1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
|
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
From Coq Require Export Permutation.
From stdpp Require Export numbers base option.
From stdpp Require Import options.
Global Arguments length {_} _ : assert.
Global Arguments cons {_} _ _ : assert.
Global Arguments app {_} _ _ : assert.
Global Instance: Params (@length) 1 := {}.
Global Instance: Params (@cons) 1 := {}.
Global Instance: Params (@app) 1 := {}.
(** [head] and [tail] are defined as [parsing only] for [hd_error] and [tl] in
the Coq standard library. We redefine these notations to make sure they also
pretty print properly. *)
Notation head := hd_error.
Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.
Global Arguments head {_} _ : assert.
Global Arguments tail {_} _ : assert.
Global Arguments take {_} !_ !_ / : assert.
Global Arguments drop {_} !_ !_ / : assert.
Global Instance: Params (@head) 1 := {}.
Global Instance: Params (@tail) 1 := {}.
Global Instance: Params (@take) 1 := {}.
Global Instance: Params (@drop) 1 := {}.
Global Instance: Params (@Forall) 1 := {}.
Global Instance: Params (@Exists) 1 := {}.
Global Instance: Params (@NoDup) 1 := {}.
Global Arguments Permutation {_} _ _ : assert.
Global Arguments Forall_cons {_} _ _ _ _ _ : assert.
Notation "(::)" := cons (only parsing) : list_scope.
Notation "( x ::.)" := (cons x) (only parsing) : list_scope.
Notation "(.:: l )" := (λ x, cons x l) (only parsing) : list_scope.
Notation "(++)" := app (only parsing) : list_scope.
Notation "( l ++.)" := (app l) (only parsing) : list_scope.
Notation "(.++ k )" := (λ l, app l k) (only parsing) : list_scope.
Infix "≡ₚ" := Permutation (at level 70, no associativity) : stdpp_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : stdpp_scope.
Notation "( x ≡ₚ.)" := (Permutation x) (only parsing) : stdpp_scope.
Notation "(.≡ₚ x )" := (λ y, y ≡ₚ x) (only parsing) : stdpp_scope.
Notation "(≢ₚ)" := (λ x y, ¬x ≡ₚ y) (only parsing) : stdpp_scope.
Notation "x ≢ₚ y":= (¬x ≡ₚ y) (at level 70, no associativity) : stdpp_scope.
Notation "( x ≢ₚ.)" := (λ y, x ≢ₚ y) (only parsing) : stdpp_scope.
Notation "(.≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : stdpp_scope.
Infix "≡ₚ@{ A }" :=
(@Permutation A) (at level 70, no associativity, only parsing) : stdpp_scope.
Notation "(≡ₚ@{ A } )" := (@Permutation A) (only parsing) : stdpp_scope.
Global Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
match l with x :: l => Some (x,l) | _ => None end.
(** * Definitions *)
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
| nil_equiv : [] ≡ []
| cons_equiv x y l k : x ≡ y → l ≡ k → x :: l ≡ y :: k.
Global Existing Instance list_equiv.
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Global Instance list_lookup {A} : Lookup nat A (list A) :=
fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
match l with
| [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
end.
(** The operation [l !!! i] is a total version of the lookup operation
[l !! i]. *)
Global Instance list_lookup_total `{!Inhabited A} : LookupTotal nat A (list A) :=
fix go i l {struct l} : A := let _ : LookupTotal _ _ _ := @go in
match l with
| [] => inhabitant
| x :: l => match i with 0 => x | S i => l !!! i end
end.
(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
Global Instance list_alter {A} : Alter nat A (list A) := λ f,
fix go i l {struct l} :=
match l with
| [] => []
| x :: l => match i with 0 => f x :: l | S i => x :: go i l end
end.
(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
Global Instance list_insert {A} : Insert nat A (list A) :=
fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
match l with
| [] => []
| x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
end.
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
match k with
| [] => l
| y :: k => <[i:=y]>(list_inserts (S i) k l)
end.
Global Instance: Params (@list_inserts) 1 := {}.
(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
Global Instance list_delete {A} : Delete nat (list A) :=
fix go (i : nat) (l : list A) {struct l} : list A :=
match l with
| [] => []
| x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
end.
(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Definition option_list {A} : option A → list A := option_rect _ (λ x, [x]) [].
Global Instance: Params (@option_list) 1 := {}.
Global Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
match l with [x] => Some x | _ => None end.
(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Global Instance list_filter {A} : Filter A (list A) :=
fix go P _ l := let _ : Filter _ _ := @go in
match l with
| [] => []
| x :: l => if decide (P x) then x :: filter P l else filter P l
end.
(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{∀ x, Decision (P x)} : list A → option (nat * A) :=
fix go l :=
match l with
| [] => None
| x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
end.
Global Instance: Params (@list_find) 3 := {}.
(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
match n with 0 => [] | S n => x :: replicate n x end.
Global Instance: Params (@replicate) 2 := {}.
(** The function [rotate n l] rotates the list [l] by [n], e.g., [rotate 1
[x0; x1; ...; xm]] becomes [x1; ...; xm; x0]. Rotating by a multiple of
[length l] is the identity function. **)
Definition rotate {A} (n : nat) (l : list A) : list A :=
drop (n `mod` length l) l ++ take (n `mod` length l) l.
Global Instance: Params (@rotate) 2 := {}.
(** The function [rotate_take s e l] returns the range between the
indices [s] (inclusive) and [e] (exclusive) of [l]. If [e ≤ s], all
elements after [s] and before [e] are returned. *)
Definition rotate_take {A} (s e : nat) (l : list A) : list A :=
take (rotate_nat_sub s e (length l)) (rotate s l).
Global Instance: Params (@rotate_take) 3 := {}.
(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
Global Instance: Params (@reverse) 1 := {}.
(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
match l with [] => None | [x] => Some x | _ :: l => last l end.
Global Instance: Params (@last) 1 := {}.
Global Arguments last : simpl nomatch.
(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
match l with
| [] => replicate n y
| x :: l => match n with 0 => [] | S n => x :: resize n y l end
end.
Global Arguments resize {_} !_ _ !_ : assert.
Global Instance: Params (@resize) 2 := {}.
(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
match szs with
| [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
end.
Global Instance: Params (@reshape) 2 := {}.
Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
guard (i + n ≤ length l);; Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A → list A)
(i n : nat) (l : list A) : list A :=
take i l ++ f (take n (drop i l)) ++ drop (i + n) l.
(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A → B → A) : A → list B → A :=
fix go a l := match l with [] => a | x :: l => go (f a x) l end.
(** The monadic operations. *)
Global Instance list_ret: MRet list := λ A x, x :: @nil A.
Global Instance list_fmap : FMap list := λ A B f,
fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
Global Instance list_omap : OMap list := λ A B f,
fix go (l : list A) :=
match l with
| [] => []
| x :: l => match f x with Some y => y :: go l | None => go l end
end.
Global Instance list_bind : MBind list := λ A B f,
fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
Global Instance list_join: MJoin list :=
fix go A (ls : list (list A)) : list A :=
match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
(** The Cartesian product on lists satisfies (lemma [elem_of_list_cprod]):
x ∈ cprod l k ↔ x.1 ∈ l ∧ x.2 ∈ k
There are little meaningful things to say about the order of the elements in
[cprod] (so there are no lemmas for that). It thus only makes sense to use
[cprod] when treating the lists as a set-like structure (i.e., up to duplicates
and permutations). *)
Global Instance list_cprod {A B} : CProd (list A) (list B) (list (A * B)) :=
λ l k, x ← l; (x,.) <$> k.
Definition mapM `{MBind M, MRet M} {A B} (f : A → M B) : list A → M (list B) :=
fix go l :=
match l with [] => mret [] | x :: l => y ← f x; k ← go l; mret (y :: k) end.
Global Instance: Params (@mapM) 5 := {}.
(** We define stronger variants of the map function that allow the mapped
function to use the index of the elements. *)
Fixpoint imap {A B} (f : nat → A → B) (l : list A) : list B :=
match l with
| [] => []
| x :: l => f 0 x :: imap (f ∘ S) l
end.
Global Instance: Params (@imap) 2 := {}.
Definition zipped_map {A B} (f : list A → list A → A → B) :
list A → list A → list B := fix go l k :=
match k with
| [] => []
| x :: k => f l k x :: go (x :: l) k
end.
Global Instance: Params (@zipped_map) 2 := {}.
Fixpoint imap2 {A B C} (f : nat → A → B → C) (l : list A) (k : list B) : list C :=
match l, k with
| [], _ | _, [] => []
| x :: l, y :: k => f 0 x y :: imap2 (f ∘ S) l k
end.
Global Instance: Params (@imap2) 3 := {}.
Inductive zipped_Forall {A} (P : list A → list A → A → Prop) :
list A → list A → Prop :=
| zipped_Forall_nil l : zipped_Forall P l []
| zipped_Forall_cons l k x :
P l k x → zipped_Forall P (x :: l) k → zipped_Forall P l (x :: k).
