_lt_Some _ _ _ Hl')).
      by rewrite (nth_lookup_Some _ _ _ _ Hl') in Hl.
  Qed.

  Lemma Forall_reverse l : Forall P (reverse l) ↔ Forall P l.
  Proof.
    induction l as [|x l IH]; simpl; [done|].
    rewrite reverse_cons, Forall_cons, Forall_app, Forall_singleton. naive_solver.
  Qed.
  Lemma Forall_tail l : Forall P l → Forall P (tail l).
  Proof. destruct 1; simpl; auto. Qed.
  Lemma Forall_alter f l i :
    Forall P l → (∀ x, l !! i = Some x → P x → P (f x)) → Forall P (alter f i l).
  Proof.
    intros Hl. revert i. induction Hl; simpl; intros [|i]; constructor; auto.
  Qed.
  Lemma Forall_alter_inv f l i :
    Forall P (alter f i l) → (∀ x, l !! i = Some x → P (f x) → P x) → Forall P l.
  Proof.
    revert i. induction l; intros [|?]; simpl;
      inv 1; constructor; eauto.
  Qed.
  Lemma Forall_insert l i x : Forall P l → P x → Forall P (<[i:=x]>l).
  Proof. rewrite list_insert_alter; auto using Forall_alter. Qed.
  Lemma Forall_inserts l i k :
    Forall P l → Forall P k → Forall P (list_inserts i k l).
  Proof.
    intros Hl Hk; revert i.
    induction Hk; simpl; auto using Forall_insert.
  Qed.
  Lemma Forall_replicate n x : P x → Forall P (replicate n x).
  Proof. induction n; simpl; constructor; auto. Qed.
  Lemma Forall_replicate_eq n (x : A) : Forall (x =.) (replicate n x).
  Proof using -(P). induction n; simpl; constructor; auto. Qed.
  Lemma Forall_take n l : Forall P l → Forall P (take n l).
  Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
  Lemma Forall_drop n l : Forall P l → Forall P (drop n l).
  Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
  Lemma Forall_resize n x l : P x → Forall P l → Forall P (resize n x l).
  Proof.
    intros ? Hl. revert n.
    induction Hl; intros [|?]; simpl; auto using Forall_replicate.
  Qed.
  Lemma Forall_resize_inv n x l :
    length l ≤ n → Forall P (resize n x l) → Forall P l.
  Proof. intros ?. rewrite resize_ge, Forall_app by done. by intros []. Qed.
  Lemma Forall_sublist_lookup l i n k :
    sublist_lookup i n l = Some k → Forall P l → Forall P k.
  Proof.
    unfold sublist_lookup. intros; simplify_option_eq.
    auto using Forall_take, Forall_drop.
  Qed.
  Lemma Forall_sublist_alter f l i n k :
    Forall P l → sublist_lookup i n l = Some k → Forall P (f k) →
    Forall P (sublist_alter f i n l).
  Proof.
    unfold sublist_alter, sublist_lookup. intros; simplify_option_eq.
    auto using Forall_app_2, Forall_drop, Forall_take.
  Qed.
  Lemma Forall_sublist_alter_inv f l i n k :
    sublist_lookup i n l = Some k →
    Forall P (sublist_alter f i n l) → Forall P (f k).
  Proof.
    unfold sublist_alter, sublist_lookup. intros ?; simplify_option_eq.
    rewrite !Forall_app; tauto.
  Qed.
  Lemma Forall_reshape l szs : Forall P l → Forall (Forall P) (reshape szs l).
  Proof.
    revert l. induction szs; simpl; auto using Forall_take, Forall_drop.
  Qed.
  Lemma Forall_rev_ind (Q : list A → Prop) :
    Q [] → (∀ x l, P x → Forall P l → Q l → Q (l ++ [x])) →
    ∀ l, Forall P l → Q l.
  Proof.
    intros ?? l. induction l using rev_ind; auto.
    rewrite Forall_app, Forall_singleton; intros [??]; auto.
  Qed.

  Lemma Exists_exists l : Exists P l ↔ ∃ x, x ∈ l ∧ P x.
  Proof.
    split.
    - induction 1 as [x|y ?? [x [??]]]; exists x; by repeat constructor.
    - intros [x [Hin ?]]. induction l; [by destruct (not_elem_of_nil x)|].
      inv Hin; subst; [left|right]; auto.
  Qed.
  Lemma Exists_inv x l : Exists P (x :: l) → P x ∨ Exists P l.
  Proof. inv 1; intuition trivial. Qed.
  Lemma Exists_app l1 l2 : Exists P (l1 ++ l2) ↔ Exists P l1 ∨ Exists P l2.
  Proof.
    split.
    - induction l1; inv 1; naive_solver.
    - intros [H|H]; [induction H | induction l1]; simpl; intuition.
  Qed.
  Lemma Exists_impl (Q : A → Prop) l :
    Exists P l → (∀ x, P x → Q x) → Exists Q l.
  Proof. intros H ?. induction H; auto. Defined.

  Lemma Exists_not_Forall l : Exists (not ∘ P) l → ¬Forall P l.
  Proof. induction 1; inv 1; contradiction. Qed.
  Lemma Forall_not_Exists l : Forall (not ∘ P) l → ¬Exists P l.
  Proof. induction 1; inv 1; contradiction. Qed.

  Lemma Forall_list_difference `{!EqDecision A} l k :
    Forall P l → Forall P (list_difference l k).
  Proof.
    rewrite !Forall_forall.
    intros ? x; rewrite elem_of_list_difference; naive_solver.
  Qed.
  Lemma Forall_list_union `{!EqDecision A} l k :
    Forall P l → Forall P k → Forall P (list_union l k).
  Proof. intros. apply Forall_app; auto using Forall_list_difference. Qed.
  Lemma Forall_list_intersection `{!EqDecision A} l k :
    Forall P l → Forall P (list_intersection l k).
  Proof.
    rewrite !Forall_forall.
    intros ? x; rewrite elem_of_list_intersection; naive_solver.
  Qed.

  Context {dec : ∀ x, Decision (P x)}.
  Lemma not_Forall_Exists l : ¬Forall P l → Exists (not ∘ P) l.
  Proof using Type*. intro. by destruct (Forall_Exists_dec P (not ∘ P) dec l). Qed.
  Lemma not_Exists_Forall l : ¬Exists P l → Forall (not ∘ P) l.
  Proof using Type*.
    by destruct (Forall_Exists_dec (not ∘ P) P
        (λ x : A, swap_if (decide (P x))) l).
  Qed.
  Global Instance Forall_dec l : Decision (Forall P l) :=
    match Forall_Exists_dec P (not ∘ P) dec l with
    | left H => left H
    | right H => right (Exists_not_Forall _ H)
    end.
  Global Instance Exists_dec l : Decision (Exists P l) :=
    match Forall_Exists_dec (not ∘ P) P (λ x, swap_if (decide (P x))) l with
    | left H => right (Forall_not_Exists _ H)
    | right H => left H
    end.
End Forall_Exists.

Global Instance Forall_Permutation :
  Proper (pointwise_relation _ (↔) ==> (≡ₚ) ==> (↔)) (@Forall A).
Proof.
  intros P1 P2 HP l1 l2 Hl. rewrite !Forall_forall.
  apply forall_proper; intros x. by rewrite Hl, (HP x).
Qed.
Global Instance Exists_Permutation :
  Proper (pointwise_relation _ (↔) ==> (≡ₚ) ==> (↔)) (@Exists A).
Proof.
  intros P1 P2 HP l1 l2 Hl. rewrite !Exists_exists.
  f_equiv; intros x. by rewrite Hl, (HP x).
Qed.

Lemma head_filter_Some P `{!∀ x : A, Decision (P x)} l x :
  head (filter P l) = Some x →
  ∃ l1 l2, l = l1 ++ x :: l2 ∧ Forall (λ z, ¬P z) l1.
Proof.
  intros Hl. induction l as [|x' l IH]; [done|].
  rewrite filter_cons in Hl. case_decide; simplify_eq/=.
  - exists [], l. repeat constructor.
  - destruct IH as (l1&l2&->&?); [done|].
    exists (x' :: l1), l2. by repeat constructor.
Qed.
Lemma last_filter_Some P `{!∀ x : A, Decision (P x)} l x :
  last (filter P l) = Some x →
  ∃ l1 l2, l = l1 ++ x :: l2 ∧ Forall (λ z, ¬P z) l2.
Proof.
  rewrite <-(reverse_involutive (filter P l)), last_reverse, <-filter_reverse.
  intros (l1&l2&Heq&Hl)%head_filter_Some.
  exists (reverse l2), (reverse l1).
  rewrite <-(reverse_involutive l), Heq, reverse_app, reverse_cons, <-(assoc_L (++)).
  split; [done|by apply Forall_reverse].
Qed.

Lemma list_exist_dec P l :
  (∀ x, Decision (P x)) → Decision (∃ x, x ∈ l ∧ P x).
Proof.
  refine (λ _, cast_if (decide (Exists P l))); by rewrite <-Exists_exists.
Defined.
Lemma list_forall_dec P l :
  (∀ x, Decision (P x)) → Decision (∀ x, x ∈ l → P x).
Proof.
  refine (λ _, cast_if (decide (Forall P l))); by rewrite <-Forall_forall.
Defined.

Lemma forallb_True (f : A → bool) xs : forallb f xs ↔ Forall f xs.
Proof.
  split.
  - induction xs; naive_solver.
  - induction 1; naive_solver.
Qed.
Lemma existb_True (f : A → bool) xs : existsb f xs ↔ Exists f xs.
Proof.
  split.
  - induction xs; naive_solver.
  - induction 1; naive_solver.
Qed.

Lemma replicate_as_Forall (x : A) n l :
  replicate n x = l ↔ length l = n ∧ Forall (x =.) l.
Proof. rewrite replicate_as_elem_of, Forall_forall. naive_solver. Qed.
Lemma replicate_as_Forall_2 (x : A) n l :
  length l = n → Forall (x =.) l → replicate n x = l.
Proof. by rewrite replicate_as_Forall. Qed.
End more_general_properties.

Lemma Forall_swap {A B} (Q : A → B → Prop) l1 l2 :
  Forall (λ y, Forall (Q y) l1) l2 ↔ Forall (λ x, Forall (flip Q x) l2) l1.
Proof. repeat setoid_rewrite Forall_forall. simpl. split; eauto. Qed.

(** ** Properties of the [Forall2] predicate *)
Lemma Forall_Forall2_diag {A} (Q : A → A → Prop) l :
  Forall (λ x, Q x x) l → Forall2 Q l l.
Proof. induction 1; constructor; auto. Qed.

Lemma Forall2_forall `{Inhabited A} B C (Q : A → B → C → Prop) l k :
  Forall2 (λ x y, ∀ z, Q z x y) l k ↔ ∀ z, Forall2 (Q z) l k.
Proof.
  split; [induction 1; constructor; auto|].
  intros Hlk. induction (Hlk inhabitant) as [|x y l k _ _ IH]; constructor.
  - intros z. by oinv Hlk.
  - apply IH. intros z. by oinv Hlk.
Qed.

Lemma Forall2_same_length {A B} (l : list A) (k : list B) :
  Forall2 (λ _ _, True) l k ↔ length l = length k.
Proof.
  split; [by induction 1; f_equal/=|].
  revert k. induction l; intros [|??] ?; simplify_eq/=; auto.
Qed.

Lemma Forall2_Forall {A} P (l1 l2 : list A) :
  Forall2 P l1 l2 → Forall (uncurry P) (zip l1 l2).
Proof. induction 1; constructor; auto. Qed.

(** Export the Coq stdlib constructors under a different name,
because we use [Forall2_nil] and [Forall2_cons] for a version with a biimplication. *)
Definition Forall2_nil_2 := @Forall2_nil.
Definition Forall2_cons_2 := @Forall2_cons.
Section Forall2.
  Context {A B} (P : A → B → Prop).
  Implicit Types x : A.
  Implicit Types y : B.
  Implicit Types l : list A.
  Implicit Types k : list B.

  Lemma Forall2_length l k : Forall2 P l k → length l = length k.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall2_length_l l k n : Forall2 P l k → length l = n → length k = n.
  Proof. intros ? <-; symmetry. by apply Forall2_length. Qed.
  Lemma Forall2_length_r l k n : Forall2 P l k → length k = n → length l = n.
  Proof. intros ? <-. by apply Forall2_length. Qed.

  Lemma Forall2_true l k : (∀ x y, P x y) → length l = length k → Forall2 P l k.
  Proof. rewrite <-Forall2_same_length. induction 2; naive_solver. Qed.
  Lemma Forall2_flip l k : Forall2 (flip P) k l ↔ Forall2 P l k.
  Proof. split; induction 1; constructor; auto. Qed.
  Lemma Forall2_transitive {C} (Q : B → C → Prop) (R : A → C → Prop) l k lC :
    (∀ x y z, P x y → Q y z → R x z) →
    Forall2 P l k → Forall2 Q k lC → Forall2 R l lC.
  Proof. intros ? Hl. revert lC. induction Hl; inv 1; eauto. Qed.
  Lemma Forall2_impl (Q : A → B → Prop) l k :
    Forall2 P l k → (∀ x y, P x y → Q x y) → Forall2 Q l k.
  Proof. intros H ?. induction H; auto. Defined.
  Lemma Forall2_unique l k1 k2 :
    Forall2 P l k1 → Forall2 P l k2 →
    (∀ x y1 y2, P x y1 → P x y2 → y1 = y2) → k1 = k2.
  Proof.
    intros H. revert k2. induction H; inv 1; intros; f_equal; eauto.
  Qed.

  Lemma Forall_Forall2_l l k :
    length l = length k → Forall (λ x, ∀ y, P x y) l → Forall2 P l k.
  Proof. rewrite <-Forall2_same_length. induction 1; inv 1; auto. Qed.
  Lemma Forall_Forall2_r l k :
    length l = length k → Forall (λ y, ∀ x, P x y) k → Forall2 P l k.
  Proof. rewrite <-Forall2_same_length. induction 1; inv 1; auto. Qed.

  Lemma Forall2_Forall_l (Q : A → Prop) l k :
    Forall2 P l k → Forall (λ y, ∀ x, P x y → Q x) k → Forall Q l.
  Proof. induction 1; inv 1; eauto. Qed.
  Lemma Forall2_Forall_r (Q : B → Prop) l k :
    Forall2 P l k → Forall (λ x, ∀ y, P x y → Q y) l → Forall Q k.
  Proof. induction 1; inv 1; eauto. Qed.

  Lemma Forall2_nil_inv_l k : Forall2 P [] k → k = [].
  Proof. by inv 1. Qed.
  Lemma Forall2_nil_inv_r l : Forall2 P l [] → l = [].
  Proof. by inv 1. Qed.
  Lemma Forall2_nil : Forall2 P [] [] ↔ True.
  Proof. done. Qed.

  Lemma Forall2_cons_1 x l y k :
    Forall2 P (x :: l) (y :: k) → P x y ∧ Forall2 P l k.
  Proof. by inv 1. Qed.
  Lemma Forall2_cons_inv_l x l k :
    Forall2 P (x :: l) k → ∃ y k', P x y ∧ Forall2 P l k' ∧ k = y :: k'.
  Proof. inv 1; eauto. Qed.
  Lemma Forall2_cons_inv_r l k y :
    Forall2 P l (y :: k) → ∃ x l', P x y ∧ Forall2 P l' k ∧ l = x :: l'.
  Proof. inv 1; eauto. Qed.
  Lemma Forall2_cons_nil_inv x l : Forall2 P (x :: l) [] → False.
  Proof. by inv 1. Qed.
  Lemma Forall2_nil_cons_inv y k : Forall2 P [] (y :: k) → False.
  Proof. by inv 1. Qed.

  Lemma Forall2_cons x l y k :
    Forall2 P (x :: l) (y :: k) ↔ P x y ∧ Forall2 P l k.
  Proof.
    split; [by apply Forall2_cons_1|]. intros []. by apply Forall2_cons_2.
  Qed.

  Lemma Forall2_app_l l1 l2 k :
    Forall2 P l1 (take (length l1) k) → Forall2 P l2 (drop (length l1) k) →
    Forall2 P (l1 ++ l2) k.
  Proof. intros. rewrite <-(take_drop (length l1) k). by apply Forall2_app. Qed.
  Lemma Forall2_app_r l k1 k2 :
    Forall2 P (take (length k1) l) k1 → Forall2 P (drop (length k1) l) k2 →
    Forall2 P l (k1 ++ k2).
  Proof. intros. rewrite <-(take_drop (length k1) l). by apply Forall2_app. Qed.
  Lemma Forall2_app_inv l1 l2 k1 k2 :
    length l1 = length k1 →
    Forall2 P (l1 ++ l2) (k1 ++ k2) → Forall2 P l1 k1 ∧ Forall2 P l2 k2.
  Proof.
    rewrite <-Forall2_same_length. induction 1; inv 1; naive_solver.
  Qed.
  Lemma Forall2_app_inv_l l1 l2 k :
    Forall2 P (l1 ++ l2) k ↔
      ∃ k1 k2, Forall2 P l1 k1 ∧ Forall2 P l2 k2 ∧ k = k1 ++ k2.
  Proof.
    split; [|intros (?&?&?&?&->); by apply Forall2_app].
    revert k. induction l1; inv 1; naive_solver.
  Qed.
  Lemma Forall2_app_inv_r l k1 k2 :
    Forall2 P l (k1 ++ k2) ↔
      ∃ l1 l2, Forall2 P l1 k1 ∧ Forall2 P l2 k2 ∧ l = l1 ++ l2.
  Proof.
    split; [|intros (?&?&?&?&->); by apply Forall2_app].
    revert l. induction k1; inv 1; naive_solver.
  Qed.