Global Arguments zipped_Forall_nil {_ _} _ : assert.
Global Arguments zipped_Forall_cons {_ _} _ _ _ _ _ : assert.
(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A → A) (βs : list bool) (l : list A) : list A :=
match βs, l with
| β :: βs, x :: l => (if β then f x else x) :: mask f βs l
| _, _ => l
end.
(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
match l with
| [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::.) <$> interleave x l)
end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
match l with [] => [[]] | x :: l => permutations l ≫= interleave x end.
(** The predicate [suffix] holds if the first list is a suffix of the second.
The predicate [prefix] holds if the first list is a prefix of the second. *)
Definition suffix {A} : relation (list A) := λ l1 l2, ∃ k, l2 = k ++ l1.
Definition prefix {A} : relation (list A) := λ l1 l2, ∃ k, l2 = l1 ++ k.
Infix "`suffix_of`" := suffix (at level 70) : stdpp_scope.
Infix "`prefix_of`" := prefix (at level 70) : stdpp_scope.
Global Hint Extern 0 (_ `prefix_of` _) => reflexivity : core.
Global Hint Extern 0 (_ `suffix_of` _) => reflexivity : core.
Section prefix_suffix_ops.
Context `{EqDecision A}.
Definition max_prefix : list A → list A → list A * list A * list A :=
fix go l1 l2 :=
match l1, l2 with
| [], l2 => ([], l2, [])
| l1, [] => (l1, [], [])
| x1 :: l1, x2 :: l2 =>
if decide_rel (=) x1 x2
then prod_map id (x1 ::.) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
end.
Definition max_suffix (l1 l2 : list A) : list A * list A * list A :=
match max_prefix (reverse l1) (reverse l2) with
| (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
end.
Definition strip_prefix (l1 l2 : list A) := (max_prefix l1 l2).1.2.
Definition strip_suffix (l1 l2 : list A) := (max_suffix l1 l2).1.2.
End prefix_suffix_ops.
(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
| sublist_nil : sublist [] []
| sublist_skip x l1 l2 : sublist l1 l2 → sublist (x :: l1) (x :: l2)
| sublist_cons x l1 l2 : sublist l1 l2 → sublist l1 (x :: l2).
Infix "`sublist_of`" := sublist (at level 70) : stdpp_scope.
Global Hint Extern 0 (_ `sublist_of` _) => reflexivity : core.
(** A list [l2] submseteq a list [l1] if [l2] is obtained by removing elements
from [l1] while possibly changing the order. *)
Inductive submseteq {A} : relation (list A) :=
| submseteq_nil : submseteq [] []
| submseteq_skip x l1 l2 : submseteq l1 l2 → submseteq (x :: l1) (x :: l2)
| submseteq_swap x y l : submseteq (y :: x :: l) (x :: y :: l)
| submseteq_cons x l1 l2 : submseteq l1 l2 → submseteq l1 (x :: l2)
| submseteq_trans l1 l2 l3 : submseteq l1 l2 → submseteq l2 l3 → submseteq l1 l3.
Infix "⊆+" := submseteq (at level 70) : stdpp_scope.
Global Hint Extern 0 (_ ⊆+ _) => reflexivity : core.
(** Removes [x] from the list [l]. The function returns a [Some] when the
removal succeeds and [None] when [x] is not in [l]. *)
Fixpoint list_remove `{EqDecision A} (x : A) (l : list A) : option (list A) :=
match l with
| [] => None
| y :: l => if decide (x = y) then Some l else (y ::.) <$> list_remove x l
end.
(** Removes all elements in the list [k] from the list [l]. The function returns
a [Some] when the removal succeeds and [None] some element of [k] is not in [l]. *)
Fixpoint list_remove_list `{EqDecision A} (k : list A) (l : list A) : option (list A) :=
match k with
| [] => Some l | x :: k => list_remove x l ≫= list_remove_list k
end.
Inductive Forall3 {A B C} (P : A → B → C → Prop) :
list A → list B → list C → Prop :=
| Forall3_nil : Forall3 P [] [] []
| Forall3_cons x y z l k k' :
P x y z → Forall3 P l k k' → Forall3 P (x :: l) (y :: k) (z :: k').
(** Set operations on lists *)
Global Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2, ∀ x, x ∈ l1 → x ∈ l2.
Section list_set.
Context `{dec : EqDecision A}.
Global Instance elem_of_list_dec : RelDecision (∈@{list A}).
Proof using Type*.
refine (
fix go x l :=
match l return Decision (x ∈ l) with
| [] => right _
| y :: l => cast_if_or (decide (x = y)) (go x l)
end); clear go dec; subst; try (by constructor); abstract by inv 1.
Defined.
Fixpoint remove_dups (l : list A) : list A :=
match l with
| [] => []
| x :: l =>
if decide_rel (∈) x l then remove_dups l else x :: remove_dups l
end.
Fixpoint list_difference (l k : list A) : list A :=
match l with
| [] => []
| x :: l =>
if decide_rel (∈) x k
then list_difference l k else x :: list_difference l k
end.
Definition list_union (l k : list A) : list A := list_difference l k ++ k.
Fixpoint list_intersection (l k : list A) : list A :=
match l with
| [] => []
| x :: l =>
if decide_rel (∈) x k
then x :: list_intersection l k else list_intersection l k
end.
Definition list_intersection_with (f : A → A → option A) :
list A → list A → list A := fix go l k :=
match l with
| [] => []
| x :: l => foldr (λ y,
match f x y with None => id | Some z => (z ::.) end) (go l k) k
end.
End list_set.
(** These next functions allow to efficiently encode lists of positives (bit
strings) into a single positive and go in the other direction as well. This is
for example used for the countable instance of lists and in namespaces.
The main functions are [positives_flatten] and [positives_unflatten]. *)
Fixpoint positives_flatten_go (xs : list positive) (acc : positive) : positive :=
match xs with
| [] => acc
| x :: xs => positives_flatten_go xs (acc~1~0 ++ Pos.reverse (Pos.dup x))
end.
(** Flatten a list of positives into a single positive by duplicating the bits
of each element, so that:
- [0 -> 00]
- [1 -> 11]
and then separating each element with [10]. *)
Definition positives_flatten (xs : list positive) : positive :=
positives_flatten_go xs 1.
Fixpoint positives_unflatten_go
(p : positive)
(acc_xs : list positive)
(acc_elm : positive)
: option (list positive) :=
match p with
| 1 => Some acc_xs
| p'~0~0 => positives_unflatten_go p' acc_xs (acc_elm~0)
| p'~1~1 => positives_unflatten_go p' acc_xs (acc_elm~1)
| p'~1~0 => positives_unflatten_go p' (acc_elm :: acc_xs) 1
| _ => None
end%positive.
(* TODO: Coq 8.20 has the same lemma under the same name, so remove our version
once we require Coq 8.20. In Coq 8.19 and before, this lemma is called
[app_length]. *)
Lemma length_app {A} (l l' : list A) : length (l ++ l') = length l + length l'.
Proof. induction l; f_equal/=; auto. Qed.
(** Unflatten a positive into a list of positives, assuming the encoding
used by [positives_flatten]. *)
Definition positives_unflatten (p : positive) : option (list positive) :=
positives_unflatten_go p [] 1.
(** * Basic tactics on lists *)
(** The tactic [discriminate_list] discharges a goal if it submseteq
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
Tactic Notation "discriminate_list" hyp(H) :=
apply (f_equal length) in H;
repeat (csimpl in H || rewrite length_app in H); exfalso; lia.
Tactic Notation "discriminate_list" :=
match goal with H : _ =@{list _} _ |- _ => discriminate_list H end.
(** The tactic [simplify_list_eq] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
length l1 = length k1 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
length l2 = length k2 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof.
intros ? Hl. apply app_inj_1; auto.
apply (f_equal length) in Hl. rewrite !length_app in Hl. lia.
Qed.
Ltac simplify_list_eq :=
repeat match goal with
| _ => progress simplify_eq/=
| H : _ ++ _ = _ ++ _ |- _ => first
[ apply app_inv_head in H | apply app_inv_tail in H
| apply app_inj_1 in H; [destruct H|done]
| apply app_inj_2 in H; [destruct H|done] ]
| H : [?x] !! ?i = Some ?y |- _ =>
destruct i; [change (Some x = Some y) in H | discriminate]
end.
(** * General theorems *)
Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
Global Instance cons_eq_inj : Inj2 (=) (=) (=) (@cons A).
Proof. by injection 1. Qed.
Global Instance: ∀ k, Inj (=) (=) (k ++.).
Proof. intros ???. apply app_inv_head. Qed.
Global Instance: ∀ k, Inj (=) (=) (.++ k).
Proof. intros ???. apply app_inv_tail. Qed.
Global Instance: Assoc (=) (@app A).
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.
Lemma app_nil l1 l2 : l1 ++ l2 = [] ↔ l1 = [] ∧ l2 = [].