  Lemma Forall2_tail l k : Forall2 P l k → Forall2 P (tail l) (tail k).
  Proof. destruct 1; simpl; auto. Qed.
  Lemma Forall2_take l k n : Forall2 P l k → Forall2 P (take n l) (take n k).
  Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
  Lemma Forall2_drop l k n : Forall2 P l k → Forall2 P (drop n l) (drop n k).
  Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.

  Lemma Forall2_lookup l k :
    Forall2 P l k ↔ ∀ i, option_Forall2 P (l !! i) (k !! i).
  Proof.
    split; [induction 1; intros [|?]; simpl; try constructor; eauto|].
    revert k. induction l as [|x l IH]; intros [| y k] H.
    - done.
    - oinv (H 0).
    - oinv (H 0).
    - constructor; [by oinv (H 0)|]. apply (IH _ $ λ i, H (S i)).
  Qed.
  Lemma Forall2_lookup_lr l k i x y :
    Forall2 P l k → l !! i = Some x → k !! i = Some y → P x y.
  Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
  Lemma Forall2_lookup_l l k i x :
    Forall2 P l k → l !! i = Some x → ∃ y, k !! i = Some y ∧ P x y.
  Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
  Lemma Forall2_lookup_r l k i y :
    Forall2 P l k → k !! i = Some y → ∃ x, l !! i = Some x ∧ P x y.
  Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
  Lemma Forall2_same_length_lookup_2 l k :
    length l = length k →
    (∀ i x y, l !! i = Some x → k !! i = Some y → P x y) → Forall2 P l k.
  Proof.
    rewrite <-Forall2_same_length. intros Hl Hlookup.
    induction Hl as [|?????? IH]; constructor; [by apply (Hlookup 0)|].
    apply IH. apply (λ i, Hlookup (S i)).
  Qed.
  Lemma Forall2_same_length_lookup l k :
    Forall2 P l k ↔
      length l = length k ∧
      (∀ i x y, l !! i = Some x → k !! i = Some y → P x y).
  Proof.
    naive_solver eauto using Forall2_length,
      Forall2_lookup_lr, Forall2_same_length_lookup_2.
  Qed.

  Lemma Forall2_alter_l f l k i :
    Forall2 P l k →
    (∀ x y, l !! i = Some x → k !! i = Some y → P x y → P (f x) y) →
    Forall2 P (alter f i l) k.
  Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
  Lemma Forall2_alter_r f l k i :
    Forall2 P l k →
    (∀ x y, l !! i = Some x → k !! i = Some y → P x y → P x (f y)) →
    Forall2 P l (alter f i k).
  Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
  Lemma Forall2_alter f g l k i :
    Forall2 P l k →
    (∀ x y, l !! i = Some x → k !! i = Some y → P x y → P (f x) (g y)) →
    Forall2 P (alter f i l) (alter g i k).
  Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.

  Lemma Forall2_insert l k x y i :
    Forall2 P l k → P x y → Forall2 P (<[i:=x]> l) (<[i:=y]> k).
  Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
  Lemma Forall2_inserts l k l' k' i :
    Forall2 P l k → Forall2 P l' k' →
    Forall2 P (list_inserts i l' l) (list_inserts i k' k).
  Proof. intros ? H. revert i. induction H; eauto using Forall2_insert. Qed.

  Lemma Forall2_delete l k i :
    Forall2 P l k → Forall2 P (delete i l) (delete i k).
  Proof. intros Hl. revert i. induction Hl; intros [|]; simpl; intuition. Qed.
  Lemma Forall2_option_list mx my :
    option_Forall2 P mx my → Forall2 P (option_list mx) (option_list my).
  Proof. destruct 1; by constructor. Qed.

  Lemma Forall2_filter Q1 Q2 `{∀ x, Decision (Q1 x), ∀ y, Decision (Q2 y)} l k:
    (∀ x y, P x y → Q1 x ↔ Q2 y) →
    Forall2 P l k → Forall2 P (filter Q1 l) (filter Q2 k).
  Proof.
    intros HP; induction 1 as [|x y l k]; unfold filter; simpl; auto.
    simplify_option_eq by (by rewrite <-(HP x y)); repeat constructor; auto.
  Qed.

  Lemma Forall2_replicate_l k n x :
    length k = n → Forall (P x) k → Forall2 P (replicate n x) k.
  Proof. intros <-. induction 1; simpl; auto. Qed.
  Lemma Forall2_replicate_r l n y :
    length l = n → Forall (flip P y) l → Forall2 P l (replicate n y).
  Proof. intros <-. induction 1; simpl; auto. Qed.
  Lemma Forall2_replicate n x y :
    P x y → Forall2 P (replicate n x) (replicate n y).
  Proof. induction n; simpl; constructor; auto. Qed.

  Lemma Forall2_rotate n l k :
    Forall2 P l k → Forall2 P (rotate n l) (rotate n k).
  Proof.
    intros HAll. unfold rotate. rewrite (Forall2_length _ _ HAll).
    eauto using Forall2_app, Forall2_take, Forall2_drop.
  Qed.
  Lemma Forall2_rotate_take s e l k :
    Forall2 P l k → Forall2 P (rotate_take s e l) (rotate_take s e k).
  Proof.
    intros HAll. unfold rotate_take. rewrite (Forall2_length _ _ HAll).
    eauto using Forall2_take, Forall2_rotate.
  Qed.

  Lemma Forall2_reverse l k : Forall2 P l k → Forall2 P (reverse l) (reverse k).
  Proof.
    induction 1; rewrite ?reverse_nil, ?reverse_cons; eauto using Forall2_app.
  Qed.
  Lemma Forall2_last l k : Forall2 P l k → option_Forall2 P (last l) (last k).
  Proof. induction 1 as [|????? []]; simpl; repeat constructor; auto. Qed.

  Lemma Forall2_resize l k x y n :
    P x y → Forall2 P l k → Forall2 P (resize n x l) (resize n y k).
  Proof.
    intros. rewrite !resize_spec, (Forall2_length l k) by done.
    auto using Forall2_app, Forall2_take, Forall2_replicate.
  Qed.
  Lemma Forall2_resize_l l k x y n m :
    P x y → Forall (flip P y) l →
    Forall2 P (resize n x l) k → Forall2 P (resize m x l) (resize m y k).
  Proof.
    intros. destruct (decide (m ≤ n)).
    { rewrite <-(resize_resize l m n) by done. by apply Forall2_resize. }
    intros. assert (n = length k); subst.
    { by rewrite <-(Forall2_length (resize n x l) k), length_resize. }
    rewrite (Nat.le_add_sub (length k) m), !resize_add,
      resize_all, drop_all, resize_nil by lia.
    auto using Forall2_app, Forall2_replicate_r,
      Forall_resize, Forall_drop, length_resize.
  Qed.
  Lemma Forall2_resize_r l k x y n m :
    P x y → Forall (P x) k →
    Forall2 P l (resize n y k) → Forall2 P (resize m x l) (resize m y k).
  Proof.
    intros. destruct (decide (m ≤ n)).
    { rewrite <-(resize_resize k m n) by done. by apply Forall2_resize. }
    assert (n = length l); subst.
    { by rewrite (Forall2_length l (resize n y k)), length_resize. }
    rewrite (Nat.le_add_sub (length l) m), !resize_add,
      resize_all, drop_all, resize_nil by lia.
    auto using Forall2_app, Forall2_replicate_l,
      Forall_resize, Forall_drop, length_resize.
  Qed.
  Lemma Forall2_resize_r_flip l k x y n m :
    P x y → Forall (P x) k →
    length k = m → Forall2 P l (resize n y k) → Forall2 P (resize m x l) k.
  Proof.
    intros ?? <- ?. rewrite <-(resize_all k y) at 2.
    apply Forall2_resize_r with n; auto using Forall_true.
  Qed.

  Lemma Forall2_sublist_lookup_l l k n i l' :
    Forall2 P l k → sublist_lookup n i l = Some l' →
    ∃ k', sublist_lookup n i k = Some k' ∧ Forall2 P l' k'.
  Proof.
    unfold sublist_lookup. intros Hlk Hl.
    exists (take i (drop n k)); simplify_option_eq.
    - auto using Forall2_take, Forall2_drop.
    - apply Forall2_length in Hlk; lia.
  Qed.
  Lemma Forall2_sublist_lookup_r l k n i k' :
    Forall2 P l k → sublist_lookup n i k = Some k' →
    ∃ l', sublist_lookup n i l = Some l' ∧ Forall2 P l' k'.
  Proof.
    intro. unfold sublist_lookup.
    erewrite Forall2_length by eauto; intros; simplify_option_eq.
    eauto using Forall2_take, Forall2_drop.
  Qed.
  Lemma Forall2_sublist_alter f g l k i n l' k' :
    Forall2 P l k → sublist_lookup i n l = Some l' →
    sublist_lookup i n k = Some k' → Forall2 P (f l') (g k') →
    Forall2 P (sublist_alter f i n l) (sublist_alter g i n k).
  Proof.
    intro. unfold sublist_alter, sublist_lookup.
    erewrite Forall2_length by eauto; intros; simplify_option_eq.
    auto using Forall2_app, Forall2_drop, Forall2_take.
  Qed.
  Lemma Forall2_sublist_alter_l f l k i n l' k' :
    Forall2 P l k → sublist_lookup i n l = Some l' →
    sublist_lookup i n k = Some k' → Forall2 P (f l') k' →
    Forall2 P (sublist_alter f i n l) k.
  Proof.
    intro. unfold sublist_lookup, sublist_alter.
    erewrite <-Forall2_length by eauto; intros; simplify_option_eq.
    apply Forall2_app_l;
      rewrite ?length_take_le by lia; auto using Forall2_take.
    apply Forall2_app_l; erewrite Forall2_length, length_take,
      length_drop, <-Forall2_length, Nat.min_l by eauto with lia; [done|].
    rewrite drop_drop; auto using Forall2_drop.
  Qed.

  Global Instance Forall2_dec `{dec : ∀ x y, Decision (P x y)} :
    RelDecision (Forall2 P).
  Proof.
   refine (
    fix go l k : Decision (Forall2 P l k) :=
    match l, k with
    | [], [] => left _
    | x :: l, y :: k => cast_if_and (decide (P x y)) (go l k)
    | _, _ => right _
    end); clear dec go; abstract first [by constructor | by inv 1].
  Defined.
End Forall2.

Section Forall2_proper.
  Context  {A} (R : relation A).

  Global Instance: Reflexive R → Reflexive (Forall2 R).
  Proof. intros ? l. induction l; by constructor. Qed.
  Global Instance: Symmetric R → Symmetric (Forall2 R).
  Proof. intros. induction 1; constructor; auto. Qed.
  Global Instance: Transitive R → Transitive (Forall2 R).
  Proof. intros ????. apply Forall2_transitive. by apply @transitivity. Qed.
  Global Instance: Equivalence R → Equivalence (Forall2 R).
  Proof. split; apply _. Qed.
  Global Instance: PreOrder R → PreOrder (Forall2 R).
  Proof. split; apply _. Qed.
  Global Instance: AntiSymm (=) R → AntiSymm (=) (Forall2 R).
  Proof. induction 2; inv 1; f_equal; auto. Qed.

  Global Instance: Proper (R ==> Forall2 R ==> Forall2 R) (::).
  Proof. by constructor. Qed.
  Global Instance: Proper (Forall2 R ==> Forall2 R ==> Forall2 R) (++).
  Proof. repeat intro. by apply Forall2_app. Qed.
  Global Instance: Proper (Forall2 R ==> (=)) length.
  Proof. repeat intro. eauto using Forall2_length. Qed.
  Global Instance: Proper (Forall2 R ==> Forall2 R) tail.
  Proof. repeat intro. eauto using Forall2_tail. Qed.
  Global Instance: ∀ n, Proper (Forall2 R ==> Forall2 R) (take n).
  Proof. repeat intro. eauto using Forall2_take. Qed.
  Global Instance: ∀ n, Proper (Forall2 R ==> Forall2 R) (drop n).
  Proof. repeat intro. eauto using Forall2_drop. Qed.

  Global Instance: ∀ i, Proper (Forall2 R ==> option_Forall2 R) (lookup i).
  Proof. repeat intro. by apply Forall2_lookup. Qed.
  Global Instance:
    Proper ((R ==> R) ==> (=) ==> Forall2 R ==> Forall2 R) (alter (M:=list A)).
  Proof. repeat intro. subst. eauto using Forall2_alter. Qed.
  Global Instance: ∀ i, Proper (R ==> Forall2 R ==> Forall2 R) (insert i).
  Proof. repeat intro. eauto using Forall2_insert. Qed.
  Global Instance: ∀ i,
    Proper (Forall2 R ==> Forall2 R ==> Forall2 R) (list_inserts i).
  Proof. repeat intro. eauto using Forall2_inserts. Qed.
  Global Instance: ∀ i, Proper (Forall2 R ==> Forall2 R) (delete i).
  Proof. repeat intro. eauto using Forall2_delete. Qed.

  Global Instance: Proper (option_Forall2 R ==> Forall2 R) option_list.
  Proof. repeat intro. eauto using Forall2_option_list. Qed.
  Global Instance: ∀ P `{∀ x, Decision (P x)},
    Proper (R ==> iff) P → Proper (Forall2 R ==> Forall2 R) (filter P).
  Proof. repeat intro; eauto using Forall2_filter. Qed.

  Global Instance: ∀ n, Proper (R ==> Forall2 R) (replicate n).
  Proof. repeat intro. eauto using Forall2_replicate. Qed.
  Global Instance: ∀ n, Proper (Forall2 R ==> Forall2 R) (rotate n).
  Proof. repeat intro. eauto using Forall2_rotate. Qed.
  Global Instance: ∀ s e, Proper (Forall2 R ==> Forall2 R) (rotate_take s e).
  Proof. repeat intro. eauto using Forall2_rotate_take. Qed.
  Global Instance: Proper (Forall2 R ==> Forall2 R) reverse.
  Proof. repeat intro. eauto using Forall2_reverse. Qed.
  Global Instance: Proper (Forall2 R ==> option_Forall2 R) last.
  Proof. repeat intro. eauto using Forall2_last. Qed.
  Global Instance: ∀ n, Proper (R ==> Forall2 R ==> Forall2 R) (resize n).
  Proof. repeat intro. eauto using Forall2_resize. Qed.
End Forall2_proper.

Section Forall3.
  Context {A B C} (P : A → B → C → Prop).
  Local Hint Extern 0 (Forall3 _ _ _ _) => constructor : core.

  Lemma Forall3_app l1 l2 k1 k2 k1' k2' :
    Forall3 P l1 k1 k1' → Forall3 P l2 k2 k2' →
    Forall3 P (l1 ++ l2) (k1 ++ k2) (k1' ++ k2').
  Proof. induction 1; simpl; auto. Qed.
  Lemma Forall3_cons_inv_l x l k k' :
    Forall3 P (x :: l) k k' → ∃ y k2 z k2',
      k = y :: k2 ∧ k' = z :: k2' ∧ P x y z ∧ Forall3 P l k2 k2'.
  Proof. inv 1; naive_solver. Qed.
  Lemma Forall3_app_inv_l l1 l2 k k' :
    Forall3 P (l1 ++ l2) k k' → ∃ k1 k2 k1' k2',
     k = k1 ++ k2 ∧ k' = k1' ++ k2' ∧ Forall3 P l1 k1 k1' ∧ Forall3 P l2 k2 k2'.
  Proof.
    revert k k'. induction l1 as [|x l1 IH]; simpl; inv 1.
    - by repeat eexists; eauto.
    - by repeat eexists; eauto.
    - edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
  Qed.
  Lemma Forall3_cons_inv_m l y k k' :
    Forall3 P l (y :: k) k' → ∃ x l2 z k2',
      l = x :: l2 ∧ k' = z :: k2' ∧ P x y z ∧ Forall3 P l2 k k2'.
  Proof. inv 1; naive_solver. Qed.
  Lemma Forall3_app_inv_m l k1 k2 k' :
    Forall3 P l (k1 ++ k2) k' → ∃ l1 l2 k1' k2',
     l = l1 ++ l2 ∧ k' = k1' ++ k2' ∧ Forall3 P l1 k1 k1' ∧ Forall3 P l2 k2 k2'.
  Proof.
    revert l k'. induction k1 as [|x k1 IH]; simpl; inv 1.
    - by repeat eexists; eauto.
    - by repeat eexists; eauto.
    - edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
  Qed.
  Lemma Forall3_cons_inv_r l k z k' :
    Forall3 P l k (z :: k') → ∃ x l2 y k2,
      l = x :: l2 ∧ k = y :: k2 ∧ P x y z ∧ Forall3 P l2 k2 k'.
  Proof. inv 1; naive_solver. Qed.
  Lemma Forall3_app_inv_r l k k1' k2' :
    Forall3 P l k (k1' ++ k2') → ∃ l1 l2 k1 k2,
      l = l1 ++ l2 ∧ k = k1 ++ k2 ∧ Forall3 P l1 k1 k1' ∧ Forall3 P l2 k2 k2'.
  Proof.
    revert l k. induction k1' as [|x k1' IH]; simpl; inv 1.
    - by repeat eexists; eauto.
    - by repeat eexists; eauto.
    - edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
  Qed.
  Lemma Forall3_impl (Q : A → B → C → Prop) l k k' :
    Forall3 P l k k' → (∀ x y z, P x y z → Q x y z) → Forall3 Q l k k'.
  Proof. intros Hl ?; induction Hl; auto. Defined.
  Lemma Forall3_length_lm l k k' : Forall3 P l k k' → length l = length k.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall3_length_lr l k k' : Forall3 P l k k' → length l = length k'.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall3_lookup_lmr l k k' i x y z :
    Forall3 P l k k' →
    l !! i = Some x → k !! i = Some y → k' !! i = Some z → P x y z.
  Proof.
    intros H. revert i. induction H; intros [|?] ???; simplify_eq/=; eauto.
  Qed.
  Lemma Forall3_lookup_l l k k' i x :
    Forall3 P l k k' → l !! i = Some x →
    ∃ y z, k !! i = Some y ∧ k' !! i = Some z ∧ P x y z.
  Proof.
    intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
  Qed.
  Lemma Forall3_lookup_m l k k' i y :
    Forall3 P l k k' → k !! i = Some y →
    ∃ x z, l !! i = Some x ∧ k' !! i = Some z ∧ P x y z.
  Proof.
    intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
  Qed.
  Lemma Forall3_lookup_r l k k' i z :
    Forall3 P l k k' → k' !! i = Some z →
    ∃ x y, l !! i = Some x ∧ k !! i = Some y ∧ P x y z.
  Proof.
    intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
  Qed.
  Lemma Forall3_alter_lm f g l k k' i :
    Forall3 P l k k' →
    (∀ x y z, l !! i = Some x → k !! i = Some y → k' !! i = Some z →
      P x y z → P (f x) (g y) z) →
    Forall3 P (alter f i l) (alter g i k) k'.
  Proof. intros Hl. revert i. induction Hl; intros [|]; auto. Qed.
End Forall3.

(** ** Properties of [subseteq] *)
Section subseteq.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

Global Instance list_subseteq_po : PreOrder (⊆@{list A}).
Proof. split; firstorder. Qed.
Lemma list_subseteq_nil l : [] ⊆ l.
Proof. intros x. by rewrite elem_of_nil. Qed.
Lemma list_nil_subseteq l : l ⊆ [] → l = [].
Proof.
  intro Hl. destruct l as [|x l1]; [done|]. exfalso.
  rewrite <-(elem_of_nil x).
  apply Hl, elem_of_cons. by left.
Qed.
Lemma list_subseteq_skip x l1 l2 : l1 ⊆ l2 → x :: l1 ⊆ x :: l2.
Proof.
  intros Hin y Hy%elem_of_cons.
  destruct Hy as [-> | Hy]; [by left|]. right. by apply Hin.
Qed.
Lemma list_subseteq_cons x l1 l2 : l1 ⊆ l2 → l1 ⊆ x :: l2.
Proof. intros Hin y Hy. right. by apply Hin. Qed.
Lemma list_subseteq_app_l l1 l2 l : l1 ⊆ l2 → l1 ⊆ l2 ++ l.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_app. naive_solver. Qed.
Lemma list_subseteq_app_r l1 l2 l : l1 ⊆ l2 → l1 ⊆ l ++ l2.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_app. naive_solver. Qed.

Lemma list_subseteq_app_iff_l l1 l2 l :
  l1 ++ l2 ⊆ l ↔ l1 ⊆ l ∧ l2 ⊆ l.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_app. naive_solver. Qed.
Lemma list_subseteq_cons_iff x l1 l2 :
  x :: l1 ⊆ l2 ↔ x ∈ l2 ∧ l1 ⊆ l2.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_cons. naive_solver. Qed.

Lemma list_delete_subseteq i l : delete i l ⊆ l.
Proof.
  revert i. induction l as [|x l IHl]; intros i; [done|].
  destruct i as [|i];
    [by apply list_subseteq_cons|by apply list_subseteq_skip].
Qed.
Lemma list_filter_subseteq P `{!∀ x : A, Decision (P x)} l :
  filter P l ⊆ l.
Proof.
  induction l as [|x l IHl]; [done|]. rewrite filter_cons.
  destruct (decide (P x));
    [by apply list_subseteq_skip|by apply list_subseteq_cons].
Qed.
Lemma subseteq_drop n l : drop n l ⊆ l.
Proof. rewrite <-(take_drop n l) at 2. apply list_subseteq_app_r. done. Qed.
Lemma subseteq_take n l : take n l ⊆ l.
Proof. rewrite <-(take_drop n l) at 2. apply list_subseteq_app_l. done. Qed.

Global Instance list_subseteq_Permutation:
  Proper ((≡ₚ) ==> (≡ₚ) ==> (↔)) (⊆@{list A}) .
Proof.
  intros l1 l2 Hl k1 k2 Hk. apply forall_proper; intros x. by rewrite Hl, Hk.
Qed.

Global Program Instance list_subseteq_dec `{!EqDecision A} : RelDecision (⊆@{list A}) :=
  λ xs ys, cast_if (decide (Forall (λ x, x ∈ ys) xs)).
Next Obligation. intros ???. by rewrite Forall_forall. Qed.
Next Obligation. intros ???. by rewrite Forall_forall. Qed.
End subseteq.

(** Setoids *)
Section setoid.
  Context `{Equiv A}.
  Implicit Types l k : list A.

  Lemma list_equiv_Forall2 l k : l ≡ k ↔ Forall2 (≡) l k.
  Proof. split; induction 1; constructor; auto. Qed.
  Lemma list_equiv_lookup l k : l ≡ k ↔ ∀ i, l !! i ≡ k !! i.
  Proof.
    rewrite list_equiv_Forall2, Forall2_lookup.
    by setoid_rewrite option_equiv_Forall2.
  Qed.

  Global Instance list_equivalence :
    Equivalence (≡@{A}) → Equivalence (≡@{list A}).
  Proof.
    split.
    - intros l. by apply list_equiv_Forall2.
    - intros l k; rewrite !list_equiv_Forall2; by intros.
    - intros l1 l2 l3; rewrite !list_equiv_Forall2; intros; by trans l2.
  Qed.
  Global Instance list_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (list A).
  Proof. induction 1; f_equal; fold_leibniz; auto. Qed.

  Global Instance cons_proper : Proper ((≡) ==> (≡) ==> (≡@{list A})) cons.
  Proof. by constructor. Qed.
  Global Instance app_proper : Proper ((≡) ==> (≡) ==> (≡@{list A})) app.
  Proof. induction 1; intros ???; simpl; try constructor; auto. Qed.
  Global Instance length_proper : Proper ((≡@{list A}) ==> (=)) length.
  Proof. induction 1; f_equal/=; auto. Qed.
  Global Instance tail_proper : Proper ((≡@{list A}) ==> (≡)) tail.
  Proof. destruct 1; try constructor; auto. Qed.
  Global Instance take_proper n : Proper ((≡@{list A}) ==> (≡)) (take n).
  Proof. induction n; destruct 1; constructor; auto. Qed.
  Global Instance drop_proper n : Proper ((≡@{list A}) ==> (≡)) (drop n).
  Proof. induction n; destruct 1; simpl; try constructor; auto. Qed.
  Global Instance list_lookup_proper i : Proper ((≡@{list A}) ==> (≡)) (lookup i).
  Proof. induction i; destruct 1; simpl; try constructor; auto. Qed.
  Global Instance list_lookup_total_proper `{!Inhabited A} i :
    Proper (≡@{A}) inhabitant →
    Proper ((≡@{list A}) ==> (≡)) (lookup_total i).
  Proof. intros ?. induction i; destruct 1; simpl; auto. Qed.
  Global Instance list_alter_proper :
    Proper (((≡) ==> (≡)) ==> (=) ==> (≡) ==> (≡@{list A})) alter.
  Proof.
    intros f1 f2 Hf i ? <-. induction i; destruct 1; constructor; eauto.
  Qed.
  Global Instance list_insert_proper i :
    Proper ((≡) ==> (≡) ==> (≡@{list A})) (insert i).
  Proof. intros ???; induction i; destruct 1; constructor; eauto. Qed.
  Global Instance list_inserts_proper i :
    Proper ((≡) ==> (≡) ==> (≡@{list A})) (list_inserts i).
  Proof.
    intros k1 k2 Hk; revert i.
    induction Hk; intros ????; simpl; try f_equiv; naive_solver.
  Qed.
  Global Instance list_delete_proper i :
    Proper ((≡) ==> (≡@{list A})) (delete i).
  Proof. induction i; destruct 1; try constructor; eauto. Qed.
  Global Instance option_list_proper : Proper ((≡) ==> (≡@{list A})) option_list.
  Proof. destruct 1; repeat constructor; auto. Qed.
  Global Instance list_filter_proper P `{∀ x, Decision (P x)} :
    Proper ((≡) ==> iff) P → Proper ((≡) ==> (≡@{list A})) (filter P).
  Proof. intros ???. rewrite !list_equiv_Forall2. by apply Forall2_filter. Qed.
  Global Instance replicate_proper n : Proper ((≡@{A}) ==> (≡)) (replicate n).
  Proof. induction n; constructor; auto. Qed.
  Global Instance rotate_proper n : Proper ((≡@{list A}) ==> (≡)) (rotate n).
  Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate. Qed.
  Global Instance rotate_take_proper s e : Proper ((≡@{list A}) ==> (≡)) (rotate_take s e).
  Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate_take. Qed.
  Global Instance reverse_proper : Proper ((≡) ==> (≡@{list A})) reverse.
  Proof.
    induction 1; rewrite ?reverse_cons; simpl; [constructor|].
    apply app_proper; repeat constructor; auto.
  Qed.
  Global Instance last_proper : Proper ((≡) ==> (≡)) (@last A).
  Proof. induction 1 as [|????? []]; simpl; repeat constructor; auto. Qed.
  Global Instance resize_proper n : Proper ((≡) ==> (≡) ==> (≡@{list A})) (resize n).
  Proof.
    induction n; destruct 2; simpl; repeat (constructor || f_equiv); auto.
  Qed.

  Global Instance cons_equiv_inj : Inj2 (≡) (≡) (≡) (@cons A).
  Proof. inv 1; auto. Qed.

  Lemma nil_equiv_eq l : l ≡ [] ↔ l = [].
  Proof. split; [by inv 1|intros ->; constructor]. Qed.
  Lemma cons_equiv_eq l x k : l ≡ x :: k ↔ ∃ x' k', l = x' :: k' ∧ x' ≡ x ∧ k' ≡ k.
  Proof. split; [inv 1; naive_solver|naive_solver (by constructor)]. Qed.
  Lemma list_singleton_equiv_eq l x : l ≡ [x] ↔ ∃ x', l = [x'] ∧ x' ≡ x.
  Proof. rewrite cons_equiv_eq. setoid_rewrite nil_equiv_eq. naive_solver. Qed.
  Lemma app_equiv_eq l k1 k2 :
    l ≡ k1 ++ k2 ↔ ∃ k1' k2', l = k1' ++ k2' ∧ k1' ≡ k1 ∧ k2' ≡ k2.
  Proof.
    split; [|intros (?&?&->&?&?); by f_equiv].
    setoid_rewrite list_equiv_Forall2. rewrite Forall2_app_inv_r. naive_solver.
  Qed.

  Lemma equiv_Permutation l1 l2 l3 :
    l1 ≡ l2 → l2 ≡ₚ l3 → ∃ l2', l1 ≡ₚ l2' ∧ l2' ≡ l3.
  Proof.
    intros Hequiv Hperm. revert l1 Hequiv.
    induction Hperm as [|x l2 l3 _ IH|x y l2|l2 l3 l4 _ IH1 _ IH2]; intros l1.
    - intros ?. by exists l1.
    - intros (x'&l2'&->&?&(l2''&?&?)%IH)%cons_equiv_eq.
      exists (x' :: l2''). by repeat constructor.
    - intros (y'&?&->&?&(x'&l2'&->&?&?)%cons_equiv_eq)%cons_equiv_eq.
      exists (x' :: y' :: l2'). by repeat constructor.
    - intros (l2'&?&(l3'&?&?)%IH2)%IH1. exists l3'. split; [by etrans|done].
  Qed.

  Lemma Permutation_equiv `{!Equivalence (≡@{A})} l1 l2 l3 :
    l1 ≡ₚ l2 → l2 ≡ l3 → ∃ l2', l1 ≡ l2' ∧ l2' ≡ₚ l3.
  Proof.
    intros Hperm%symmetry Hequiv%symmetry.
    destruct (equiv_Permutation _ _  _ Hequiv Hperm) as (l2'&?&?).
    by exists l2'.
  Qed.
End setoid.

(** * Properties of the [find] function *)
Section find.
  Context {A} (P : A → Prop) `{∀ x, Decision (P x)}.

  Lemma list_find_Some l i x  :
    list_find P l = Some (i,x) ↔
      l !! i = Some x ∧ P x ∧ ∀ j y, l !! j = Some y → j < i → ¬P y.
  Proof.
    revert i. induction l as [|y l IH]; intros i; csimpl; [naive_solver|].
    case_decide.
    - split; [naive_solver lia|]. intros (Hi&HP&Hlt).
      destruct i as [|i]; simplify_eq/=; [done|].
      destruct (Hlt 0 y); naive_solver lia.
    - split.
      + intros ([i' x']&Hl&?)%fmap_Some; simplify_eq/=.
        apply IH in Hl as (?&?&Hlt). split_and!; [done..|].
        intros [|j] ?; naive_solver lia.
      + intros (?&?&Hlt). destruct i as [|i]; simplify_eq/=; [done|].
        rewrite (proj2 (IH i)); [done|]. split_and!; [done..|].
        intros j z ???. destruct (Hlt (S j) z); naive_solver lia.
  Qed.

  Lemma list_find_elem_of l x : x ∈ l → P x → is_Some (list_find P l).
  Proof.
    induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
    by destruct IH as [[i x'] ->]; [|exists (S i, x')].
  Qed.

  Lemma list_find_None l :
    list_find P l = None ↔ Forall (λ x, ¬P x) l.
  Proof.
    rewrite eq_None_not_Some, Forall_forall. split.
    - intros Hl x Hx HP. destruct Hl. eauto using list_find_elem_of.
    - intros HP [[i x] (?%elem_of_list_lookup_2&?&?)%list_find_Some]; naive_solver.
  Qed.

  Lemma list_find_app_None l1 l2 :
    list_find P (l1 ++ l2) = None ↔ list_find P l1 = None ∧ list_find P l2 = None.
  Proof. by rewrite !list_find_None, Forall_app. Qed.

  Lemma list_find_app_Some l1 l2 i x :
    list_find P (l1 ++ l2) = Some (i,x) ↔
      list_find P l1 = Some (i,x) ∨
      length l1 ≤ i ∧ list_find P l1 = None ∧ list_find P l2 = Some (i - length l1,x).
  Proof.
    split.
    - intros ([?|[??]]%lookup_app_Some&?&Hleast)%list_find_Some.
      + left. apply list_find_Some; eauto using lookup_app_l_Some.
      + right. split; [lia|]. split.
        { apply list_find_None, Forall_lookup. intros j z ??.
          assert (j < length l1) by eauto using lookup_lt_Some.
          naive_solver eauto using lookup_app_l_Some with lia. }
        apply list_find_Some. split_and!; [done..|].
        intros j z ??. eapply (Hleast (length l1 + j)); [|lia].
        by rewrite lookup_app_r, Nat.add_sub' by lia.
    - intros [(?&?&Hleast)%list_find_Some|(?&Hl1&(?&?&Hleast)%list_find_Some)].
      + apply list_find_Some. split_and!; [by auto using lookup_app_l_Some..|].
        assert (i < length l1) by eauto using lookup_lt_Some.
        intros j y ?%lookup_app_Some; naive_solver eauto with lia.
      + rewrite list_find_Some, lookup_app_Some. split_and!; [by auto..|].
        intros j y [?|?]%lookup_app_Some ?; [|naive_solver auto with lia].
        by eapply (Forall_lookup_1 (not ∘ P) l1); [by apply list_find_None|..].
  Qed.
  Lemma list_find_app_l l1 l2 i x:
    list_find P l1 = Some (i, x) → list_find P (l1 ++ l2) = Some (i, x).
  Proof. rewrite list_find_app_Some. auto. Qed.
  Lemma list_find_app_r l1 l2:
    list_find P l1 = None →
    list_find P (l1 ++ l2) = prod_map (λ x, x + length l1) id <$> list_find P l2.
  Proof.
    intros. apply option_eq; intros [j y]. rewrite list_find_app_Some. split.
    - intros [?|(?&?&->)]; naive_solver auto with f_equal lia.
    - intros ([??]&->&?)%fmap_Some; naive_solver auto with f_equal lia.
  Qed.