Proof. split; [apply app_eq_nil|]. by intros [-> ->]. Qed.
Lemma app_singleton l1 l2 x :
l1 ++ l2 = [x] ↔ l1 = [] ∧ l2 = [x] ∨ l1 = [x] ∧ l2 = [].
Proof. split; [apply app_eq_unit|]. by intros [[-> ->]|[-> ->]]. Qed.
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : (∀ i, l1 !! i = l2 !! i) → l1 = l2.
Proof.
revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
- done.
- discriminate (H 0).
- discriminate (H 0).
- f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
Qed.
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
list_eq_dec dec.
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
option_reflect (λ x, l = [x]) (length l ≠ 1) (maybe (λ x, [x]) l).
Proof. by destruct l as [|? []]; constructor. Defined.
Lemma list_eq_Forall2 l1 l2 : l1 = l2 ↔ Forall2 eq l1 l2.
Proof.
split.
- intros <-. induction l1; eauto using Forall2.
- induction 1; naive_solver.
Qed.
Definition length_nil : length (@nil A) = 0 := eq_refl.
Definition length_cons x l : length (x :: l) = S (length l) := eq_refl.
Lemma nil_or_length_pos l : l = [] ∨ length l ≠ 0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length_inv l : length l = 0 → l = [].
Proof. by destruct l. Qed.
Lemma lookup_cons_ne_0 l x i : i ≠ 0 → (x :: l) !! i = l !! pred i.
Proof. by destruct i. Qed.
Lemma lookup_total_cons_ne_0 `{!Inhabited A} l x i :
i ≠ 0 → (x :: l) !!! i = l !!! pred i.
Proof. by destruct i. Qed.
Lemma lookup_nil i : @nil A !! i = None.
Proof. by destruct i. Qed.
Lemma lookup_total_nil `{!Inhabited A} i : @nil A !!! i = inhabitant.
Proof. by destruct i. Qed.
Lemma lookup_tail l i : tail l !! i = l !! S i.
Proof. by destruct l. Qed.
Lemma lookup_total_tail `{!Inhabited A} l i : tail l !!! i = l !!! S i.
Proof. by destruct l. Qed.
Lemma lookup_lt_Some l i x : l !! i = Some x → i < length l.
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i) → i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l → is_Some (l !! i).
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with lia. Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i) ↔ i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None ↔ length l ≤ i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None → length l ≤ i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l ≤ i → l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Lemma list_eq_same_length l1 l2 n :
length l2 = n → length l1 = n →
(∀ i x y, i < n → l1 !! i = Some x → l2 !! i = Some y → x = y) → l1 = l2.
Proof.
intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
- destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
{ rewrite Hlen; eauto using lookup_lt_Some. }
rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
- by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Qed.
Lemma nth_lookup l i d : nth i l d = default d (l !! i).
Proof. revert i. induction l as [|x l IH]; intros [|i]; simpl; auto. Qed.
Lemma nth_lookup_Some l i d x : l !! i = Some x → nth i l d = x.
Proof. rewrite nth_lookup. by intros ->. Qed.
Lemma nth_lookup_or_length l i d : {l !! i = Some (nth i l d)} + {length l ≤ i}.
Proof.
rewrite nth_lookup. destruct (l !! i) eqn:?; eauto using lookup_ge_None_1.
Qed.
Lemma list_lookup_total_alt `{!Inhabited A} l i :
l !!! i = default inhabitant (l !! i).
Proof. revert i. induction l; intros []; naive_solver. Qed.
Lemma list_lookup_total_correct `{!Inhabited A} l i x :
l !! i = Some x → l !!! i = x.
Proof. rewrite list_lookup_total_alt. by intros ->. Qed.
Lemma list_lookup_lookup_total `{!Inhabited A} l i :
is_Some (l !! i) → l !! i = Some (l !!! i).
Proof. rewrite list_lookup_total_alt; by intros [x ->]. Qed.
Lemma list_lookup_lookup_total_lt `{!Inhabited A} l i :
i < length l → l !! i = Some (l !!! i).
Proof. intros ?. by apply list_lookup_lookup_total, lookup_lt_is_Some_2. Qed.
Lemma list_lookup_alt `{!Inhabited A} l i x :
l !! i = Some x ↔ i < length l ∧ l !!! i = x.
Proof.
naive_solver eauto using list_lookup_lookup_total_lt,
list_lookup_total_correct, lookup_lt_Some.
Qed.
Lemma lookup_app l1 l2 i :
(l1 ++ l2) !! i =
match l1 !! i with Some x => Some x | None => l2 !! (i - length l1) end.
Proof. revert i. induction l1 as [|x l1 IH]; intros [|i]; naive_solver. Qed.
Lemma lookup_app_l l1 l2 i : i < length l1 → (l1 ++ l2) !! i = l1 !! i.
Proof. rewrite lookup_app. by intros [? ->]%lookup_lt_is_Some. Qed.
Lemma lookup_total_app_l `{!Inhabited A} l1 l2 i :
i < length l1 → (l1 ++ l2) !!! i = l1 !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_app_l. Qed.
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x → (l1 ++ l2) !! i = Some x.
Proof. rewrite lookup_app. by intros ->. Qed.
Lemma lookup_app_r l1 l2 i :
length l1 ≤ i → (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. rewrite lookup_app. by intros ->%lookup_ge_None. Qed.
Lemma lookup_total_app_r `{!Inhabited A} l1 l2 i :
length l1 ≤ i → (l1 ++ l2) !!! i = l2 !!! (i - length l1).
Proof. intros. by rewrite !list_lookup_total_alt, lookup_app_r. Qed.
Lemma lookup_app_Some l1 l2 i x :
(l1 ++ l2) !! i = Some x ↔
l1 !! i = Some x ∨ length l1 ≤ i ∧ l2 !! (i - length l1) = Some x.
Proof.
rewrite lookup_app. destruct (l1 !! i) eqn:Hi.
- apply lookup_lt_Some in Hi. naive_solver lia.
- apply lookup_ge_None in Hi. naive_solver lia.
Qed.
Lemma lookup_cons x l i :
(x :: l) !! i =
match i with 0 => Some x | S i => l !! i end.
Proof. reflexivity. Qed.
Lemma lookup_cons_Some x l i y :
(x :: l) !! i = Some y ↔
(i = 0 ∧ x = y) ∨ (1 ≤ i ∧ l !! (i - 1) = Some y).
Proof.
rewrite lookup_cons. destruct i as [|i].
- naive_solver lia.
- replace (S i - 1) with i by lia. naive_solver lia.
Qed.
Lemma list_lookup_singleton x i :
[x] !! i =
match i with 0 => Some x | S _ => None end.
Proof. reflexivity. Qed.
Lemma list_lookup_singleton_Some x i y :
[x] !! i = Some y ↔ i = 0 ∧ x = y.
Proof. rewrite lookup_cons_Some. naive_solver. Qed.
Lemma lookup_snoc_Some x l i y :
(l ++ [x]) !! i = Some y ↔
(i < length l ∧ l !! i = Some y) ∨ (i = length l ∧ x = y).
Proof.
rewrite lookup_app_Some, list_lookup_singleton_Some.
naive_solver auto using lookup_lt_is_Some_1 with lia.
Qed.
Lemma list_lookup_middle l1 l2 x n :
n = length l1 → (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.
Lemma list_lookup_total_middle `{!Inhabited A} l1 l2 x n :
n = length l1 → (l1 ++ x :: l2) !!! n = x.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_middle. Qed.
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
Lemma length_alter f l i : length (alter f i l) = length l.
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Lemma length_insert l i x : length (<[i:=x]>l) = length l.
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
Proof.
revert i.
induction l as [|?? IHl]; [done|].
intros [|i]; [done|]. apply (IHl i).
Qed.
Lemma list_lookup_total_alter `{!Inhabited A} f l i :
i < length l → alter f i l !!! i = f (l !!! i).
Proof.
intros [x Hx]%lookup_lt_is_Some_2.
by rewrite !list_lookup_total_alt, list_lookup_alter, Hx.
Qed.
Lemma list_lookup_alter_ne f l i j : i ≠ j → alter f i l !! j = l !! j.
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Lemma list_lookup_total_alter_ne `{!Inhabited A} f l i j :
i ≠ j → alter f i l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_alter_ne. Qed.
Lemma list_lookup_insert l i x : i < length l → <[i:=x]>l !! i = Some x.
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma list_lookup_total_insert `{!Inhabited A} l i x :
i < length l → <[i:=x]>l !!! i = x.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_insert. Qed.
Lemma list_lookup_insert_ne l i j x : i ≠ j → <[i:=x]>l !! j = l !! j.
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Lemma list_lookup_total_insert_ne `{!Inhabited A} l i j x :
i ≠ j → <[i:=x]>l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_insert_ne. Qed.
Lemma list_lookup_insert_Some l i x j y :
<[i:=x]>l !! j = Some y ↔
i = j ∧ x = y ∧ j < length l ∨ i ≠ j ∧ l !! j = Some y.