  Lemma list_find_insert_Some l i j x y :
    list_find P (<[i:=x]> l) = Some (j,y) ↔
      (j < i ∧ list_find P l = Some (j,y)) ∨
      (i = j ∧ x = y ∧ j < length l ∧ P x ∧ ∀ k z, l !! k = Some z → k < i → ¬P z) ∨
      (i < j ∧ ¬P x ∧ list_find P l = Some (j,y) ∧ ∀ z, l !! i = Some z → ¬P z) ∨
      (∃ z, i < j ∧ ¬P x ∧ P y ∧ P z ∧ l !! i = Some z ∧ l !! j = Some y ∧
            ∀ k z, l !! k = Some z → k ≠ i → k < j → ¬P z).
   Proof.
     split.
     - intros ([(->&->&?)|[??]]%list_lookup_insert_Some&?&Hleast)%list_find_Some.
       { right; left. split_and!; [done..|]. intros k z ??.
         apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
       assert (j < i ∨ i < j) as [?|?] by lia.
       { left. rewrite list_find_Some. split_and!; [by auto..|]. intros k z ??.
         apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
       right; right. assert (j < length l) by eauto using lookup_lt_Some.
       destruct (lookup_lt_is_Some_2 l i) as [z ?]; [lia|].
       destruct (decide (P z)).
       { right. exists z. split_and!; [done| |done..|].
         + apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
         + intros k z' ???.
           apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
       left. split_and!; [done|..|naive_solver].
       + apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
       + apply list_find_Some. split_and!; [by auto..|]. intros k z' ??.
         destruct (decide (k = i)) as [->|]; [naive_solver|].
         apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia.
     - intros [[? Hl]|[(->&->&?&?&Hleast)|[(?&?&Hl&Hnot)|(z&?&?&?&?&?&?&?Hleast)]]];
         apply list_find_Some.
       + apply list_find_Some in Hl as (?&?&Hleast).
         rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
         intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
       + rewrite list_lookup_insert by done. split_and!; [by auto..|].
         intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
       + apply list_find_Some in Hl as (?&?&Hleast).
         rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
         intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
       + rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
         intros k z' [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
  Qed.

  Lemma list_find_fmap {B : Type} (f : B → A) (l : list B) :
    list_find P (f <$> l) = prod_map id f <$> list_find (P ∘ f) l.
  Proof.
    induction l as [|x l IH]; [done|]; csimpl. (* csimpl re-folds fmap *)
    case_decide; [done|].
    rewrite IH. by destruct (list_find (P ∘ f) l).
  Qed.

  Lemma list_find_ext (Q : A → Prop) `{∀ x, Decision (Q x)} l :
    (∀ x, P x ↔ Q x) →
    list_find P l = list_find Q l.
  Proof.
    intros HPQ. induction l as [|x l IH]; simpl; [done|].
    by rewrite (decide_ext (P x) (Q x)), IH by done.
  Qed.
End find.

(** * Properties of the monadic operations *)
Lemma list_fmap_id {A} (l : list A) : id <$> l = l.
Proof. induction l; f_equal/=; auto. Qed.

Global Instance list_fmap_proper `{!Equiv A, !Equiv B} :
  Proper (((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{list B})) fmap.
Proof. induction 2; csimpl; constructor; auto. Qed.

Section fmap.
  Context {A B : Type} (f : A → B).
  Implicit Types l : list A.

  Lemma list_fmap_compose {C} (g : B → C) l : g ∘ f <$> l = g <$> (f <$> l).
  Proof. induction l; f_equal/=; auto. Qed.

  Lemma list_fmap_inj_1 f' l x :
    f <$> l = f' <$> l → x ∈ l → f x = f' x.
  Proof. intros Hf Hin. induction Hin; naive_solver. Qed.

  Definition fmap_nil : f <$> [] = [] := eq_refl.
  Definition fmap_cons x l : f <$> x :: l = f x :: (f <$> l) := eq_refl.

  Lemma list_fmap_singleton x : f <$> [x] = [f x].
  Proof. reflexivity. Qed.
  Lemma fmap_app l1 l2 : f <$> l1 ++ l2 = (f <$> l1) ++ (f <$> l2).
  Proof. by induction l1; f_equal/=. Qed.
  Lemma fmap_snoc l x : f <$> l ++ [x] = (f <$> l) ++ [f x].
  Proof. rewrite fmap_app, list_fmap_singleton. done. Qed.
  Lemma fmap_nil_inv k :  f <$> k = [] → k = [].
  Proof. by destruct k. Qed.
  Lemma fmap_cons_inv y l k :
    f <$> l = y :: k → ∃ x l', y = f x ∧ k = f <$> l' ∧ l = x :: l'.
  Proof. intros. destruct l; simplify_eq/=; eauto. Qed.
  Lemma fmap_app_inv l k1 k2 :
    f <$> l = k1 ++ k2 → ∃ l1 l2, k1 = f <$> l1 ∧ k2 = f <$> l2 ∧ l = l1 ++ l2.
  Proof.
    revert l. induction k1 as [|y k1 IH]; simpl; [intros l ?; by eexists [],l|].
    intros [|x l] ?; simplify_eq/=.
    destruct (IH l) as (l1&l2&->&->&->); [done|]. by exists (x :: l1), l2.
  Qed.
  Lemma fmap_option_list mx :
    f <$> (option_list mx) = option_list (f <$> mx).
  Proof. by destruct mx. Qed.

  Lemma list_fmap_alt l :
    f <$> l = omap (λ x, Some (f x)) l.
  Proof. induction l; simplify_eq/=; done. Qed.

  Lemma length_fmap l : length (f <$> l) = length l.
  Proof. by induction l; f_equal/=. Qed.
  Lemma fmap_reverse l : f <$> reverse l = reverse (f <$> l).
  Proof.
    induction l as [|?? IH]; csimpl; by rewrite ?reverse_cons, ?fmap_app, ?IH.
  Qed.
  Lemma fmap_tail l : f <$> tail l = tail (f <$> l).
  Proof. by destruct l. Qed.
  Lemma fmap_last l : last (f <$> l) = f <$> last l.
  Proof. induction l as [|? []]; simpl; auto. Qed.
  Lemma fmap_replicate n x :  f <$> replicate n x = replicate n (f x).
  Proof. by induction n; f_equal/=. Qed.
  Lemma fmap_take n l : f <$> take n l = take n (f <$> l).
  Proof. revert n. by induction l; intros [|?]; f_equal/=. Qed.
  Lemma fmap_drop n l : f <$> drop n l = drop n (f <$> l).
  Proof. revert n. by induction l; intros [|?]; f_equal/=. Qed.
  Lemma fmap_resize n x l : f <$> resize n x l = resize n (f x) (f <$> l).
  Proof.
    revert n. induction l; intros [|?]; f_equal/=; auto using fmap_replicate.
  Qed.
  Lemma const_fmap (l : list A) (y : B) :
    (∀ x, f x = y) → f <$> l = replicate (length l) y.
  Proof. intros; induction l; f_equal/=; auto. Qed.
  Lemma list_lookup_fmap l i : (f <$> l) !! i = f <$> (l !! i).
  Proof. revert i. induction l; intros [|n]; by try revert n. Qed.
  Lemma list_lookup_fmap_Some l i x :
    (f <$> l) !! i =  Some x ↔ ∃ y, l !! i = Some y ∧ x = f y.
  Proof. by rewrite list_lookup_fmap, fmap_Some. Qed.
  Lemma list_lookup_total_fmap `{!Inhabited A, !Inhabited B} l i :
    i < length l → (f <$> l) !!! i = f (l !!! i).
  Proof.
    intros [x Hx]%lookup_lt_is_Some_2.
    by rewrite !list_lookup_total_alt, list_lookup_fmap, Hx.
  Qed.
  Lemma list_lookup_fmap_inv l i x :
    (f <$> l) !! i = Some x → ∃ y, x = f y ∧ l !! i = Some y.
  Proof.
    intros Hi. rewrite list_lookup_fmap in Hi.
    destruct (l !! i) eqn:?; simplify_eq/=; eauto.
  Qed.
  Lemma list_fmap_insert l i x: f <$> <[i:=x]>l = <[i:=f x]>(f <$> l).
  Proof. revert i. by induction l; intros [|i]; f_equal/=. Qed.
  Lemma list_alter_fmap (g : A → A) (h : B → B) l i :
    Forall (λ x, f (g x) = h (f x)) l → f <$> alter g i l = alter h i (f <$> l).
  Proof. intros Hl. revert i. by induction Hl; intros [|i]; f_equal/=. Qed.
  Lemma list_fmap_delete l i : f <$> (delete i l) = delete i (f <$> l).
  Proof.
    revert i. induction l; intros i; destruct i; csimpl; eauto.
    naive_solver congruence.
  Qed.

  Lemma elem_of_list_fmap_1 l x : x ∈ l → f x ∈ f <$> l.
  Proof. induction 1; csimpl; rewrite elem_of_cons; intuition. Qed.
  Lemma elem_of_list_fmap_1_alt l x y : x ∈ l → y = f x → y ∈ f <$> l.
  Proof. intros. subst. by apply elem_of_list_fmap_1. Qed.
  Lemma elem_of_list_fmap_2 l x : x ∈ f <$> l → ∃ y, x = f y ∧ y ∈ l.
  Proof.
    induction l as [|y l IH]; simpl; inv 1.
    - exists y. split; [done | by left].
    - destruct IH as [z [??]]; [done|]. exists z. split; [done | by right].
  Qed.
  Lemma elem_of_list_fmap l x : x ∈ f <$> l ↔ ∃ y, x = f y ∧ y ∈ l.
  Proof.
    naive_solver eauto using elem_of_list_fmap_1_alt, elem_of_list_fmap_2.
  Qed.
  Lemma elem_of_list_fmap_2_inj `{!Inj (=) (=) f} l x : f x ∈ f <$> l → x ∈ l.
  Proof.
    intros (y, (E, I))%elem_of_list_fmap_2. by rewrite (inj f) in I.
  Qed.
  Lemma elem_of_list_fmap_inj `{!Inj (=) (=) f} l x : f x ∈ f <$> l ↔ x ∈ l.
  Proof.
    naive_solver eauto using elem_of_list_fmap_1, elem_of_list_fmap_2_inj.
  Qed.

  Lemma list_fmap_inj R1 R2 :
    Inj R1 R2 f → Inj (Forall2 R1) (Forall2 R2) (fmap f).
  Proof.
    intros ? l1. induction l1; intros [|??]; inv 1; constructor; auto.
  Qed.
  Global Instance list_fmap_eq_inj : Inj (=) (=) f → Inj (=@{list A}) (=) (fmap f).
  Proof.
    intros ?%list_fmap_inj ?? ?%list_eq_Forall2%(inj _). by apply list_eq_Forall2.
  Qed.
  Global Instance list_fmap_equiv_inj `{!Equiv A, !Equiv B} :
    Inj (≡) (≡) f → Inj (≡@{list A}) (≡) (fmap f).
  Proof.
    intros ?%list_fmap_inj ?? ?%list_equiv_Forall2%(inj _).
    by apply list_equiv_Forall2.
  Qed.

  (** A version of [NoDup_fmap_2] that does not require [f] to be injective for
      *all* inputs. *)
  Lemma NoDup_fmap_2_strong l :
    (∀ x y, x ∈ l → y ∈ l → f x = f y → x = y) →
    NoDup l →
    NoDup (f <$> l).
  Proof.
    intros Hinj. induction 1 as [|x l ?? IH]; simpl; constructor.
    - intros [y [Hxy ?]]%elem_of_list_fmap.
      apply Hinj in Hxy; [by subst|by constructor..].
    - apply IH. clear- Hinj.
      intros x' y Hx' Hy. apply Hinj; by constructor.
  Qed.

  Lemma NoDup_fmap_1 l : NoDup (f <$> l) → NoDup l.
  Proof.
    induction l; simpl; inv 1; constructor; auto.
    rewrite elem_of_list_fmap in *. naive_solver.
  Qed.
  Lemma NoDup_fmap_2 `{!Inj (=) (=) f} l : NoDup l → NoDup (f <$> l).
  Proof. apply NoDup_fmap_2_strong. intros ?? _ _. apply (inj f). Qed.
  Lemma NoDup_fmap `{!Inj (=) (=) f} l : NoDup (f <$> l) ↔ NoDup l.
  Proof. split; auto using NoDup_fmap_1, NoDup_fmap_2. Qed.

  Global Instance fmap_sublist: Proper (sublist ==> sublist) (fmap f).
  Proof. induction 1; simpl; econstructor; eauto. Qed.
  Global Instance fmap_submseteq: Proper (submseteq ==> submseteq) (fmap f).
  Proof. induction 1; simpl; econstructor; eauto. Qed.
  Global Instance fmap_Permutation: Proper ((≡ₚ) ==> (≡ₚ)) (fmap f).
  Proof. induction 1; simpl; econstructor; eauto. Qed.

  Lemma Forall_fmap_ext_1 (g : A → B) (l : list A) :
    Forall (λ x, f x = g x) l → fmap f l = fmap g l.
  Proof. by induction 1; f_equal/=. Qed.
  Lemma Forall_fmap_ext (g : A → B) (l : list A) :
    Forall (λ x, f x = g x) l ↔ fmap f l = fmap g l.
  Proof.
    split; [auto using Forall_fmap_ext_1|].
    induction l; simpl; constructor; simplify_eq; auto.
  Qed.
  Lemma Forall_fmap (P : B → Prop) l : Forall P (f <$> l) ↔ Forall (P ∘ f) l.
  Proof. split; induction l; inv 1; constructor; auto. Qed.
  Lemma Exists_fmap (P : B → Prop) l : Exists P (f <$> l) ↔ Exists (P ∘ f) l.
  Proof. split; induction l; inv 1; constructor; by auto. Qed.

  Lemma Forall2_fmap_l {C} (P : B → C → Prop) l k :
    Forall2 P (f <$> l) k ↔ Forall2 (P ∘ f) l k.
  Proof.
    split; revert k; induction l; inv 1; constructor; auto.
  Qed.
  Lemma Forall2_fmap_r {C} (P : C → B → Prop) k l :
    Forall2 P k (f <$> l) ↔ Forall2 (λ x, P x ∘ f) k l.
  Proof.
    split; revert k; induction l; inv 1; constructor; auto.
  Qed.
  Lemma Forall2_fmap_1 {C D} (g : C → D) (P : B → D → Prop) l k :
    Forall2 P (f <$> l) (g <$> k) → Forall2 (λ x1 x2, P (f x1) (g x2)) l k.
  Proof. revert k; induction l; intros [|??]; inv 1; auto. Qed.
  Lemma Forall2_fmap_2 {C D} (g : C → D) (P : B → D → Prop) l k :
    Forall2 (λ x1 x2, P (f x1) (g x2)) l k → Forall2 P (f <$> l) (g <$> k).
  Proof. induction 1; csimpl; auto. Qed.
  Lemma Forall2_fmap {C D} (g : C → D) (P : B → D → Prop) l k :
    Forall2 P (f <$> l) (g <$> k) ↔ Forall2 (λ x1 x2, P (f x1) (g x2)) l k.
  Proof. split; auto using Forall2_fmap_1, Forall2_fmap_2. Qed.

  Lemma list_fmap_bind {C} (g : B → list C) l : (f <$> l) ≫= g = l ≫= g ∘ f.
  Proof. by induction l; f_equal/=. Qed.
End fmap.

Section ext.
  Context {A B : Type}.
  Implicit Types l : list A.

  Lemma list_fmap_ext (f g : A → B) l :
    (∀ i x, l !! i = Some x → f x = g x) → f <$> l = g <$> l.
  Proof.
    intros Hfg. apply list_eq; intros i. rewrite !list_lookup_fmap.
    destruct (l !! i) eqn:?; f_equal/=; eauto.
  Qed.
  Lemma list_fmap_equiv_ext `{!Equiv B} (f g : A → B) l :
    (∀ i x, l !! i = Some x → f x ≡ g x) → f <$> l ≡ g <$> l.
  Proof.
    intros Hl. apply list_equiv_lookup; intros i. rewrite !list_lookup_fmap.
    destruct (l !! i) eqn:?; simpl; constructor; eauto.
  Qed.
End ext.

Lemma list_alter_fmap_mono {A} (f : A → A) (g : A → A) l i :
  Forall (λ x, f (g x) = g (f x)) l → f <$> alter g i l = alter g i (f <$> l).
Proof. auto using list_alter_fmap. Qed.
Lemma NoDup_fmap_fst {A B} (l : list (A * B)) :
  (∀ x y1 y2, (x,y1) ∈ l → (x,y2) ∈ l → y1 = y2) → NoDup l → NoDup (l.*1).
Proof.
  intros Hunique. induction 1 as [|[x1 y1] l Hin Hnodup IH]; csimpl; constructor.
  - rewrite elem_of_list_fmap.
    intros [[x2 y2] [??]]; simpl in *; subst. destruct Hin.
    rewrite (Hunique x2 y1 y2); rewrite ?elem_of_cons; auto.
  - apply IH. intros. eapply Hunique; rewrite ?elem_of_cons; eauto.
Qed.

Global Instance list_omap_proper `{!Equiv A, !Equiv B} :
  Proper (((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{list B})) omap.
Proof.
  intros f1 f2 Hf. induction 1 as [|x1 x2 l1 l2 Hx Hl]; csimpl; [constructor|].
  destruct (Hf _ _ Hx); by repeat f_equiv.
Qed.

Section omap.
  Context {A B : Type} (f : A → option B).
  Implicit Types l : list A.

  Lemma list_fmap_omap {C} (g : B → C) l :
    g <$> omap f l = omap (λ x, g <$> (f x)) l.
  Proof.
    induction l as [|x y IH]; [done|]. csimpl.
    destruct (f x); csimpl; [|done]. by f_equal.
  Qed.
  Lemma list_omap_ext {A'} (g : A' → option B) l1 (l2 : list A') :
    Forall2 (λ a b, f a = g b) l1 l2 →
    omap f l1 = omap g l2.
  Proof.
    induction 1 as [|x y l l' Hfg ? IH]; [done|].
    csimpl. rewrite Hfg. destruct (g y); [|done]. by f_equal.
  Qed.
  Lemma elem_of_list_omap l y : y ∈ omap f l ↔ ∃ x, x ∈ l ∧ f x = Some y.
  Proof.
    split.
    - induction l as [|x l]; csimpl; repeat case_match;
        repeat (setoid_rewrite elem_of_nil || setoid_rewrite elem_of_cons);
        naive_solver.
    - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
        simplify_eq; try constructor; auto.
  Qed.
  Global Instance omap_Permutation : Proper ((≡ₚ) ==> (≡ₚ)) (omap f).
  Proof. induction 1; simpl; repeat case_match; econstructor; eauto. Qed.

  Lemma omap_app l1 l2 :
    omap f (l1 ++ l2) = omap f l1 ++ omap f l2.
  Proof. induction l1; csimpl; repeat case_match; naive_solver congruence. Qed.
  Lemma omap_option_list mx :
    omap f (option_list mx) = option_list (mx ≫= f).
  Proof. by destruct mx. Qed.
End omap.

Global Instance list_bind_proper `{!Equiv A, !Equiv B} :
  Proper (((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{list B})) mbind.
Proof. induction 2; csimpl; constructor || f_equiv; auto. Qed.

Section bind.
  Context {A B : Type} (f : A → list B).

  Lemma list_bind_ext (g : A → list B) l1 l2 :
    (∀ x, f x = g x) → l1 = l2 → l1 ≫= f = l2 ≫= g.
  Proof. intros ? <-. by induction l1; f_equal/=. Qed.
  Lemma Forall_bind_ext (g : A → list B) (l : list A) :
    Forall (λ x, f x = g x) l → l ≫= f = l ≫= g.
  Proof. by induction 1; f_equal/=. Qed.
  Global Instance bind_sublist: Proper (sublist ==> sublist) (mbind f).
  Proof.
    induction 1; simpl; auto;
      [by apply sublist_app|by apply sublist_inserts_l].
  Qed.
  Global Instance bind_submseteq: Proper (submseteq ==> submseteq) (mbind f).
  Proof.
    induction 1; csimpl; auto.
    - by apply submseteq_app.
    - by rewrite !(assoc_L (++)), (comm (++) (f _)).
    - by apply submseteq_inserts_l.
    - etrans; eauto.
  Qed.
  Global Instance bind_Permutation: Proper ((≡ₚ) ==> (≡ₚ)) (mbind f).
  Proof.
    induction 1; csimpl; auto.
    - by f_equiv.
    - by rewrite !(assoc_L (++)), (comm (++) (f _)).
    - etrans; eauto.
  Qed.
  Lemma bind_cons x l : (x :: l) ≫= f = f x ++ l ≫= f.
  Proof. done. Qed.
  Lemma bind_singleton x : [x] ≫= f = f x.
  Proof. csimpl. by rewrite (right_id_L _ (++)). Qed.
  Lemma bind_app l1 l2 : (l1 ++ l2) ≫= f = (l1 ≫= f) ++ (l2 ≫= f).
  Proof. by induction l1; csimpl; rewrite <-?(assoc_L (++)); f_equal. Qed.
  Lemma elem_of_list_bind (x : B) (l : list A) :
    x ∈ l ≫= f ↔ ∃ y, x ∈ f y ∧ y ∈ l.
  Proof.
    split.
    - induction l as [|y l IH]; csimpl; [inv 1|].
      rewrite elem_of_app. intros [?|?].
      + exists y. split; [done | by left].
      + destruct IH as [z [??]]; [done|]. exists z. split; [done | by right].
    - intros [y [Hx Hy]]. induction Hy; csimpl; rewrite elem_of_app; intuition.
  Qed.
  Lemma Forall_bind (P : B → Prop) l :
    Forall P (l ≫= f) ↔ Forall (Forall P ∘ f) l.
  Proof.
    split.
    - induction l; csimpl; rewrite ?Forall_app; constructor; csimpl; intuition.
    - induction 1; csimpl; rewrite ?Forall_app; auto.
  Qed.
  Lemma Forall2_bind {C D} (g : C → list D) (P : B → D → Prop) l1 l2 :
    Forall2 (λ x1 x2, Forall2 P (f x1) (g x2)) l1 l2 →
    Forall2 P (l1 ≫= f) (l2 ≫= g).
  Proof. induction 1; csimpl; auto using Forall2_app. Qed.
  Lemma NoDup_bind l :
    (∀ x1 x2 y, x1 ∈ l → x2 ∈ l → y ∈ f x1 → y ∈ f x2 → x1 = x2) →
    (∀ x, x ∈ l → NoDup (f x)) → NoDup l → NoDup (l ≫= f).
  Proof.
    intros Hinj Hf. induction 1 as [|x l ?? IH]; csimpl; [constructor|].
    apply NoDup_app. split_and!.
    - eauto 10 using elem_of_list_here.
    - intros y ? (x'&?&?)%elem_of_list_bind.
      destruct (Hinj x x' y); auto using elem_of_list_here, elem_of_list_further.
    - eauto 10 using elem_of_list_further.
  Qed.
End bind.

Global Instance list_join_proper `{!Equiv A} :
  Proper ((≡) ==> (≡@{list A})) mjoin.
Proof. induction 1; simpl; [constructor|solve_proper]. Qed.

Section ret_join.
  Context {A : Type}.

  Lemma list_join_bind (ls : list (list A)) : mjoin ls = ls ≫= id.
  Proof. by induction ls; f_equal/=. Qed.
  Global Instance join_Permutation : Proper ((≡ₚ@{list A}) ==> (≡ₚ)) mjoin.
  Proof. intros ?? E. by rewrite !list_join_bind, E. Qed.
  Lemma elem_of_list_ret (x y : A) : x ∈ @mret list _ A y ↔ x = y.
  Proof. apply elem_of_list_singleton. Qed.
  Lemma elem_of_list_join (x : A) (ls : list (list A)) :
    x ∈ mjoin ls ↔ ∃ l : list A, x ∈ l ∧ l ∈ ls.
  Proof. by rewrite list_join_bind, elem_of_list_bind. Qed.
  Lemma join_nil (ls : list (list A)) : mjoin ls = [] ↔ Forall (.= []) ls.
  Proof.
    split; [|by induction 1 as [|[|??] ?]].
    by induction ls as [|[|??] ?]; constructor; auto.
  Qed.
  Lemma join_nil_1 (ls : list (list A)) : mjoin ls = [] → Forall (.= []) ls.
  Proof. by rewrite join_nil. Qed.
  Lemma join_nil_2 (ls : list (list A)) : Forall (.= []) ls → mjoin ls = [].
  Proof. by rewrite join_nil. Qed.

  Lemma join_app (l1 l2 : list (list A)) :
    mjoin (l1 ++ l2) = mjoin l1 ++ mjoin l2.
  Proof.
    induction l1 as [|x l1 IH]; simpl; [done|]. by rewrite <-(assoc_L _ _), IH.
  Qed.

  Lemma Forall_join (P : A → Prop) (ls: list (list A)) :
    Forall (Forall P) ls → Forall P (mjoin ls).
  Proof. induction 1; simpl; auto using Forall_app_2. Qed.
  Lemma Forall2_join {B} (P : A → B → Prop) ls1 ls2 :
    Forall2 (Forall2 P) ls1 ls2 → Forall2 P (mjoin ls1) (mjoin ls2).
  Proof. induction 1; simpl; auto using Forall2_app. Qed.
End ret_join.

Global Instance mapM_proper `{!Equiv A, !Equiv B} :
  Proper (((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{option (list B)})) mapM.
Proof.
  induction 2; csimpl; repeat (f_equiv || constructor || intro || auto).
Qed.

Section mapM.
  Context {A B : Type} (f : A → option B).

  Lemma mapM_ext (g : A → option B) l : (∀ x, f x = g x) → mapM f l = mapM g l.
  Proof. intros Hfg. by induction l as [|?? IHl]; simpl; rewrite ?Hfg, ?IHl. Qed.

  Lemma Forall2_mapM_ext (g : A → option B) l k :
    Forall2 (λ x y, f x = g y) l k → mapM f l = mapM g k.
  Proof. induction 1 as [|???? Hfg ? IH]; simpl; [done|]. by rewrite Hfg, IH. Qed.
  Lemma Forall_mapM_ext (g : A → option B) l :
    Forall (λ x, f x = g x) l → mapM f l = mapM g l.
  Proof. induction 1 as [|?? Hfg ? IH]; simpl; [done|]. by rewrite Hfg, IH. Qed.

  Lemma mapM_Some_1 l k : mapM f l = Some k → Forall2 (λ x y, f x = Some y) l k.
  Proof.
    revert k. induction l as [|x l]; intros [|y k]; simpl; try done.
    - destruct (f x); simpl; [|discriminate]. by destruct (mapM f l).
    - destruct (f x) eqn:?; intros; simplify_option_eq; auto.
  Qed.
  Lemma mapM_Some_2 l k : Forall2 (λ x y, f x = Some y) l k → mapM f l = Some k.
  Proof.
    induction 1 as [|???? Hf ? IH]; simpl; [done |].
    rewrite Hf. simpl. by rewrite IH.
  Qed.
  Lemma mapM_Some l k : mapM f l = Some k ↔ Forall2 (λ x y, f x = Some y) l k.
  Proof. split; auto using mapM_Some_1, mapM_Some_2. Qed.
  Lemma length_mapM l k : mapM f l = Some k → length l = length k.
  Proof. intros. by eapply Forall2_length, mapM_Some_1. Qed.
  Lemma mapM_None_1 l : mapM f l = None → Exists (λ x, f x = None) l.
  Proof.
    induction l as [|x l IH]; simpl; [done|].
    destruct (f x) eqn:?; simpl; eauto. by destruct (mapM f l); eauto.
  Qed.
  Lemma mapM_None_2 l : Exists (λ x, f x = None) l → mapM f l = None.
  Proof.
    induction 1 as [x l Hx|x l ? IH]; simpl; [by rewrite Hx|].
    by destruct (f x); simpl; rewrite ?IH.
  Qed.
  Lemma mapM_None l : mapM f l = None ↔ Exists (λ x, f x = None) l.
  Proof. split; auto using mapM_None_1, mapM_None_2. Qed.
  Lemma mapM_is_Some_1 l : is_Some (mapM f l) → Forall (is_Some ∘ f) l.
  Proof.
    unfold compose. setoid_rewrite <-not_eq_None_Some.
    rewrite mapM_None. apply (not_Exists_Forall _).
  Qed.
  Lemma mapM_is_Some_2 l : Forall (is_Some ∘ f) l → is_Some (mapM f l).
  Proof.
    unfold compose. setoid_rewrite <-not_eq_None_Some.
    rewrite mapM_None. apply (Forall_not_Exists _).
  Qed.
  Lemma mapM_is_Some l : is_Some (mapM f l) ↔ Forall (is_Some ∘ f) l.
  Proof. split; auto using mapM_is_Some_1, mapM_is_Some_2. Qed.

  Lemma mapM_fmap_Forall_Some (g : B → A) (l : list B) :
    Forall (λ x, f (g x) = Some x) l → mapM f (g <$> l) = Some l.
  Proof. by induction 1; simpl; simplify_option_eq. Qed.
  Lemma mapM_fmap_Some (g : B → A) (l : list B) :
    (∀ x, f (g x) = Some x) → mapM f (g <$> l) = Some l.
  Proof. intros. by apply mapM_fmap_Forall_Some, Forall_true. Qed.

  Lemma mapM_fmap_Forall2_Some_inv (g : B → A) (l : list A) (k : list B) :
    mapM f l = Some k → Forall2 (λ x y, f x = Some y → g y = x) l k → g <$> k = l.
  Proof. induction 2; simplify_option_eq; naive_solver. Qed.
  Lemma mapM_fmap_Some_inv (g : B → A) (l : list A) (k : list B) :
    mapM f l = Some k → (∀ x y, f x = Some y → g y = x) → g <$> k = l.
  Proof. eauto using mapM_fmap_Forall2_Some_inv, Forall2_true, length_mapM. Qed.
End mapM.

Lemma imap_const {A B} (f : A → B) l : imap (const f) l = f <$> l.
Proof. induction l; f_equal/=; auto. Qed.

Global Instance imap_proper `{!Equiv A, !Equiv B} :
  Proper (pointwise_relation _ ((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{list B}))
         imap.
Proof.
  intros f f' Hf l l' Hl. revert f f' Hf.
  induction Hl as [|x1 x2 l1 l2 ?? IH]; intros f f' Hf; simpl; constructor.
  - by apply Hf.
  - apply IH. intros i y y' ?; simpl. by apply Hf.
Qed.

Section imap.
  Context {A B : Type} (f : nat → A → B).

  Lemma imap_ext g l :
    (∀ i x, l !! i = Some x → f i x = g i x) → imap f l = imap g l.
  Proof. revert f g; induction l as [|x l IH]; intros; f_equal/=; eauto. Qed.

  Lemma imap_nil : imap f [] = [].
  Proof. done. Qed.
  Lemma imap_app l1 l2 :
    imap f (l1 ++ l2) = imap f l1 ++ imap (λ n, f (length l1 + n)) l2.
  Proof.
    revert f. induction l1 as [|x l1 IH]; intros f; f_equal/=.
    by rewrite IH.
  Qed.
  Lemma imap_cons x l : imap f (x :: l) = f 0 x :: imap (f ∘ S) l.
  Proof. done. Qed.

  Lemma imap_fmap {C} (g : C → A) l : imap f (g <$> l) = imap (λ n, f n ∘ g) l.
  Proof. revert f. induction l; intros; f_equal/=; eauto. Qed.
  Lemma fmap_imap {C} (g : B → C) l : g <$> imap f l = imap (λ n, g ∘ f n) l.
  Proof. revert f. induction l; intros; f_equal/=; eauto. Qed.

  Lemma list_lookup_imap l i : imap f l !! i = f i <$> l !! i.
  Proof.
    revert f i. induction l as [|x l IH]; intros f [|i]; f_equal/=; auto.
    by rewrite IH.
  Qed.
  Lemma list_lookup_imap_Some l i x :
    imap f l !! i = Some x ↔ ∃ y, l !! i = Some y ∧ x = f i y.
  Proof. by rewrite list_lookup_imap, fmap_Some. Qed.
  Lemma list_lookup_total_imap `{!Inhabited A, !Inhabited B} l i :
    i < length l → imap f l !!! i = f i (l !!! i).
  Proof.
    intros [x Hx]%lookup_lt_is_Some_2.
    by rewrite !list_lookup_total_alt, list_lookup_imap, Hx.
  Qed.

  Lemma length_imap l : length (imap f l) = length l.
  Proof. revert f. induction l; simpl; eauto. Qed.

  Lemma elem_of_lookup_imap_1 l x :
    x ∈ imap f l → ∃ i y, x = f i y ∧ l !! i = Some y.
  Proof.
    intros [i Hin]%elem_of_list_lookup. rewrite list_lookup_imap in Hin.
    simplify_option_eq; naive_solver.
  Qed.
  Lemma elem_of_lookup_imap_2 l x i : l !! i = Some x → f i x ∈ imap f l.
  Proof.
    intros Hl. rewrite elem_of_list_lookup.
    exists i. by rewrite list_lookup_imap, Hl.
  Qed.
  Lemma elem_of_lookup_imap l x :
    x ∈ imap f l ↔ ∃ i y, x = f i y ∧ l !! i = Some y.
  Proof. naive_solver eauto using elem_of_lookup_imap_1, elem_of_lookup_imap_2. Qed.
End imap.

(** ** Properties of the [permutations] function *)
Section permutations.
  Context {A : Type}.
  Implicit Types x y z : A.
  Implicit Types l : list A.