Proof.
destruct (decide (i = j)) as [->|];
[split|rewrite list_lookup_insert_ne by done; tauto].
- intros Hy. assert (j < length l).
{ rewrite <-(length_insert l j x); eauto using lookup_lt_Some. }
rewrite list_lookup_insert in Hy by done; naive_solver.
- intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
Qed.
Lemma list_insert_commute l i j x y :
i ≠ j → <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Lemma list_insert_id' l i x : (i < length l → l !! i = Some x) → <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] ?; f_equal/=; naive_solver lia. Qed.
Lemma list_insert_id l i x : l !! i = Some x → <[i:=x]>l = l.
Proof. intros ?. by apply list_insert_id'. Qed.
Lemma list_insert_ge l i x : length l ≤ i → <[i:=x]>l = l.
Proof. revert i. induction l; intros [|i] ?; f_equal/=; auto with lia. Qed.
Lemma list_insert_insert l i x y : <[i:=x]> (<[i:=y]> l) = <[i:=x]> l.
Proof. revert i. induction l; intros [|i]; f_equal/=; auto. Qed.
Lemma list_lookup_other l i x :
length l ≠ 1 → l !! i = Some x → ∃ j y, j ≠ i ∧ l !! j = Some y.
Proof.
intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
- by exists 1, x1.
- by exists 0, x0.
Qed.
Lemma alter_app_l f l1 l2 i :
i < length l1 → alter f i (l1 ++ l2) = alter f i l1 ++ l2.
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma alter_app_r f l1 l2 i :
alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Lemma alter_app_r_alt f l1 l2 i :
length l1 ≤ i → alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
rewrite Hi at 1. by apply alter_app_r.
Qed.
Lemma list_alter_id f l i : (∀ x, f x = x) → alter f i l = l.
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma list_alter_ext f g l k i :
(∀ x, l !! i = Some x → f x = g x) → l = k → alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
Lemma list_alter_compose f g l i :
alter (f ∘ g) i l = alter f i (alter g i l).
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma list_alter_commute f g l i j :
i ≠ j → alter f i (alter g j l) = alter g j (alter f i l).
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Lemma insert_app_l l1 l2 i x :
i < length l1 → <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Lemma insert_app_r_alt l1 l2 i x :
length l1 ≤ i → <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof.
intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
rewrite Hi at 1. by apply insert_app_r.
Qed.
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
Proof. induction l1; f_equal/=; auto. Qed.
Lemma length_delete l i :
is_Some (l !! i) → length (delete i l) = length l - 1.
Proof.
rewrite lookup_lt_is_Some. revert i.
induction l as [|x l IH]; intros [|i] ?; simpl in *; [lia..|].
rewrite IH by lia. lia.
Qed.
Lemma lookup_delete_lt l i j : j < i → delete i l !! j = l !! j.
Proof. revert i j; induction l; intros [] []; naive_solver eauto with lia. Qed.
Lemma lookup_total_delete_lt `{!Inhabited A} l i j :
j < i → delete i l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_delete_lt. Qed.
Lemma lookup_delete_ge l i j : i ≤ j → delete i l !! j = l !! S j.
Proof. revert i j; induction l; intros [] []; naive_solver eauto with lia. Qed.
Lemma lookup_total_delete_ge `{!Inhabited A} l i j :
i ≤ j → delete i l !!! j = l !!! S j.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_delete_ge. Qed.
Lemma length_inserts l i k : length (list_inserts i k l) = length l.
Proof.
revert i. induction k; intros ?; csimpl; rewrite ?length_insert; auto.
Qed.
Lemma list_lookup_inserts l i k j :
i ≤ j < i + length k → j < length l →
list_inserts i k l !! j = k !! (j - i).
Proof.
revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
destruct (decide (i = j)) as [->|].
{ by rewrite list_lookup_insert, Nat.sub_diag
by (rewrite length_inserts; lia). }
rewrite list_lookup_insert_ne, IH by lia.
by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_total_inserts `{!Inhabited A} l i k j :
i ≤ j < i + length k → j < length l →
list_inserts i k l !!! j = k !!! (j - i).
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_inserts. Qed.
Lemma list_lookup_inserts_lt l i k j :
j < i → list_inserts i k l !! j = l !! j.
Proof.
revert i j. induction k; intros i j ?; csimpl;
rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_total_inserts_lt `{!Inhabited A}l i k j :
j < i → list_inserts i k l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_inserts_lt. Qed.
Lemma list_lookup_inserts_ge l i k j :
i + length k ≤ j → list_inserts i k l !! j = l !! j.
Proof.
revert i j. induction k; csimpl; intros i j ?;
rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_total_inserts_ge `{!Inhabited A} l i k j :
i + length k ≤ j → list_inserts i k l !!! j = l !!! j.
Proof. intros. by rewrite !list_lookup_total_alt, list_lookup_inserts_ge. Qed.
Lemma list_lookup_inserts_Some l i k j y :
list_inserts i k l !! j = Some y ↔
(j < i ∨ i + length k ≤ j) ∧ l !! j = Some y ∨
i ≤ j < i + length k ∧ j < length l ∧ k !! (j - i) = Some y.
Proof.
destruct (decide (j < i)).
{ rewrite list_lookup_inserts_lt by done; intuition lia. }
destruct (decide (i + length k ≤ j)).
{ rewrite list_lookup_inserts_ge by done; intuition lia. }
split.
- intros Hy. assert (j < length l).
{ rewrite <-(length_inserts l i k); eauto using lookup_lt_Some. }
rewrite list_lookup_inserts in Hy by lia. intuition lia.
- intuition. by rewrite list_lookup_inserts by lia.
Qed.
Lemma list_insert_inserts_lt l i j x k :
i < j → <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
revert i j. induction k; intros i j ?; simpl;
rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.
Lemma list_inserts_app_l l1 l2 l3 i :
list_inserts i (l1 ++ l2) l3 = list_inserts (length l1 + i) l2 (list_inserts i l1 l3).
Proof.
revert i; induction l1 as [|x l1 IH]; [done|].
intro i. simpl. rewrite IH, Nat.add_succ_r. apply list_insert_inserts_lt. lia.
Qed.
Lemma list_inserts_app_r l1 l2 l3 i :
list_inserts (length l2 + i) l1 (l2 ++ l3) = l2 ++ list_inserts i l1 l3.
Proof.
revert i; induction l1 as [|x l1 IH]; [done|].
intros i. simpl. by rewrite plus_n_Sm, IH, insert_app_r.
Qed.
Lemma list_inserts_nil l1 i : list_inserts i l1 [] = [].
Proof.
revert i; induction l1 as [|x l1 IH]; [done|].
intro i. simpl. by rewrite IH.
Qed.
Lemma list_inserts_cons l1 l2 i x :
list_inserts (S i) l1 (x :: l2) = x :: list_inserts i l1 l2.
Proof.
revert i; induction l1 as [|y l1 IH]; [done|].
intro i. simpl. by rewrite IH.
Qed.
Lemma list_inserts_0_r l1 l2 l3 :
length l1 = length l2 → list_inserts 0 l1 (l2 ++ l3) = l1 ++ l3.
Proof.
revert l2. induction l1 as [|x l1 IH]; intros [|y l2] ?; simplify_eq/=; [done|].
rewrite list_inserts_cons. simpl. by rewrite IH.
Qed.
Lemma list_inserts_0_l l1 l2 l3 :
length l1 = length l3 → list_inserts 0 (l1 ++ l2) l3 = l1.
Proof.
revert l3. induction l1 as [|x l1 IH]; intros [|z l3] ?; simplify_eq/=.
{ by rewrite list_inserts_nil. }
rewrite list_inserts_cons. simpl. by rewrite IH.
Qed.
(** ** Properties of the [reverse] function *)
Lemma reverse_nil : reverse [] =@{list A} [].
Proof. done. Qed.
Lemma reverse_singleton x : reverse [x] = [x].
Proof. done. Qed.
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Lemma length_reverse l : length (reverse l) = length l.
Proof.
induction l as [|x l IH]; [done|].
rewrite reverse_cons, length_app, IH. simpl. lia.
Qed.
Lemma reverse_involutive l : reverse (reverse l) = l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
Lemma reverse_lookup l i :
i < length l →
reverse l !! i = l !! (length l - S i).
Proof.
revert i. induction l as [|x l IH]; simpl; intros i Hi; [done|].
rewrite reverse_cons.
destruct (decide (i = length l)); subst.
+ by rewrite list_lookup_middle, Nat.sub_diag by by rewrite length_reverse.
+ rewrite lookup_app_l by (rewrite length_reverse; lia).
rewrite IH by lia.
by assert (length l - i = S (length l - S i)) as -> by lia.
Qed.
Lemma reverse_lookup_Some l i x :
reverse l !! i = Some x ↔ l !! (length l - S i) = Some x ∧ i < length l.
Proof.
split.