  Lemma interleave_cons x l : x :: l ∈ interleave x l.
  Proof. destruct l; simpl; rewrite elem_of_cons; auto. Qed.
  Lemma interleave_Permutation x l l' : l' ∈ interleave x l → l' ≡ₚ x :: l.
  Proof.
    revert l'. induction l as [|y l IH]; intros l'; simpl.
    - rewrite elem_of_list_singleton. by intros ->.
    - rewrite elem_of_cons, elem_of_list_fmap. intros [->|[? [-> H]]]; [done|].
      rewrite (IH _ H). constructor.
  Qed.
  Lemma permutations_refl l : l ∈ permutations l.
  Proof.
    induction l; simpl; [by apply elem_of_list_singleton|].
    apply elem_of_list_bind. eauto using interleave_cons.
  Qed.
  Lemma permutations_skip x l l' :
    l ∈ permutations l' → x :: l ∈ permutations (x :: l').
  Proof. intro. apply elem_of_list_bind; eauto using interleave_cons. Qed.
  Lemma permutations_swap x y l : y :: x :: l ∈ permutations (x :: y :: l).
  Proof.
    simpl. apply elem_of_list_bind. exists (y :: l). split; simpl.
    - destruct l; csimpl; rewrite !elem_of_cons; auto.
    - apply elem_of_list_bind. simpl.
      eauto using interleave_cons, permutations_refl.
  Qed.
  Lemma permutations_nil l : l ∈ permutations [] ↔ l = [].
  Proof. simpl. by rewrite elem_of_list_singleton. Qed.
  Lemma interleave_interleave_toggle x1 x2 l1 l2 l3 :
    l1 ∈ interleave x1 l2 → l2 ∈ interleave x2 l3 → ∃ l4,
      l1 ∈ interleave x2 l4 ∧ l4 ∈ interleave x1 l3.
  Proof.
    revert l1 l2. induction l3 as [|y l3 IH]; intros l1 l2; simpl.
    { rewrite !elem_of_list_singleton. intros ? ->. exists [x1].
      change (interleave x2 [x1]) with ([[x2; x1]] ++ [[x1; x2]]).
      by rewrite (comm (++)), elem_of_list_singleton. }
    rewrite elem_of_cons, elem_of_list_fmap.
    intros Hl1 [? | [l2' [??]]]; simplify_eq/=.
    - rewrite !elem_of_cons, elem_of_list_fmap in Hl1.
      destruct Hl1 as [? | [? | [l4 [??]]]]; subst.
      + exists (x1 :: y :: l3). csimpl. rewrite !elem_of_cons. tauto.
      + exists (x1 :: y :: l3). csimpl. rewrite !elem_of_cons. tauto.
      + exists l4. simpl. rewrite elem_of_cons. auto using interleave_cons.
    - rewrite elem_of_cons, elem_of_list_fmap in Hl1.
      destruct Hl1 as [? | [l1' [??]]]; subst.
      + exists (x1 :: y :: l3). csimpl.
        rewrite !elem_of_cons, !elem_of_list_fmap.
        split; [| by auto]. right. right. exists (y :: l2').
        rewrite elem_of_list_fmap. naive_solver.
      + destruct (IH l1' l2') as [l4 [??]]; auto. exists (y :: l4). simpl.
        rewrite !elem_of_cons, !elem_of_list_fmap. naive_solver.
  Qed.
  Lemma permutations_interleave_toggle x l1 l2 l3 :
    l1 ∈ permutations l2 → l2 ∈ interleave x l3 → ∃ l4,
      l1 ∈ interleave x l4 ∧ l4 ∈ permutations l3.
  Proof.
    revert l1 l2. induction l3 as [|y l3 IH]; intros l1 l2; simpl.
    { rewrite elem_of_list_singleton. intros Hl1 ->. eexists [].
      by rewrite elem_of_list_singleton. }
    rewrite elem_of_cons, elem_of_list_fmap.
    intros Hl1 [? | [l2' [? Hl2']]]; simplify_eq/=.
    - rewrite elem_of_list_bind in Hl1.
      destruct Hl1 as [l1' [??]]. by exists l1'.
    - rewrite elem_of_list_bind in Hl1. setoid_rewrite elem_of_list_bind.
      destruct Hl1 as [l1' [??]]. destruct (IH l1' l2') as (l1''&?&?); auto.
      destruct (interleave_interleave_toggle y x l1 l1' l1'') as (?&?&?); eauto.
  Qed.
  Lemma permutations_trans l1 l2 l3 :
    l1 ∈ permutations l2 → l2 ∈ permutations l3 → l1 ∈ permutations l3.
  Proof.
    revert l1 l2. induction l3 as [|x l3 IH]; intros l1 l2; simpl.
    - rewrite !elem_of_list_singleton. intros Hl1 ->; simpl in *.
      by rewrite elem_of_list_singleton in Hl1.
    - rewrite !elem_of_list_bind. intros Hl1 [l2' [Hl2 Hl2']].
      destruct (permutations_interleave_toggle x l1 l2 l2') as [? [??]]; eauto.
  Qed.
  Lemma permutations_Permutation l l' : l' ∈ permutations l ↔ l ≡ₚ l'.
  Proof.
    split.
    - revert l'. induction l; simpl; intros l''.
      + rewrite elem_of_list_singleton. by intros ->.
      + rewrite elem_of_list_bind. intros [l' [Hl'' ?]].
        rewrite (interleave_Permutation _ _ _ Hl''). constructor; auto.
    - induction 1; eauto using permutations_refl,
        permutations_skip, permutations_swap, permutations_trans.
  Qed.
End permutations.

(** ** Properties of the folding functions *)
(** Note that [foldr] has much better support, so when in doubt, it should be
preferred over [foldl]. *)
Definition foldr_app := @fold_right_app.

Lemma foldr_cons {A B} (f : B → A → A) (a : A) l x :
  foldr f a (x :: l) = f x (foldr f a l).
Proof. done. Qed.
Lemma foldr_snoc {A B} (f : B → A → A) (a : A) l x :
  foldr f a (l ++ [x]) = foldr f (f x a) l.
Proof. rewrite foldr_app. done. Qed.

Lemma foldr_fmap {A B C} (f : B → A → A) x (l : list C) g :
  foldr f x (g <$> l) = foldr (λ b a, f (g b) a) x l.
Proof. induction l; f_equal/=; auto. Qed.
Lemma foldr_ext {A B} (f1 f2 : B → A → A) x1 x2 l1 l2 :
  (∀ b a, f1 b a = f2 b a) → l1 = l2 → x1 = x2 → foldr f1 x1 l1 = foldr f2 x2 l2.
Proof. intros Hf -> ->. induction l2 as [|x l2 IH]; f_equal/=; by rewrite Hf, IH. Qed.

Lemma foldr_permutation {A B} (R : relation B) `{!PreOrder R}
    (f : A → B → B) (b : B) `{Hf : !∀ x, Proper (R ==> R) (f x)} (l1 l2 : list A) :
  (∀ j1 a1 j2 a2 b,
    j1 ≠ j2 → l1 !! j1 = Some a1 → l1 !! j2 = Some a2 →
    R (f a1 (f a2 b)) (f a2 (f a1 b))) →
  l1 ≡ₚ l2 → R (foldr f b l1) (foldr f b l2).
Proof.
  intros Hf'. induction 1 as [|x l1 l2 _ IH|x y l|l1 l2 l3 Hl12 IH _ IH']; simpl.
  - done.
  - apply Hf, IH; eauto.
  - apply (Hf' 0 _ 1); eauto.
  - etrans; [eapply IH, Hf'|].
    apply IH'; intros j1 a1 j2 a2 b' ???.
    symmetry in Hl12; apply Permutation_inj in Hl12 as [_ (g&?&Hg)].
    apply (Hf' (g j1) _ (g j2)); [naive_solver|by rewrite <-Hg..].
Qed.

Lemma foldr_permutation_proper {A B} (R : relation B) `{!PreOrder R}
    (f : A → B → B) (b : B) `{!∀ x, Proper (R ==> R) (f x)}
    (Hf : ∀ a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) :
  Proper ((≡ₚ) ==> R) (foldr f b).
Proof. intros l1 l2 Hl. apply foldr_permutation; auto. Qed.
Global Instance foldr_permutation_proper' {A} (R : relation A) `{!PreOrder R}
    (f : A → A → A) (a : A) `{!∀ a, Proper (R ==> R) (f a), !Assoc R f, !Comm R f} :
  Proper ((≡ₚ) ==> R) (foldr f a).
Proof.
  apply (foldr_permutation_proper R f); [solve_proper|].
  assert (Proper (R ==> R ==> R) f).
  { intros a1 a2 Ha b1 b2 Hb. by rewrite Hb, (comm f a1), Ha, (comm f). }
  intros a1 a2 b.
  by rewrite (assoc f), (comm f _ b), (assoc f), (comm f b), (comm f _ a2).
Qed.

Lemma foldr_cons_permute_strong {A B} (R : relation B) `{!PreOrder R}
    (f : A → B → B) (b : B) `{!∀ a, Proper (R ==> R) (f a)} x l :
  (∀ j1 a1 j2 a2 b,
    j1 ≠ j2 → (x :: l) !! j1 = Some a1 → (x :: l) !! j2 = Some a2 →
    R (f a1 (f a2 b)) (f a2 (f a1 b))) →
  R (foldr f b (x :: l)) (foldr f (f x b) l).
Proof.
  intros. rewrite <-foldr_snoc.
  apply (foldr_permutation _ f b); [done|]. by rewrite Permutation_app_comm.
Qed.
Lemma foldr_cons_permute {A} (f : A → A → A) (a : A) x l :
  Assoc (=) f →
  Comm (=) f →
  foldr f a (x :: l) = foldr f (f x a) l.
Proof.
  intros. apply (foldr_cons_permute_strong (=) f a).
  intros j1 a1 j2 a2 b _ _ _. by rewrite !(assoc_L f), (comm_L f a1).
Qed.

(** The following lemma shows that folding over a list twice (using the result
of the first fold as input for the second fold) is equivalent to folding over
the list once, *if* the function is idempotent for the elements of the list
and does not care about the order in which elements are processed. *)
Lemma foldr_idemp_strong {A B} (R : relation B) `{!PreOrder R}
    (f : A → B → B) (b : B) `{!∀ x, Proper (R ==> R) (f x)} (l : list A) :
  (∀ j a b,
    (** This is morally idempotence for elements of [l] *)
    l !! j = Some a →
    R (f a (f a b)) (f a b)) →
  (∀ j1 a1 j2 a2 b,
    (** This is morally commutativity + associativity for elements of [l] *)
    j1 ≠ j2 → l !! j1 = Some a1 → l !! j2 = Some a2 →
    R (f a1 (f a2 b)) (f a2 (f a1 b))) →
  R (foldr f (foldr f b l) l) (foldr f b l).
Proof.
  intros Hfidem Hfcomm. induction l as [|x l IH]; simpl; [done|].
  trans (f x (f x (foldr f (foldr f b l) l))).
  { f_equiv. rewrite <-foldr_snoc, <-foldr_cons.
    apply (foldr_permutation (flip R) f).
    - solve_proper.
    - intros j1 a1 j2 a2 b' ???. by apply (Hfcomm j2 _ j1).
    - by rewrite <-Permutation_cons_append. }
  rewrite <-foldr_cons.
  trans (f x (f x (foldr f b l))); [|by apply (Hfidem 0)].
  simpl. do 2 f_equiv. apply IH.
  - intros j a b' ?. by apply (Hfidem (S j)).
  - intros j1 a1 j2 a2 b' ???. apply (Hfcomm (S j1) _ (S j2)); auto with lia.
Qed.
Lemma foldr_idemp {A} (f : A → A → A) (a : A) (l : list A) :
  IdemP (=) f →
  Assoc (=) f →
  Comm (=) f →
  foldr f (foldr f a l) l = foldr f a l.
Proof.
  intros. apply (foldr_idemp_strong (=) f a).
  - intros j a1 a2 _. by rewrite (assoc_L f), (idemp f).
  - intros x1 a1 x2 a2 a3 _ _ _. by rewrite !(assoc_L f), (comm_L f a1).
Qed.

Lemma foldr_comm_acc_strong {A B} (R : relation B) `{!PreOrder R}
    (f : A → B → B) (g : B → B) b l :
  (∀ x, Proper (R ==> R) (f x)) →
  (∀ x y, x ∈ l → R (f x (g y)) (g (f x y))) →
  R (foldr f (g b) l) (g (foldr f b l)).
Proof.
  intros ? Hcomm. induction l as [|x l IH]; simpl; [done|].
  rewrite <-Hcomm by eauto using elem_of_list_here.
  by rewrite IH by eauto using elem_of_list_further.
Qed.
Lemma foldr_comm_acc {A B} (f : A → B → B) (g : B → B) (b : B) l :
  (∀ x y, f x (g y) = g (f x y)) →
  foldr f (g b) l = g (foldr f b l).
Proof. intros. apply (foldr_comm_acc_strong _); [solve_proper|done]. Qed.

Lemma foldl_app {A B} (f : A → B → A) (l k : list B) (a : A) :
  foldl f a (l ++ k) = foldl f (foldl f a l) k.
Proof. revert a. induction l; simpl; auto. Qed.
Lemma foldl_snoc {A B} (f : A → B → A) (a : A) l x :
  foldl f a (l ++ [x]) = f (foldl f a l) x.
Proof. rewrite foldl_app. done. Qed.
Lemma foldl_fmap {A B C} (f : A → B → A) x (l : list C) g :
  foldl f x (g <$> l) = foldl (λ a b, f a (g b)) x l.
Proof. revert x. induction l; f_equal/=; auto. Qed.

(** ** Properties of the [zip_with] and [zip] functions *)
Global Instance zip_with_proper `{!Equiv A, !Equiv B, !Equiv C} :
  Proper (((≡) ==> (≡) ==> (≡)) ==>
          (≡@{list A}) ==> (≡@{list B}) ==> (≡@{list C})) zip_with.
Proof.
  intros f1 f2 Hf. induction 1; destruct 1; simpl; [constructor..|].
  f_equiv; [|by auto]. by apply Hf.
Qed.

Section zip_with.
  Context {A B C : Type} (f : A → B → C).
  Implicit Types x : A.
  Implicit Types y : B.
  Implicit Types l : list A.
  Implicit Types k : list B.