- destruct (decide (i < length l)); [ by rewrite reverse_lookup|].
rewrite lookup_ge_None_2; [done|]. rewrite length_reverse. lia.
- intros [??]. by rewrite reverse_lookup.
Qed.
Global Instance: Inj (=) (=) (@reverse A).
Proof.
intros l1 l2 Hl.
by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
(** ** Properties of the [elem_of] predicate *)
Lemma not_elem_of_nil x : x ∉ [].
Proof. by inv 1. Qed.
Lemma elem_of_nil x : x ∈ [] ↔ False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Lemma elem_of_nil_inv l : (∀ x, x ∉ l) → l = [].
Proof. destruct l; [done|]. by edestruct 1; constructor. Qed.
Lemma elem_of_not_nil x l : x ∈ l → l ≠ [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
Lemma elem_of_cons l x y : x ∈ y :: l ↔ x = y ∨ x ∈ l.
Proof. by split; [inv 1; subst|intros [->|?]]; constructor. Qed.
Lemma not_elem_of_cons l x y : x ∉ y :: l ↔ x ≠ y ∧ x ∉ l.
Proof. rewrite elem_of_cons. tauto. Qed.
Lemma elem_of_app l1 l2 x : x ∈ l1 ++ l2 ↔ x ∈ l1 ∨ x ∈ l2.
Proof.
induction l1 as [|y l1 IH]; simpl.
- rewrite elem_of_nil. naive_solver.
- rewrite !elem_of_cons, IH. naive_solver.
Qed.
Lemma not_elem_of_app l1 l2 x : x ∉ l1 ++ l2 ↔ x ∉ l1 ∧ x ∉ l2.
Proof. rewrite elem_of_app. tauto. Qed.
Lemma elem_of_list_singleton x y : x ∈ [y] ↔ x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Lemma elem_of_reverse_2 x l : x ∈ l → x ∈ reverse l.
Proof.
induction 1; rewrite reverse_cons, elem_of_app,
?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x ∈ reverse l ↔ x ∈ l.
Proof.
split; auto using elem_of_reverse_2.
intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
Lemma elem_of_list_lookup_1 l x : x ∈ l → ∃ i, l !! i = Some x.
Proof.
induction 1 as [|???? IH]; [by exists 0 |].
destruct IH as [i ?]; auto. by exists (S i).
Qed.
Lemma elem_of_list_lookup_total_1 `{!Inhabited A} l x :
x ∈ l → ∃ i, i < length l ∧ l !!! i = x.
Proof.
intros [i Hi]%elem_of_list_lookup_1.
eauto using lookup_lt_Some, list_lookup_total_correct.
Qed.
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x → x ∈ l.
Proof.
revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
Qed.
Lemma elem_of_list_lookup_total_2 `{!Inhabited A} l i :
i < length l → l !!! i ∈ l.
Proof. intros. by eapply elem_of_list_lookup_2, list_lookup_lookup_total_lt. Qed.
Lemma elem_of_list_lookup l x : x ∈ l ↔ ∃ i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
Lemma elem_of_list_lookup_total `{!Inhabited A} l x :
x ∈ l ↔ ∃ i, i < length l ∧ l !!! i = x.
Proof.
naive_solver eauto using elem_of_list_lookup_total_1, elem_of_list_lookup_total_2.
Qed.
Lemma elem_of_list_split_length l i x :
l !! i = Some x → ∃ l1 l2, l = l1 ++ x :: l2 ∧ i = length l1.
Proof.
revert i; induction l as [|y l IH]; intros [|i] Hl; simplify_eq/=.
- exists []; eauto.
- destruct (IH _ Hl) as (?&?&?&?); simplify_eq/=.
eexists (y :: _); eauto.
Qed.
Lemma elem_of_list_split l x : x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2.
Proof.
intros [? (?&?&?&_)%elem_of_list_split_length]%elem_of_list_lookup_1; eauto.
Qed.
Lemma elem_of_list_split_l `{EqDecision A} l x :
x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2 ∧ x ∉ l1.
Proof.
induction 1 as [x l|x y l ? IH].
{ exists [], l. rewrite elem_of_nil. naive_solver. }
destruct (decide (x = y)) as [->|?].
- exists [], l. rewrite elem_of_nil. naive_solver.
- destruct IH as (l1 & l2 & -> & ?).
exists (y :: l1), l2. rewrite elem_of_cons. naive_solver.
Qed.
Lemma elem_of_list_split_r `{EqDecision A} l x :
x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2 ∧ x ∉ l2.
Proof.
induction l as [|y l IH] using rev_ind.
{ by rewrite elem_of_nil. }
destruct (decide (x = y)) as [->|].
- exists l, []. rewrite elem_of_nil. naive_solver.
- rewrite elem_of_app, elem_of_list_singleton. intros [?| ->]; try done.
destruct IH as (l1 & l2 & -> & ?); auto.
exists l1, (l2 ++ [y]).
rewrite elem_of_app, elem_of_list_singleton, <-(assoc_L (++)). naive_solver.
Qed.
Lemma list_elem_of_insert l i x : i < length l → x ∈ <[i:=x]>l.
Proof. intros. by eapply elem_of_list_lookup_2, list_lookup_insert. Qed.
Lemma nth_elem_of l i d : i < length l → nth i l d ∈ l.
Proof.
intros; eapply elem_of_list_lookup_2.
destruct (nth_lookup_or_length l i d); [done | by lia].
Qed.
Lemma not_elem_of_app_cons_inv_l x y l1 l2 k1 k2 :
x ∉ k1 → y ∉ l1 →
l1 ++ x :: l2 = k1 ++ y :: k2 →
l1 = k1 ∧ x = y ∧ l2 = k2.
Proof.
revert k1. induction l1 as [|x' l1 IH]; intros [|y' k1] Hx Hy ?; simplify_eq/=;
try apply not_elem_of_cons in Hx as [??];
try apply not_elem_of_cons in Hy as [??]; naive_solver.
Qed.
Lemma not_elem_of_app_cons_inv_r x y l1 l2 k1 k2 :
x ∉ k2 → y ∉ l2 →
l1 ++ x :: l2 = k1 ++ y :: k2 →
l1 = k1 ∧ x = y ∧ l2 = k2.
Proof.
intros. destruct (not_elem_of_app_cons_inv_l x y (reverse l2) (reverse l1)
(reverse k2) (reverse k1)); [..|naive_solver].
- by rewrite elem_of_reverse.
- by rewrite elem_of_reverse.
- rewrite <-!reverse_snoc, <-!reverse_app, <-!(assoc_L (++)). by f_equal.
Qed.
(** The Cartesian product *)
(** Correspondence to [list_prod] from the stdlib, a version that does not use
the [CProd] class for the interface, nor the monad classes for the definition *)
Lemma list_cprod_list_prod {B} l (k : list B) : cprod l k = list_prod l k.
Proof. unfold cprod, list_cprod. induction l; f_equal/=; auto. Qed.
Lemma elem_of_list_cprod {B} l (k : list B) (x : A * B) :
x ∈ cprod l k ↔ x.1 ∈ l ∧ x.2 ∈ k.
Proof.
rewrite list_cprod_list_prod, !elem_of_list_In.
destruct x. apply in_prod_iff.
Qed.
(** ** Properties of the [NoDup] predicate *)
Lemma NoDup_nil : NoDup (@nil A) ↔ True.
Proof. split; constructor. Qed.
Lemma NoDup_cons x l : NoDup (x :: l) ↔ x ∉ l ∧ NoDup l.
Proof. split; [by inv 1|]. intros [??]. by constructor. Qed.
Lemma NoDup_cons_1_1 x l : NoDup (x :: l) → x ∉ l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_1_2 x l : NoDup (x :: l) → NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_singleton x : NoDup [x].
Proof. constructor; [apply not_elem_of_nil | constructor]. Qed.
Lemma NoDup_app l k : NoDup (l ++ k) ↔ NoDup l ∧ (∀ x, x ∈ l → x ∉ k) ∧ NoDup k.
Proof.
induction l; simpl.
- rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
- rewrite !NoDup_cons.
setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Qed.
Lemma NoDup_lookup l i j x :
NoDup l → l !! i = Some x → l !! j = Some x → i = j.
Proof.
intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
{ intros; simplify_eq. }
intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
exfalso; eauto using elem_of_list_lookup_2.
Qed.
Lemma NoDup_alt l :
NoDup l ↔ ∀ i j x, l !! i = Some x → l !! j = Some x → i = j.
Proof.
split; eauto using NoDup_lookup.
induction l as [|x l IH]; intros Hl; constructor.
- rewrite elem_of_list_lookup. intros [i ?].
opose proof* (Hl (S i) 0); by auto.
- apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
Qed.
Section no_dup_dec.
Context `{!EqDecision A}.
Global Instance NoDup_dec: ∀ l, Decision (NoDup l) :=
fix NoDup_dec l :=
match l return Decision (NoDup l) with
| [] => left NoDup_nil_2
| x :: l =>
match decide_rel (∈) x l with
| left Hin => right (λ H, NoDup_cons_1_1 _ _ H Hin)
| right Hin =>
match NoDup_dec l with
| left H => left (NoDup_cons_2 _ _ Hin H)
| right H => right (H ∘ NoDup_cons_1_2 _ _)
end
end
end.
Lemma elem_of_remove_dups l x : x ∈ remove_dups l ↔ x ∈ l.
Proof.
split; induction l; simpl; repeat case_decide;
rewrite ?elem_of_cons; intuition (simplify_eq; auto).
Qed.
Lemma NoDup_remove_dups l : NoDup (remove_dups l).
Proof.
induction l; simpl; repeat case_decide; try constructor; auto.
by rewrite elem_of_remove_dups.
Qed.
End no_dup_dec.
(** ** Set operations on lists *)
Section list_set.
Lemma elem_of_list_intersection_with f l k x :
x ∈ list_intersection_with f l k ↔ ∃ x1 x2,
x1 ∈ l ∧ x2 ∈ k ∧ f x1 x2 = Some x.
Proof.
split.
- induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
intros Hx. setoid_rewrite elem_of_cons.
cut ((∃ x2, x2 ∈ k ∧ f x1 x2 = Some x)
∨ x ∈ list_intersection_with f l k); [naive_solver|].
clear IH. revert Hx. generalize (list_intersection_with f l k).
induction k; simpl; [by auto|].
case_match; setoid_rewrite elem_of_cons; naive_solver.
- intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1 l|x1 ? l ? IH]; simpl.
+ generalize (list_intersection_with f l k).
induction Hx2; simpl; [by rewrite Hx; left |].
case_match; simpl; try setoid_rewrite elem_of_cons; auto.
+ generalize (IH Hx). clear Hx IH Hx2.
generalize (list_intersection_with f l k).
induction k; simpl; intros; [done|].
case_match; simpl; rewrite ?elem_of_cons; auto.
Qed.
Context `{!EqDecision A}.
Lemma elem_of_list_difference l k x : x ∈ list_difference l k ↔ x ∈ l ∧ x ∉ k.
Proof.
split; induction l; simpl; try case_decide;
rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
Qed.
Lemma NoDup_list_difference l k : NoDup l → NoDup (list_difference l k).
Proof.
induction 1; simpl; try case_decide.
- constructor.
- done.
- constructor; [|done]. rewrite elem_of_list_difference; intuition.
Qed.
Lemma elem_of_list_union l k x : x ∈ list_union l k ↔ x ∈ l ∨ x ∈ k.
Proof.
unfold list_union. rewrite elem_of_app, elem_of_list_difference.
intuition. case (decide (x ∈ k)); intuition.
Qed.
Lemma NoDup_list_union l k : NoDup l → NoDup k → NoDup (list_union l k).
Proof.
intros. apply NoDup_app. repeat split.
- by apply NoDup_list_difference.
- intro. rewrite elem_of_list_difference. intuition.
- done.
Qed.
Lemma elem_of_list_intersection l k x :
x ∈ list_intersection l k ↔ x ∈ l ∧ x ∈ k.
Proof.
split; induction l; simpl; repeat case_decide;
rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
Qed.
Lemma NoDup_list_intersection l k : NoDup l → NoDup (list_intersection l k).
Proof.
induction 1; simpl; try case_decide.
- constructor.
- constructor; [|done]. rewrite elem_of_list_intersection; intuition.
- done.
Qed.
End list_set.
(** ** Properties of the [last] function *)
Lemma last_nil : last [] =@{option A} None.
Proof. done. Qed.
Lemma last_singleton x : last [x] = Some x.
Proof. done. Qed.
Lemma last_cons_cons x1 x2 l : last (x1 :: x2 :: l) = last (x2 :: l).
Proof. done. Qed.
Lemma last_app_cons l1 l2 x :
last (l1 ++ x :: l2) = last (x :: l2).
Proof. induction l1 as [|y [|y' l1] IHl]; done. Qed.
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
Lemma last_None l : last l = None ↔ l = [].
Proof.
split; [|by intros ->].
induction l as [|x1 [|x2 l] IH]; naive_solver.
Qed.
Lemma last_Some l x : last l = Some x ↔ ∃ l', l = l' ++ [x].
Proof.
split.
- destruct l as [|x' l'] using rev_ind; [done|].
rewrite last_snoc. naive_solver.
- intros [l' ->]. by rewrite last_snoc.
Qed.
Lemma last_is_Some l : is_Some (last l) ↔ l ≠ [].
Proof. rewrite <-not_eq_None_Some, last_None. naive_solver. Qed.
Lemma last_app l1 l2 :
last (l1 ++ l2) = match last l2 with Some y => Some y | None => last l1 end.
Proof.
destruct l2 as [|x l2 _] using rev_ind.
- by rewrite (right_id_L _ (++)).
- by rewrite (assoc_L (++)), !last_snoc.
Qed.
Lemma last_cons x l :
last (x :: l) = match last l with Some y => Some y | None => Some x end.
Proof. by apply (last_app [x]). Qed.
Lemma last_cons_Some_ne x y l :
x ≠ y → last (x :: l) = Some y → last l = Some y.
Proof. rewrite last_cons. destruct (last l); naive_solver. Qed.
Lemma last_lookup l : last l = l !! pred (length l).
Proof. by induction l as [| ?[]]. Qed.
Lemma last_reverse l : last (reverse l) = head l.
Proof. destruct l as [|x l]; simpl; by rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma last_Some_elem_of l x :
last l = Some x → x ∈ l.
Proof.
rewrite last_Some. intros [l' ->]. apply elem_of_app. right.
by apply elem_of_list_singleton.
Qed.
(** ** Properties of the [head] function *)
Lemma head_nil : head [] =@{option A} None.
Proof. done. Qed.
Lemma head_cons x l : head (x :: l) = Some x.
Proof. done. Qed.
Lemma head_None l : head l = None ↔ l = [].
Proof. split; [|by intros ->]. by destruct l. Qed.
Lemma head_Some l x : head l = Some x ↔ ∃ l', l = x :: l'.
Proof. split; [destruct l as [|x' l]; naive_solver | by intros [l' ->]]. Qed.
Lemma head_is_Some l : is_Some (head l) ↔ l ≠ [].
Proof. rewrite <-not_eq_None_Some, head_None. naive_solver. Qed.
Lemma head_snoc x l :
head (l ++ [x]) = match head l with Some y => Some y | None => Some x end.
Proof. by destruct l. Qed.
Lemma head_snoc_snoc x1 x2 l :
head (l ++ [x1; x2]) = head (l ++ [x1]).
Proof. by destruct l. Qed.
Lemma head_lookup l : head l = l !! 0.
Proof. by destruct l. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.
Lemma head_Some_elem_of l x :
head l = Some x → x ∈ l.
Proof. rewrite head_Some. intros [l' ->]. left. Qed.
(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
l !! i = Some x → take i l ++ x :: drop (S i) l = l.
Proof.
revert i x. induction l; intros [|?] ??; simplify_eq/=; f_equal; auto.
Qed.
Lemma take_0 l : take 0 l = [].
Proof. reflexivity. Qed.
Lemma take_nil n : take n [] =@{list A} [].
Proof. by destruct n. Qed.
Lemma take_S_r l n x : l !! n = Some x → take (S n) l = take n l ++ [x].
Proof. revert n. induction l; intros []; naive_solver eauto with f_equal. Qed.
Lemma take_ge l n : length l ≤ n → take n l = l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
(** [take_app] is the most general lemma for [take] and [app]. Below that we
establish a number of useful corollaries. *)
Lemma take_app l k n : take n (l ++ k) = take n l ++ take (n - length l) k.
Proof. apply firstn_app. Qed.
Lemma take_app_ge l k n :
length l ≤ n → take n (l ++ k) = l ++ take (n - length l) k.
Proof. intros. by rewrite take_app, take_ge. Qed.
Lemma take_app_le l k n : n ≤ length l → take n (l ++ k) = take n l.
Proof.
intros. by rewrite take_app, (proj2 (Nat.sub_0_le _ _)), take_0, (right_id _ _).
Qed.
Lemma take_app_add l k m :
take (length l + m) (l ++ k) = l ++ take m k.
Proof. rewrite take_app, take_ge by lia. repeat f_equal; lia. Qed.
Lemma take_app_add' l k n m :
n = length l → take (n + m) (l ++ k) = l ++ take m k.
Proof. intros ->. apply take_app_add. Qed.
Lemma take_app_length l k : take (length l) (l ++ k) = l.
Proof. by rewrite take_app, take_ge, Nat.sub_diag, take_0, (right_id _ _). Qed.
Lemma take_app_length' l k n : n = length l → take n (l ++ k) = l.
Proof. intros ->. by apply take_app_length. Qed.
Lemma take_app3_length l1 l2 l3 : take (length l1) ((l1 ++ l2) ++ l3) = l1.