  Lemma zip_with_nil_r l : zip_with f l [] = [].
  Proof. by destruct l. Qed.
  Lemma zip_with_app l1 l2 k1 k2 :
    length l1 = length k1 →
    zip_with f (l1 ++ l2) (k1 ++ k2) = zip_with f l1 k1 ++ zip_with f l2 k2.
  Proof. rewrite <-Forall2_same_length. induction 1; f_equal/=; auto. Qed.
  Lemma zip_with_app_l l1 l2 k :
    zip_with f (l1 ++ l2) k
    = zip_with f l1 (take (length l1) k) ++ zip_with f l2 (drop (length l1) k).
  Proof.
    revert k. induction l1; intros [|??]; f_equal/=; auto. by destruct l2.
  Qed.
  Lemma zip_with_app_r l k1 k2 :
    zip_with f l (k1 ++ k2)
    = zip_with f (take (length k1) l) k1 ++ zip_with f (drop (length k1) l) k2.
  Proof. revert l. induction k1; intros [|??]; f_equal/=; auto. Qed.
  Lemma zip_with_flip l k : zip_with (flip f) k l = zip_with f l k.
  Proof. revert k. induction l; intros [|??]; f_equal/=; auto. Qed.
  Lemma zip_with_ext (g : A → B → C) l1 l2 k1 k2 :
    (∀ x y, f x y = g x y) → l1 = l2 → k1 = k2 →
    zip_with f l1 k1 = zip_with g l2 k2.
  Proof. intros ? <-<-. revert k1. by induction l1; intros [|??]; f_equal/=. Qed.
  Lemma Forall_zip_with_ext_l (g : A → B → C) l k1 k2 :
    Forall (λ x, ∀ y, f x y = g x y) l → k1 = k2 →
    zip_with f l k1 = zip_with g l k2.
  Proof. intros Hl <-. revert k1. by induction Hl; intros [|??]; f_equal/=. Qed.
  Lemma Forall_zip_with_ext_r (g : A → B → C) l1 l2 k :
    l1 = l2 → Forall (λ y, ∀ x, f x y = g x y) k →
    zip_with f l1 k = zip_with g l2 k.
  Proof. intros <- Hk. revert l1. by induction Hk; intros [|??]; f_equal/=. Qed.
  Lemma zip_with_fmap_l {D} (g : D → A) lD k :
    zip_with f (g <$> lD) k = zip_with (λ z, f (g z)) lD k.
  Proof. revert k. by induction lD; intros [|??]; f_equal/=. Qed.
  Lemma zip_with_fmap_r {D} (g : D → B) l kD :
    zip_with f l (g <$> kD) = zip_with (λ x z, f x (g z)) l kD.
  Proof. revert kD. by induction l; intros [|??]; f_equal/=. Qed.
  Lemma zip_with_nil_inv l k : zip_with f l k = [] → l = [] ∨ k = [].
  Proof. destruct l, k; intros; simplify_eq/=; auto. Qed.
  Lemma zip_with_cons_inv l k z lC :
    zip_with f l k = z :: lC →
    ∃ x y l' k', z = f x y ∧ lC = zip_with f l' k' ∧ l = x :: l' ∧ k = y :: k'.
  Proof. intros. destruct l, k; simplify_eq/=; repeat eexists. Qed.
  Lemma zip_with_app_inv l k lC1 lC2 :
    zip_with f l k = lC1 ++ lC2 →
    ∃ l1 k1 l2 k2, lC1 = zip_with f l1 k1 ∧ lC2 = zip_with f l2 k2 ∧
      l = l1 ++ l2 ∧ k = k1 ++ k2 ∧ length l1 = length k1.
  Proof.
    revert l k. induction lC1 as [|z lC1 IH]; simpl.
    { intros l k ?. by eexists [], [], l, k. }
    intros [|x l] [|y k] ?; simplify_eq/=.
    destruct (IH l k) as (l1&k1&l2&k2&->&->&->&->&?); [done |].
    exists (x :: l1), (y :: k1), l2, k2; simpl; auto with congruence.
  Qed.
  Lemma zip_with_inj `{!Inj2 (=) (=) (=) f} l1 l2 k1 k2 :
    length l1 = length k1 → length l2 = length k2 →
    zip_with f l1 k1 = zip_with f l2 k2 → l1 = l2 ∧ k1 = k2.
  Proof.
    rewrite <-!Forall2_same_length. intros Hl. revert l2 k2.
    induction Hl; intros ?? [] ?; f_equal; naive_solver.
  Qed.
  Lemma length_zip_with l k :
    length (zip_with f l k) = min (length l) (length k).
  Proof. revert k. induction l; intros [|??]; simpl; auto with lia. Qed.
  Lemma length_zip_with_l l k :
    length l ≤ length k → length (zip_with f l k) = length l.
  Proof. rewrite length_zip_with; lia. Qed.
  Lemma length_zip_with_l_eq l k :
    length l = length k → length (zip_with f l k) = length l.
  Proof. rewrite length_zip_with; lia. Qed.
  Lemma length_zip_with_r l k :
    length k ≤ length l → length (zip_with f l k) = length k.
  Proof. rewrite length_zip_with; lia. Qed.
  Lemma length_zip_with_r_eq l k :
    length k = length l → length (zip_with f l k) = length k.
  Proof. rewrite length_zip_with; lia. Qed.
  Lemma length_zip_with_same_l P l k :
    Forall2 P l k → length (zip_with f l k) = length l.
  Proof. induction 1; simpl; auto. Qed.
  Lemma length_zip_with_same_r P l k :
    Forall2 P l k → length (zip_with f l k) = length k.
  Proof. induction 1; simpl; auto. Qed.
  Lemma lookup_zip_with l k i :
    zip_with f l k !! i = (x ← l !! i; y ← k !! i; Some (f x y)).
  Proof.
    revert k i. induction l; intros [|??] [|?]; f_equal/=; auto.
    by destruct (_ !! _).
  Qed.
  Lemma lookup_total_zip_with `{!Inhabited A, !Inhabited B, !Inhabited C} l k i :
    i < length l → i < length k → zip_with f l k !!! i = f (l !!! i) (k !!! i).
  Proof.
    intros [x Hx]%lookup_lt_is_Some_2 [y Hy]%lookup_lt_is_Some_2.
    by rewrite !list_lookup_total_alt, lookup_zip_with, Hx, Hy.
  Qed.
  Lemma lookup_zip_with_Some l k i z :
    zip_with f l k !! i = Some z
    ↔ ∃ x y, z = f x y ∧ l !! i = Some x ∧ k !! i = Some y.
  Proof. rewrite lookup_zip_with. destruct (l !! i), (k !! i); naive_solver. Qed.
  Lemma insert_zip_with l k i x y :
    <[i:=f x y]>(zip_with f l k) = zip_with f (<[i:=x]>l) (<[i:=y]>k).
  Proof. revert i k. induction l; intros [|?] [|??]; f_equal/=; auto. Qed.
  Lemma fmap_zip_with_l (g : C → A) l k :
    (∀ x y, g (f x y) = x) → length l ≤ length k → g <$> zip_with f l k = l.
  Proof. revert k. induction l; intros [|??] ??; f_equal/=; auto with lia. Qed.
  Lemma fmap_zip_with_r (g : C → B) l k :
    (∀ x y, g (f x y) = y) → length k ≤ length l → g <$> zip_with f l k = k.
  Proof. revert l. induction k; intros [|??] ??; f_equal/=; auto with lia. Qed.
  Lemma zip_with_zip l k : zip_with f l k = uncurry f <$> zip l k.
  Proof. revert k. by induction l; intros [|??]; f_equal/=. Qed.
  Lemma zip_with_fst_snd lk : zip_with f (lk.*1) (lk.*2) = uncurry f <$> lk.
  Proof. by induction lk as [|[]]; f_equal/=. Qed.
  Lemma zip_with_replicate n x y :
    zip_with f (replicate n x) (replicate n y) = replicate n (f x y).
  Proof. by induction n; f_equal/=. Qed.
  Lemma zip_with_replicate_l n x k :
    length k ≤ n → zip_with f (replicate n x) k = f x <$> k.
  Proof. revert n. induction k; intros [|?] ?; f_equal/=; auto with lia. Qed.
  Lemma zip_with_replicate_r n y l :
    length l ≤ n → zip_with f l (replicate n y) = flip f y <$> l.
  Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
  Lemma zip_with_replicate_r_eq n y l :
    length l = n → zip_with f l (replicate n y) = flip f y <$> l.
  Proof. intros; apply zip_with_replicate_r; lia. Qed.
  Lemma zip_with_take n l k :
    take n (zip_with f l k) = zip_with f (take n l) (take n k).
  Proof. revert n k. by induction l; intros [|?] [|??]; f_equal/=. Qed.
  Lemma zip_with_drop n l k :
    drop n (zip_with f l k) = zip_with f (drop n l) (drop n k).
  Proof.
    revert n k. induction l; intros [] []; f_equal/=; auto using zip_with_nil_r.
  Qed.
  Lemma zip_with_take_l' n l k :
    length l `min` length k ≤ n → zip_with f (take n l) k = zip_with f l k.
  Proof. revert n k. induction l; intros [] [] ?; f_equal/=; auto with lia. Qed.
  Lemma zip_with_take_l l k :
    zip_with f (take (length k) l) k = zip_with f l k.
  Proof. apply zip_with_take_l'; lia. Qed.
  Lemma zip_with_take_r' n l k :
    length l `min` length k ≤ n → zip_with f l (take n k) = zip_with f l k.
  Proof. revert n k. induction l; intros [] [] ?; f_equal/=; auto with lia. Qed.
  Lemma zip_with_take_r l k :
    zip_with f l (take (length l) k) = zip_with f l k.
  Proof. apply zip_with_take_r'; lia. Qed.
  Lemma zip_with_take_both' n1 n2 l k :
    length l `min` length k ≤ n1 → length l `min` length k ≤ n2 →
    zip_with f (take n1 l) (take n2 k) = zip_with f l k.
  Proof.
    intros.
    rewrite zip_with_take_l'; [apply zip_with_take_r' | rewrite length_take]; lia.
  Qed.
  Lemma zip_with_take_both l k :
    zip_with f (take (length k) l) (take (length l) k) = zip_with f l k.
  Proof. apply zip_with_take_both'; lia. Qed.
  Lemma Forall_zip_with_fst (P : A → Prop) (Q : C → Prop) l k :
    Forall P l → Forall (λ y, ∀ x, P x → Q (f x y)) k →
    Forall Q (zip_with f l k).
  Proof. intros Hl. revert k. induction Hl; destruct 1; simpl in *; auto. Qed.
  Lemma Forall_zip_with_snd (P : B → Prop) (Q : C → Prop) l k :
    Forall (λ x, ∀ y, P y → Q (f x y)) l → Forall P k →
    Forall Q (zip_with f l k).
  Proof. intros Hl. revert k. induction Hl; destruct 1; simpl in *; auto. Qed.

  Lemma elem_of_lookup_zip_with_1 l k (z : C) :
    z ∈ zip_with f l k → ∃ i x y, z = f x y ∧ l !! i = Some x ∧ k !! i = Some y.
  Proof.
    intros [i Hin]%elem_of_list_lookup. rewrite lookup_zip_with in Hin.
    simplify_option_eq; naive_solver.
  Qed.

  Lemma elem_of_lookup_zip_with_2 l k x y (z : C) i :
    l !! i = Some x → k !! i = Some y → f x y ∈ zip_with f l k.
  Proof.
    intros Hl Hk. rewrite elem_of_list_lookup.
    exists i. by rewrite lookup_zip_with, Hl, Hk.
  Qed.

  Lemma elem_of_lookup_zip_with l k (z : C) :
    z ∈ zip_with f l k ↔ ∃ i x y, z = f x y ∧ l !! i = Some x ∧ k !! i = Some y.
  Proof.
    naive_solver eauto using
                 elem_of_lookup_zip_with_1, elem_of_lookup_zip_with_2.
  Qed.

  Lemma elem_of_zip_with l k (z : C) :
    z ∈ zip_with f l k → ∃ x y, z = f x y ∧ x ∈ l ∧ y ∈ k.
  Proof.
    intros ?%elem_of_lookup_zip_with.
    naive_solver eauto using elem_of_list_lookup_2.
  Qed.

End zip_with.

Lemma zip_with_diag {A C} (f : A → A → C) l :
  zip_with f l l = (λ x, f x x) <$> l.
Proof. induction l as [|?? IH]; [done|]. simpl. rewrite IH. done. Qed.

Lemma zip_with_sublist_alter {A B} (f : A → B → A) g l k i n l' k' :
  length l = length k →
  sublist_lookup i n l = Some l' → sublist_lookup i n k = Some k' →
  length (g l') = length k' → zip_with f (g l') k' = g (zip_with f l' k') →
  zip_with f (sublist_alter g i n l) k = sublist_alter g i n (zip_with f l k).
Proof.
  unfold sublist_lookup, sublist_alter. intros Hlen; rewrite Hlen.
  intros ?? Hl' Hk'. simplify_option_eq.
  by rewrite !zip_with_app_l, !zip_with_drop, Hl', drop_drop, !zip_with_take,
    !length_take_le, Hk' by (rewrite ?length_drop; auto with lia).
Qed.

Section zip.
  Context {A B : Type}.
  Implicit Types l : list A.
  Implicit Types k : list B.

  Lemma fst_zip l k : length l ≤ length k → (zip l k).*1 = l.
  Proof. by apply fmap_zip_with_l. Qed.
  Lemma snd_zip l k : length k ≤ length l → (zip l k).*2 = k.
  Proof. by apply fmap_zip_with_r. Qed.
  Lemma zip_fst_snd (lk : list (A * B)) : zip (lk.*1) (lk.*2) = lk.
  Proof. by induction lk as [|[]]; f_equal/=. Qed.
  Lemma Forall2_fst P l1 l2 k1 k2 :
    length l2 = length k2 → Forall2 P l1 k1 →
    Forall2 (λ x y, P (x.1) (y.1)) (zip l1 l2) (zip k1 k2).
  Proof.
    rewrite <-Forall2_same_length. intros Hlk2 Hlk1. revert l2 k2 Hlk2.
    induction Hlk1; intros ?? [|??????]; simpl; auto.
  Qed.
  Lemma Forall2_snd P l1 l2 k1 k2 :
    length l1 = length k1 → Forall2 P l2 k2 →
    Forall2 (λ x y, P (x.2) (y.2)) (zip l1 l2) (zip k1 k2).
  Proof.
    rewrite <-Forall2_same_length. intros Hlk1 Hlk2. revert l1 k1 Hlk1.
    induction Hlk2; intros ?? [|??????]; simpl; auto.
  Qed.

  Lemma elem_of_zip_l x1 x2 l k :
    (x1, x2) ∈ zip l k → x1 ∈ l.
  Proof. intros ?%elem_of_zip_with. naive_solver. Qed.

  Lemma elem_of_zip_r x1 x2 l k :
    (x1, x2) ∈ zip l k → x2 ∈ k.
  Proof. intros ?%elem_of_zip_with. naive_solver. Qed.
End zip.

Lemma zip_diag {A} (l : list A) :
  zip l l = (λ x, (x, x)) <$> l.
Proof. apply zip_with_diag. Qed.

Lemma elem_of_zipped_map {A B} (f : list A → list A → A → B) l k x :
  x ∈ zipped_map f l k ↔
    ∃ k' k'' y, k = k' ++ [y] ++ k'' ∧ x = f (reverse k' ++ l) k'' y.
Proof.
  split.
  - revert l. induction k as [|z k IH]; simpl; intros l; inv 1.
    { by eexists [], k, z. }
    destruct (IH (z :: l)) as (k'&k''&y&->&->); [done |].
    eexists (z :: k'), k'', y. by rewrite reverse_cons, <-(assoc_L (++)).
  - intros (k'&k''&y&->&->). revert l. induction k' as [|z k' IH]; [by left|].
    intros l; right. by rewrite reverse_cons, <-!(assoc_L (++)).
Qed.
Section zipped_list_ind.
  Context {A} (P : list A → list A → Prop).
  Context (Pnil : ∀ l, P l []) (Pcons : ∀ l k x, P (x :: l) k → P l (x :: k)).
  Fixpoint zipped_list_ind l k : P l k :=
    match k with
    | [] => Pnil _ | x :: k => Pcons _ _ _ (zipped_list_ind (x :: l) k)
    end.
End zipped_list_ind.
Lemma zipped_Forall_app {A} (P : list A → list A → A → Prop) l k k' :
  zipped_Forall P l (k ++ k') → zipped_Forall P (reverse k ++ l) k'.
Proof.
  revert l. induction k as [|x k IH]; simpl; [done |].
  inv 1. rewrite reverse_cons, <-(assoc_L (++)). by apply IH.
Qed.

Lemma TCForall_Forall {A} (P : A → Prop) xs : TCForall P xs ↔ Forall P xs.
Proof. split; induction 1; constructor; auto. Qed.

Global Instance TCForall_app {A} (P : A → Prop) xs ys :
  TCForall P xs → TCForall P ys → TCForall P (xs ++ ys).
Proof. rewrite !TCForall_Forall. apply Forall_app_2. Qed.

Lemma TCForall2_Forall2 {A B} (P : A → B → Prop) xs ys :
  TCForall2 P xs ys ↔ Forall2 P xs ys.
Proof. split; induction 1; constructor; auto. Qed.

Lemma TCExists_Exists {A} (P : A → Prop) l : TCExists P l ↔ Exists P l.
Proof. split; induction 1; constructor; solve [auto]. Qed.

Section positives_flatten_unflatten.
  Local Open Scope positive_scope.

  Lemma positives_flatten_go_app xs acc :
    positives_flatten_go xs acc = acc ++ positives_flatten_go xs 1.
  Proof.
    revert acc.
    induction xs as [|x xs IH]; intros acc; simpl.
    - reflexivity.
    - rewrite IH.
      rewrite (IH (6 ++ _)).
      rewrite 2!(assoc_L (++)).
      reflexivity.
  Qed.

  Lemma positives_unflatten_go_app p suffix xs acc :
    positives_unflatten_go (suffix ++ Pos.reverse (Pos.dup p)) xs acc =
    positives_unflatten_go suffix xs (acc ++ p).
  Proof.
    revert suffix acc.
    induction p as [p IH|p IH|]; intros acc suffix; simpl.
    - rewrite 2!Pos.reverse_xI.
      rewrite 2!(assoc_L (++)).
      rewrite IH.
      reflexivity.
    - rewrite 2!Pos.reverse_xO.
      rewrite 2!(assoc_L (++)).
      rewrite IH.
      reflexivity.
    - reflexivity.
  Qed.

  Lemma positives_unflatten_flatten_go suffix xs acc :
    positives_unflatten_go (suffix ++ positives_flatten_go xs 1) acc 1 =
    positives_unflatten_go suffix (xs ++ acc) 1.
  Proof.
    revert suffix acc.
    induction xs as [|x xs IH]; intros suffix acc; simpl.
    - reflexivity.
    - rewrite positives_flatten_go_app.
      rewrite (assoc_L (++)).
      rewrite IH.
      rewrite (assoc_L (++)).
      rewrite positives_unflatten_go_app.
      simpl.
      rewrite (left_id_L 1 (++)).
      reflexivity.
  Qed.

  Lemma positives_unflatten_flatten xs :
    positives_unflatten (positives_flatten xs) = Some xs.
  Proof.
    unfold positives_flatten, positives_unflatten.
    replace (positives_flatten_go xs 1)
      with (1 ++ positives_flatten_go xs 1)
      by apply (left_id_L 1 (++)).
    rewrite positives_unflatten_flatten_go.
    simpl.
    rewrite (right_id_L [] (++)%list).
    reflexivity.
  Qed.

  Lemma positives_flatten_app xs ys :
    positives_flatten (xs ++ ys) = positives_flatten xs ++ positives_flatten ys.
  Proof.
    unfold positives_flatten.
    revert ys.
    induction xs as [|x xs IH]; intros ys; simpl.
    - rewrite (left_id_L 1 (++)).
      reflexivity.
    - rewrite positives_flatten_go_app, (positives_flatten_go_app xs).
      rewrite IH.
      rewrite (assoc_L (++)).
      reflexivity.
  Qed.

  Lemma positives_flatten_cons x xs :
    positives_flatten (x :: xs)
    = 1~1~0 ++ Pos.reverse (Pos.dup x) ++ positives_flatten xs.
  Proof.
    change (x :: xs) with ([x] ++ xs)%list.
    rewrite positives_flatten_app.
    rewrite (assoc_L (++)).
    reflexivity.
  Qed.

  Lemma positives_flatten_suffix (l k : list positive) :
    l `suffix_of` k → ∃ q, positives_flatten k = q ++ positives_flatten l.
  Proof.
    intros [l' ->].
    exists (positives_flatten l').
    apply positives_flatten_app.
  Qed.