Proof. by rewrite <-(assoc_L (++)), take_app_length. Qed.
Lemma take_app3_length' l1 l2 l3 n :
n = length l1 → take n ((l1 ++ l2) ++ l3) = l1.
Proof. intros ->. by apply take_app3_length. Qed.
Lemma take_take l n m : take n (take m l) = take (min n m) l.
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
Lemma take_idemp l n : take n (take n l) = take n l.
Proof. by rewrite take_take, Nat.min_id. Qed.
Lemma length_take l n : length (take n l) = min n (length l).
Proof. revert n. induction l; intros [|?]; f_equal/=; done. Qed.
Lemma length_take_le l n : n ≤ length l → length (take n l) = n.
Proof. rewrite length_take. apply Nat.min_l. Qed.
Lemma length_take_ge l n : length l ≤ n → length (take n l) = length l.
Proof. rewrite length_take. apply Nat.min_r. Qed.
Lemma take_drop_commute l n m : take n (drop m l) = drop m (take (m + n) l).
Proof.
revert n m. induction l; intros [|?][|?]; simpl; auto using take_nil with lia.
Qed.
Lemma lookup_take l n i : i < n → take n l !! i = l !! i.
Proof. revert n i. induction l; intros [|n] [|i] ?; simpl; auto with lia. Qed.
Lemma lookup_total_take `{!Inhabited A} l n i : i < n → take n l !!! i = l !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_take. Qed.
Lemma lookup_take_ge l n i : n ≤ i → take n l !! i = None.
Proof. revert n i. induction l; intros [|?] [|?] ?; simpl; auto with lia. Qed.
Lemma lookup_total_take_ge `{!Inhabited A} l n i : n ≤ i → take n l !!! i = inhabitant.
Proof. intros. by rewrite list_lookup_total_alt, lookup_take_ge. Qed.
Lemma lookup_take_Some l n i a : take n l !! i = Some a ↔ l !! i = Some a ∧ i < n.
Proof.
split.
- destruct (decide (i < n)).
+ rewrite lookup_take; naive_solver.
+ rewrite lookup_take_ge; [done|lia].
- intros [??]. by rewrite lookup_take.
Qed.
Lemma elem_of_take x n l : x ∈ take n l ↔ ∃ i, l !! i = Some x ∧ i < n.
Proof.
rewrite elem_of_list_lookup. setoid_rewrite lookup_take_Some. naive_solver.
Qed.
Lemma take_alter f l n i : n ≤ i → take n (alter f i l) = take n l.
Proof.
intros. apply list_eq. intros j. destruct (le_lt_dec n j).
- by rewrite !lookup_take_ge.
- by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Qed.
Lemma take_insert l n i x : n ≤ i → take n (<[i:=x]>l) = take n l.
Proof.
intros. apply list_eq. intros j. destruct (le_lt_dec n j).
- by rewrite !lookup_take_ge.
- by rewrite !lookup_take, !list_lookup_insert_ne by lia.
Qed.
Lemma take_insert_lt l n i x : i < n → take n (<[i:=x]>l) = <[i:=x]>(take n l).
Proof.
revert l i. induction n as [|? IHn]; auto; simpl.
intros [|] [|] ?; auto; simpl. by rewrite IHn by lia.
Qed.
(** ** Properties of the [drop] function *)
Lemma drop_0 l : drop 0 l = l.
Proof. done. Qed.
Lemma drop_nil n : drop n [] =@{list A} [].
Proof. by destruct n. Qed.
Lemma drop_S l x n :
l !! n = Some x → drop n l = x :: drop (S n) l.
Proof. revert n. induction l; intros []; naive_solver. Qed.
Lemma length_drop l n : length (drop n l) = length l - n.
Proof. revert n. by induction l; intros [|i]; f_equal/=. Qed.
Lemma drop_ge l n : length l ≤ n → drop n l = [].
Proof. revert n. induction l; intros [|?]; simpl in *; auto with lia. Qed.
Lemma drop_all l : drop (length l) l = [].
Proof. by apply drop_ge. Qed.
Lemma drop_drop l n1 n2 : drop n1 (drop n2 l) = drop (n2 + n1) l.
Proof. revert n2. induction l; intros [|?]; simpl; rewrite ?drop_nil; auto. Qed.
(** [drop_app] is the most general lemma for [drop] and [app]. Below we prove a
number of useful corollaries. *)
Lemma drop_app l k n : drop n (l ++ k) = drop n l ++ drop (n - length l) k.
Proof. apply skipn_app. Qed.
Lemma drop_app_ge l k n :
length l ≤ n → drop n (l ++ k) = drop (n - length l) k.
Proof. intros. by rewrite drop_app, drop_ge. Qed.
Lemma drop_app_le l k n :
n ≤ length l → drop n (l ++ k) = drop n l ++ k.
Proof. intros. by rewrite drop_app, (proj2 (Nat.sub_0_le _ _)), drop_0. Qed.
Lemma drop_app_add l k m :
drop (length l + m) (l ++ k) = drop m k.
Proof. rewrite drop_app, drop_ge by lia. simpl. f_equal; lia. Qed.
Lemma drop_app_add' l k n m :
n = length l → drop (n + m) (l ++ k) = drop m k.
Proof. intros ->. apply drop_app_add. Qed.
Lemma drop_app_length l k : drop (length l) (l ++ k) = k.
Proof. by rewrite drop_app_le, drop_all. Qed.
Lemma drop_app_length' l k n : n = length l → drop n (l ++ k) = k.
Proof. intros ->. by apply drop_app_length. Qed.
Lemma drop_app3_length l1 l2 l3 :
drop (length l1) ((l1 ++ l2) ++ l3) = l2 ++ l3.
Proof. by rewrite <-(assoc_L (++)), drop_app_length. Qed.
Lemma drop_app3_length' l1 l2 l3 n :
n = length l1 → drop n ((l1 ++ l2) ++ l3) = l2 ++ l3.
Proof. intros ->. apply drop_app3_length. Qed.
Lemma lookup_drop l n i : drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Lemma lookup_total_drop `{!Inhabited A} l n i : drop n l !!! i = l !!! (n + i).
Proof. by rewrite !list_lookup_total_alt, lookup_drop. Qed.
Lemma drop_alter f l n i : i < n → drop n (alter f i l) = drop n l.
Proof.
intros. apply list_eq. intros j.
by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Lemma drop_insert_le l n i x : n ≤ i → drop n (<[i:=x]>l) = <[i-n:=x]>(drop n l).
Proof. revert i n. induction l; intros [] []; naive_solver lia. Qed.
Lemma drop_insert_gt l n i x : i < n → drop n (<[i:=x]>l) = drop n l.
Proof.
intros. apply list_eq. intros j.
by rewrite !lookup_drop, !list_lookup_insert_ne by lia.
Qed.
Lemma delete_take_drop l i : delete i l = take i l ++ drop (S i) l.
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma take_take_drop l n m : take n l ++ take m (drop n l) = take (n + m) l.
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
Lemma drop_take_drop l n m : n ≤ m → drop n (take m l) ++ drop m l = drop n l.
Proof.
revert n m. induction l; intros [|?] [|?] ?;
f_equal/=; auto using take_drop with lia.
Qed.
Lemma insert_take_drop l i x :
i < length l →
<[i:=x]> l = take i l ++ x :: drop (S i) l.
Proof.
intros Hi.
rewrite <-(take_drop_middle (<[i:=x]> l) i x).
2:{ by rewrite list_lookup_insert. }
rewrite take_insert by done.
rewrite drop_insert_gt by lia.
done.
Qed.
(** ** Interaction between the [take]/[drop]/[reverse] functions *)
Lemma take_reverse l n : take n (reverse l) = reverse (drop (length l - n) l).
Proof. unfold reverse; rewrite <-!rev_alt. apply firstn_rev. Qed.
Lemma drop_reverse l n : drop n (reverse l) = reverse (take (length l - n) l).
Proof. unfold reverse; rewrite <-!rev_alt. apply skipn_rev. Qed.
Lemma reverse_take l n : reverse (take n l) = drop (length l - n) (reverse l).
Proof.
rewrite drop_reverse. destruct (decide (n ≤ length l)).
- repeat f_equal; lia.
- by rewrite !take_ge by lia.
Qed.
Lemma reverse_drop l n : reverse (drop n l) = take (length l - n) (reverse l).
Proof.
rewrite take_reverse. destruct (decide (n ≤ length l)).
- repeat f_equal; lia.
- by rewrite !drop_ge by lia.
Qed.
(** ** Other lemmas that use [take]/[drop] in their proof. *)
Lemma app_eq_inv l1 l2 k1 k2 :
l1 ++ l2 = k1 ++ k2 →
(∃ k, l1 = k1 ++ k ∧ k2 = k ++ l2) ∨ (∃ k, k1 = l1 ++ k ∧ l2 = k ++ k2).
Proof.
intros Hlk. destruct (decide (length l1 < length k1)).