  Lemma positives_flatten_suffix_eq p1 p2 (xs ys : list positive) :
    length xs = length ys →
    p1 ++ positives_flatten xs = p2 ++ positives_flatten ys →
    xs = ys.
  Proof.
    revert p1 p2 ys; induction xs as [|x xs IH];
      intros p1 p2 [|y ys] ?; simplify_eq/=; auto.
    rewrite !positives_flatten_cons, !(assoc _); intros Hl.
    assert (xs = ys) as <- by eauto; clear IH; f_equal.
    apply (inj (.++ positives_flatten xs)) in Hl.
    rewrite 2!Pos.reverse_dup in Hl.
    apply (Pos.dup_suffix_eq _ _ p1 p2) in Hl.
    by apply (inj Pos.reverse).
  Qed.
End positives_flatten_unflatten.

(** * Reflection over lists *)
(** We define a simple data structure [rlist] to capture a syntactic
representation of lists consisting of constants, applications and the nil list.
Note that we represent [(x ::.)] as [rapp (rnode [x])]. For now, we abstract
over the type of constants, but later we use [nat]s and a list representing
a corresponding environment. *)
Inductive rlist (A : Type) :=
  rnil : rlist A | rnode : A → rlist A | rapp : rlist A → rlist A → rlist A.
Global Arguments rnil {_} : assert.
Global Arguments rnode {_} _ : assert.
Global Arguments rapp {_} _ _ : assert.

Module rlist.
Fixpoint to_list {A} (t : rlist A) : list A :=
  match t with
  | rnil => [] | rnode l => [l] | rapp t1 t2 => to_list t1 ++ to_list t2
  end.
Notation env A := (list (list A)) (only parsing).
Definition eval {A} (E : env A) : rlist nat → list A :=
  fix go t :=
  match t with
  | rnil => []
  | rnode i => default [] (E !! i)
  | rapp t1 t2 => go t1 ++ go t2
  end.

(** A simple quoting mechanism using type classes. [QuoteLookup E1 E2 x i]
means: starting in environment [E1], look up the index [i] corresponding to the
constant [x]. In case [x] has a corresponding index [i] in [E1], the original
environment is given back as [E2]. Otherwise, the environment [E2] is extended
with a binding [i] for [x]. *)
Section quote_lookup.
  Context {A : Type}.
  Class QuoteLookup (E1 E2 : list A) (x : A) (i : nat) := {}.
  Global Instance quote_lookup_here E x : QuoteLookup (x :: E) (x :: E) x 0 := {}.
  Global Instance quote_lookup_end x : QuoteLookup [] [x] x 0 := {}.
  Global Instance quote_lookup_further E1 E2 x i y :
    QuoteLookup E1 E2 x i → QuoteLookup (y :: E1) (y :: E2) x (S i) | 1000 := {}.
End quote_lookup.

Section quote.
  Context {A : Type}.
  Class Quote (E1 E2 : env A) (l : list A) (t : rlist nat) := {}.
  Global Instance quote_nil E1 : Quote E1 E1 [] rnil := {}.
  Global Instance quote_node E1 E2 l i:
    QuoteLookup E1 E2 l i → Quote E1 E2 l (rnode i) | 1000 := {}.
  Global Instance quote_cons E1 E2 E3 x l i t :
    QuoteLookup E1 E2 [x] i →
    Quote E2 E3 l t → Quote E1 E3 (x :: l) (rapp (rnode i) t) := {}.
  Global Instance quote_app E1 E2 E3 l1 l2 t1 t2 :
    Quote E1 E2 l1 t1 → Quote E2 E3 l2 t2 → Quote E1 E3 (l1 ++ l2) (rapp t1 t2) := {}.
End quote.

Section eval.
  Context {A} (E : env A).

  Lemma eval_alt t : eval E t = to_list t ≫= default [] ∘ (E !!.).
  Proof.
    induction t; csimpl.
    - done.
    - by rewrite (right_id_L [] (++)).
    - rewrite bind_app. by f_equal.
  Qed.
  Lemma eval_eq t1 t2 : to_list t1 = to_list t2 → eval E t1 = eval E t2.
  Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
  Lemma eval_Permutation t1 t2 :
    to_list t1 ≡ₚ to_list t2 → eval E t1 ≡ₚ eval E t2.
  Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
  Lemma eval_submseteq t1 t2 :
    to_list t1 ⊆+ to_list t2 → eval E t1 ⊆+ eval E t2.
  Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
End eval.
End rlist.

(** * Tactics *)
Ltac quote_Permutation :=
  match goal with
  | |- ?l1 ≡ₚ ?l2 =>
    match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 =>
    match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 =>
      change (rlist.eval E3 t1 ≡ₚ rlist.eval E3 t2)
    end end
  end.
Ltac solve_Permutation :=
  quote_Permutation; apply rlist.eval_Permutation;
  compute_done.

Ltac quote_submseteq :=
  match goal with
  | |- ?l1 ⊆+ ?l2 =>
    match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 =>
    match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 =>
      change (rlist.eval E3 t1 ⊆+ rlist.eval E3 t2)
    end end
  end.
Ltac solve_submseteq :=
  quote_submseteq; apply rlist.eval_submseteq;
  compute_done.

Ltac decompose_elem_of_list := repeat
  match goal with
  | H : ?x ∈ [] |- _ => by destruct (not_elem_of_nil x)
  | H : _ ∈ _ :: _ |- _ => apply elem_of_cons in H; destruct H
  | H : _ ∈ _ ++ _ |- _ => apply elem_of_app in H; destruct H
  end.
Ltac solve_length :=
  simplify_eq/=;
  repeat (rewrite length_fmap || rewrite length_app);
  repeat match goal with
  | H : _ =@{list _} _ |- _ => apply (f_equal length) in H
  | H : Forall2 _ _ _ |- _ => apply Forall2_length in H
  | H : context[length (_ <$> _)] |- _ => rewrite length_fmap in H
  end; done || congruence.
Ltac simplify_list_eq ::= repeat
  match goal with
  | _ => progress simplify_eq/=
  | H : [?x] !! ?i = Some ?y |- _ =>
    destruct i; [change (Some x = Some y) in H | discriminate]
  | H : _ <$> _ = [] |- _ => apply fmap_nil_inv in H
  | H : [] = _ <$> _ |- _ => symmetry in H; apply fmap_nil_inv in H
  | H : zip_with _ _ _ = [] |- _ => apply zip_with_nil_inv in H; destruct H
  | H : [] = zip_with _ _ _ |- _ => symmetry in H
  | |- context [(_ ++ _) ++ _] => rewrite <-(assoc_L (++))
  | H : context [(_ ++ _) ++ _] |- _ => rewrite <-(assoc_L (++)) in H
  | H : context [_ <$> (_ ++ _)] |- _ => rewrite fmap_app in H
  | |- context [_ <$> (_ ++ _)]  => rewrite fmap_app
  | |- context [_ ++ []] => rewrite (right_id_L [] (++))
  | H : context [_ ++ []] |- _ => rewrite (right_id_L [] (++)) in H
  | |- context [take _ (_ <$> _)] => rewrite <-fmap_take
  | H : context [take _ (_ <$> _)] |- _ => rewrite <-fmap_take in H
  | |- context [drop _ (_ <$> _)] => rewrite <-fmap_drop
  | H : context [drop _ (_ <$> _)] |- _ => rewrite <-fmap_drop in H
  | H : _ ++ _ = _ ++ _ |- _ =>
    repeat (rewrite <-app_comm_cons in H || rewrite <-(assoc_L (++)) in H);
    apply app_inj_1 in H; [destruct H|solve_length]
  | H : _ ++ _ = _ ++ _ |- _ =>
    repeat (rewrite app_comm_cons in H || rewrite (assoc_L (++)) in H);
    apply app_inj_2 in H; [destruct H|solve_length]
  | |- context [zip_with _ (_ ++ _) (_ ++ _)] =>
    rewrite zip_with_app by solve_length
  | |- context [take _ (_ ++ _)] => rewrite take_app_length' by solve_length
  | |- context [drop _ (_ ++ _)] => rewrite drop_app_length' by solve_length
  | H : context [zip_with _ (_ ++ _) (_ ++ _)] |- _ =>
    rewrite zip_with_app in H by solve_length
  | H : context [take _ (_ ++ _)] |- _ =>
    rewrite take_app_length' in H by solve_length
  | H : context [drop _ (_ ++ _)] |- _ =>
    rewrite drop_app_length' in H by solve_length
  | H : ?l !! ?i = _, H2 : context [(_ <$> ?l) !! ?i] |- _ =>
     rewrite list_lookup_fmap, H in H2
  end.
Ltac decompose_Forall_hyps :=
  repeat match goal with
  | H : Forall _ [] |- _ => clear H
  | H : Forall _ (_ :: _) |- _ => rewrite Forall_cons in H; destruct H
  | H : Forall _ (_ ++ _) |- _ => rewrite Forall_app in H; destruct H
  | H : Forall2 _ [] [] |- _ => clear H
  | H : Forall2 _ (_ :: _) [] |- _ => destruct (Forall2_cons_nil_inv _ _ _ H)
  | H : Forall2 _ [] (_ :: _) |- _ => destruct (Forall2_nil_cons_inv _ _ _ H)
  | H : Forall2 _ [] ?k |- _ => apply Forall2_nil_inv_l in H
  | H : Forall2 _ ?l [] |- _ => apply Forall2_nil_inv_r in H
  | H : Forall2 _ (_ :: _) (_ :: _) |- _ =>
    apply Forall2_cons_1 in H; destruct H
  | H : Forall2 _ (_ :: _) ?k |- _ =>
    let k_hd := fresh k "_hd" in let k_tl := fresh k "_tl" in
    apply Forall2_cons_inv_l in H; destruct H as (k_hd&k_tl&?&?&->);
    rename k_tl into k
  | H : Forall2 _ ?l (_ :: _) |- _ =>
    let l_hd := fresh l "_hd" in let l_tl := fresh l "_tl" in
    apply Forall2_cons_inv_r in H; destruct H as (l_hd&l_tl&?&?&->);
    rename l_tl into l
  | H : Forall2 _ (_ ++ _) ?k |- _ =>
    let k1 := fresh k "_1" in let k2 := fresh k "_2" in
    apply Forall2_app_inv_l in H; destruct H as (k1&k2&?&?&->)
  | H : Forall2 _ ?l (_ ++ _) |- _ =>
    let l1 := fresh l "_1" in let l2 := fresh l "_2" in
    apply Forall2_app_inv_r in H; destruct H as (l1&l2&?&?&->)
  | _ => progress simplify_eq/=
  | H : Forall3 _ _ (_ :: _) _ |- _ =>
    apply Forall3_cons_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
  | H : Forall2 _ (_ :: _) ?k |- _ =>
    apply Forall2_cons_inv_l in H; destruct H as (?&?&?&?&?)
  | H : Forall2 _ ?l (_ :: _) |- _ =>
    apply Forall2_cons_inv_r in H; destruct H as (?&?&?&?&?)
  | H : Forall2 _ (_ ++ _) (_ ++ _) |- _ =>
    apply Forall2_app_inv in H; [destruct H|solve_length]
  | H : Forall2 _ ?l (_ ++ _) |- _ =>
    apply Forall2_app_inv_r in H; destruct H as (?&?&?&?&?)
  | H : Forall2 _ (_ ++ _) ?k |- _ =>
    apply Forall2_app_inv_l in H; destruct H as (?&?&?&?&?)
  | H : Forall3 _ _ (_ ++ _) _ |- _ =>
    apply Forall3_app_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
  | H : Forall ?P ?l, H1 : ?l !! _ = Some ?x |- _ =>
    (* to avoid some stupid loops, not fool proof *)
    unless (P x) by auto using Forall_app_2, Forall_nil_2;
    let E := fresh in
    assert (P x) as E by (apply (Forall_lookup_1 P _ _ _ H H1)); lazy beta in E
  | H : Forall2 ?P ?l ?k |- _ =>
    match goal with
    | H1 : l !! ?i = Some ?x, H2 : k !! ?i = Some ?y |- _ =>
      unless (P x y) by done; let E := fresh in
      assert (P x y) as E by (by apply (Forall2_lookup_lr P l k i x y));
      lazy beta in E
    | H1 : l !! ?i = Some ?x |- _ =>
      try (match goal with _ : k !! i = Some _ |- _ => fail 2 end);
      destruct (Forall2_lookup_l P _ _ _ _ H H1) as (?&?&?)
    | H2 : k !! ?i = Some ?y |- _ =>
      try (match goal with _ : l !! i = Some _ |- _ => fail 2 end);
      destruct (Forall2_lookup_r P _ _ _ _ H H2) as (?&?&?)
    end
  | H : Forall3 ?P ?l ?l' ?k |- _ =>
    lazymatch goal with
    | H1:l !! ?i = Some ?x, H2:l' !! ?i = Some ?y, H3:k !! ?i = Some ?z |- _ =>
      unless (P x y z) by done; let E := fresh in
      assert (P x y z) as E by (by apply (Forall3_lookup_lmr P l l' k i x y z));
      lazy beta in E
    | H1 : l !! _ = Some ?x |- _ =>
      destruct (Forall3_lookup_l P _ _ _ _ _ H H1) as (?&?&?&?&?)
    | H2 : l' !! _ = Some ?y |- _ =>
      destruct (Forall3_lookup_m P _ _ _ _ _ H H2) as (?&?&?&?&?)
    | H3 : k !! _ = Some ?z |- _ =>
      destruct (Forall3_lookup_r P _ _ _ _ _ H H3) as (?&?&?&?&?)
    end
  end.
Ltac list_simplifier :=
  simplify_eq/=;
  repeat match goal with
  | _ => progress decompose_Forall_hyps
  | _ => progress simplify_list_eq
  | H : _ <$> _ = _ :: _ |- _ =>
    apply fmap_cons_inv in H; destruct H as (?&?&?&?&?)
  | H : _ :: _ = _ <$> _ |- _ => symmetry in H
  | H : _ <$> _ = _ ++ _ |- _ =>
    apply fmap_app_inv in H; destruct H as (?&?&?&?&?)
  | H : _ ++ _ = _ <$> _ |- _ => symmetry in H
  | H : zip_with _ _ _ = _ :: _ |- _ =>
    apply zip_with_cons_inv in H; destruct H as (?&?&?&?&?&?&?&?)
  | H : _ :: _ = zip_with _ _ _ |- _ => symmetry in H
  | H : zip_with _ _ _ = _ ++ _ |- _ =>
    apply zip_with_app_inv in H; destruct H as (?&?&?&?&?&?&?&?&?)
  | H : _ ++ _ = zip_with _ _ _ |- _ => symmetry in H
  end.
Ltac decompose_Forall := repeat
  match goal with
  | |- Forall _ _ => by apply Forall_true
  | |- Forall _ [] => constructor
  | |- Forall _ (_ :: _) => constructor
  | |- Forall _ (_ ++ _) => apply Forall_app_2
  | |- Forall _ (_ <$> _) => apply Forall_fmap
  | |- Forall _ (_ ≫= _) => apply Forall_bind
  | |- Forall2 _ _ _ => apply Forall_Forall2_diag
  | |- Forall2 _ [] [] => constructor
  | |- Forall2 _ (_ :: _) (_ :: _) => constructor
  | |- Forall2 _ (_ ++ _) (_ ++ _) => first
    [ apply Forall2_app; [by decompose_Forall |]
    | apply Forall2_app; [| by decompose_Forall]]
  | |- Forall2 _ (_ <$> _) _ => apply Forall2_fmap_l
  | |- Forall2 _ _ (_ <$> _) => apply Forall2_fmap_r
  | _ => progress decompose_Forall_hyps
  | H : Forall _ (_ <$> _) |- _ => rewrite Forall_fmap in H
  | H : Forall _ (_ ≫= _) |- _ => rewrite Forall_bind in H
  | |- Forall _ _ =>
    apply Forall_lookup_2; intros ???; progress decompose_Forall_hyps
  | |- Forall2 _ _ _ =>
    apply Forall2_same_length_lookup_2; [solve_length|];
    intros ?????; progress decompose_Forall_hyps
  end.

(** The [simplify_suffix] tactic removes [suffix] hypotheses that are
tautologies, and simplifies [suffix] hypotheses involving [(::)] and
[(++)]. *)
Ltac simplify_suffix := repeat
  match goal with
  | H : suffix (_ :: _) _ |- _ => destruct (suffix_cons_not _ _ H)
  | H : suffix (_ :: _) [] |- _ => apply suffix_nil_inv in H
  | H : suffix (_ ++ _) (_ ++ _) |- _ => apply suffix_app_inv in H
  | H : suffix (_ :: _) (_ :: _) |- _ =>
    destruct (suffix_cons_inv _ _ _ _ H); clear H
  | H : suffix ?x ?x |- _ => clear H
  | H : suffix ?x (_ :: ?x) |- _ => clear H
  | H : suffix ?x (_ ++ ?x) |- _ => clear H
  | _ => progress simplify_eq/=
  end.

(** The [solve_suffix] tactic tries to solve goals involving [suffix]. It
uses [simplify_suffix] to simplify hypotheses and tries to solve [suffix]
conclusions. This tactic either fails or proves the goal. *)
Ltac solve_suffix := by intuition (repeat
  match goal with
  | _ => done
  | _ => progress simplify_suffix
  | |- suffix [] _ => apply suffix_nil
  | |- suffix _ _ => reflexivity
  | |- suffix _ (_ :: _) => apply suffix_cons_r
  | |- suffix _ (_ ++ _) => apply suffix_app_r
  | H : suffix _ _ → False |- _ => destruct H
  end).