- right. rewrite <-(take_drop (length l1) k1), <-(assoc_L _) in Hlk.
apply app_inj_1 in Hlk as [Hl1 Hl2]; [|rewrite length_take; lia].
exists (drop (length l1) k1). by rewrite Hl1 at 1; rewrite take_drop.
- left. rewrite <-(take_drop (length k1) l1), <-(assoc_L _) in Hlk.
apply app_inj_1 in Hlk as [Hk1 Hk2]; [|rewrite length_take; lia].
exists (drop (length k1) l1). by rewrite <-Hk1 at 1; rewrite take_drop.
Qed.
(** ** Properties of the [replicate] function *)
Lemma length_replicate n x : length (replicate n x) = n.
Proof. induction n; simpl; auto. Qed.
Lemma lookup_replicate n x y i :
replicate n x !! i = Some y ↔ y = x ∧ i < n.
Proof.
split.
- revert i. induction n; intros [|?]; naive_solver auto with lia.
- intros [-> Hi]. revert i Hi.
induction n; intros [|?]; naive_solver auto with lia.
Qed.
Lemma elem_of_replicate n x y : y ∈ replicate n x ↔ y = x ∧ n ≠ 0.
Proof.
rewrite elem_of_list_lookup, Nat.neq_0_lt_0.
setoid_rewrite lookup_replicate; naive_solver eauto with lia.
Qed.
Lemma lookup_replicate_1 n x y i :
replicate n x !! i = Some y → y = x ∧ i < n.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_replicate_2 n x i : i < n → replicate n x !! i = Some x.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_total_replicate_2 `{!Inhabited A} n x i :
i < n → replicate n x !!! i = x.
Proof. intros. by rewrite list_lookup_total_alt, lookup_replicate_2. Qed.
Lemma lookup_replicate_None n x i : n ≤ i ↔ replicate n x !! i = None.
Proof.
rewrite eq_None_not_Some, Nat.le_ngt. split.
- intros Hin [x' Hx']; destruct Hin. rewrite lookup_replicate in Hx'; tauto.
- intros Hx ?. destruct Hx. exists x; auto using lookup_replicate_2.
Qed.
Lemma insert_replicate x n i : <[i:=x]>(replicate n x) = replicate n x.
Proof. revert i. induction n; intros [|?]; f_equal/=; auto. Qed.
Lemma insert_replicate_lt x y n i :
i < n →
<[i:=y]>(replicate n x) = replicate i x ++ y :: replicate (n - S i) x.
Proof.
revert i. induction n as [|n IH]; intros [|i] Hi; simpl; [lia..| |].
- by rewrite Nat.sub_0_r.
- by rewrite IH by lia.
Qed.
Lemma elem_of_replicate_inv x n y : x ∈ replicate n y → x = y.
Proof. induction n; simpl; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Lemma replicate_S n x : replicate (S n) x = x :: replicate n x.
Proof. done. Qed.
Lemma replicate_S_end n x : replicate (S n) x = replicate n x ++ [x].
Proof. induction n; f_equal/=; auto. Qed.
Lemma replicate_add n m x :
replicate (n + m) x = replicate n x ++ replicate m x.
Proof. induction n; f_equal/=; auto. Qed.
Lemma replicate_cons_app n x :
x :: replicate n x = replicate n x ++ [x].
Proof. induction n; f_equal/=; eauto. Qed.
Lemma take_replicate n m x : take n (replicate m x) = replicate (min n m) x.
Proof. revert m. by induction n; intros [|?]; f_equal/=. Qed.
Lemma take_replicate_add n m x : take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Lemma drop_replicate n m x : drop n (replicate m x) = replicate (m - n) x.
Proof. revert m. by induction n; intros [|?]; f_equal/=. Qed.
Lemma drop_replicate_add n m x : drop n (replicate (n + m) x) = replicate m x.
Proof. rewrite drop_replicate. f_equal. lia. Qed.
Lemma replicate_as_elem_of x n l :
replicate n x = l ↔ length l = n ∧ ∀ y, y ∈ l → y = x.
Proof.
split; [intros <-; eauto using elem_of_replicate_inv, length_replicate|].
intros [<- Hl]. symmetry. induction l as [|y l IH]; f_equal/=.
- apply Hl. by left.
- apply IH. intros ??. apply Hl. by right.
Qed.
Lemma reverse_replicate n x : reverse (replicate n x) = replicate n x.
Proof.
symmetry. apply replicate_as_elem_of.
rewrite length_reverse, length_replicate. split; auto.
intros y. rewrite elem_of_reverse. by apply elem_of_replicate_inv.
Qed.
Lemma replicate_false βs n : length βs = n → replicate n false =.>* βs.
Proof. intros <-. by induction βs; simpl; constructor. Qed.
Lemma tail_replicate x n : tail (replicate n x) = replicate (pred n) x.
Proof. by destruct n. Qed.
Lemma head_replicate_Some x n : head (replicate n x) = Some x ↔ 0 < n.
Proof. destruct n; naive_solver lia. Qed.
(** ** Properties of the [resize] function *)
Lemma resize_spec l n x : resize n x l = take n l ++ replicate (n - length l) x.
Proof. revert n. induction l; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_0 l x : resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n x : resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. f_equal/=. lia. Qed.
Lemma resize_ge l n x :
length l ≤ n → resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le l n x : n ≤ length l → resize n x l = take n l.
Proof.
intros. rewrite resize_spec, (proj2 (Nat.sub_0_le _ _)) by done.
simpl. by rewrite (right_id_L [] (++)).
Qed.
Lemma resize_all l x : resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt l n x : n = length l → resize n x l = l.
Proof. intros ->. by rewrite resize_all. Qed.
Lemma resize_add l n m x :
resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
revert n m. induction l; intros [|?] [|?]; f_equal/=; auto.
- by rewrite Nat.add_0_r, (right_id_L [] (++)).
- by rewrite replicate_add.
Qed.
Lemma resize_add_eq l n m x :
length l = n → resize (n + m) x l = l ++ replicate m x.
Proof. intros <-. by rewrite resize_add, resize_all, drop_all, resize_nil. Qed.
Lemma resize_app_le l1 l2 n x :
n ≤ length l1 → resize n x (l1 ++ l2) = resize n x l1.
Proof.
intros. by rewrite !resize_le, take_app_le by (rewrite ?length_app; lia).
Qed.
Lemma resize_app l1 l2 n x : n = length l1 → resize n x (l1 ++ l2) = l1.
Proof. intros ->. by rewrite resize_app_le, resize_all. Qed.
Lemma resize_app_ge l1 l2 n x :
length l1 ≤ n → resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
intros. rewrite !resize_spec, take_app_ge, (assoc_L (++)) by done.
do 2 f_equal. rewrite length_app. lia.
Qed.
Lemma length_resize l n x : length (resize n x l) = n.
Proof. rewrite resize_spec, length_app, length_replicate, length_take. lia. Qed.
Lemma resize_replicate x n m : resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; f_equal/=; auto. Qed.
Lemma resize_resize l n m x : n ≤ m → resize n x (resize m x l) = resize n x l.
Proof.
revert n m. induction l; simpl.
- intros. by rewrite !resize_nil, resize_replicate.
- intros [|?] [|?] ?; f_equal/=; auto with lia.
Qed.
Lemma resize_idemp l n x : resize n x (resize n x l) = resize n x l.
Proof. by rewrite resize_resize. Qed.
Lemma resize_take_le l n m x : n ≤ m → resize n x (take m l) = resize n x l.
Proof. revert n m. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Lemma resize_take_eq l n x : resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.
Lemma take_resize l n m x : take n (resize m x l) = resize (min n m) x l.
Proof.
revert n m. induction l; intros [|?][|?]; f_equal/=; auto using take_replicate.
Qed.
Lemma take_resize_le l n m x : n ≤ m → take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_eq l n x : take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Nat.min_l. Qed.
Lemma take_resize_add l n m x : take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.
Lemma drop_resize_le l n m x :
n ≤ m → drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
revert n m. induction l; simpl.
- intros. by rewrite drop_nil, !resize_nil, drop_replicate.
- intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_add l n m x :
drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
Lemma lookup_resize l n x i : i < n → i < length l → resize n x l !! i = l !! i.
Proof.
intros ??. destruct (decide (n < length l)).
- by rewrite resize_le, lookup_take by lia.
- by rewrite resize_ge, lookup_app_l by lia.
Qed.
Lemma lookup_total_resize `{!Inhabited A} l n x i :
i < n → i < length l → resize n x l !!! i = l !!! i.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize. Qed.
Lemma lookup_resize_new l n x i :
length l ≤ i → i < n → resize n x l !! i = Some x.
Proof.
intros ??. rewrite resize_ge by lia.
replace i with (length l + (i - length l)) by lia.
by rewrite lookup_app_r, lookup_replicate_2 by lia.
Qed.
Lemma lookup_total_resize_new `{!Inhabited A} l n x i :
length l ≤ i → i < n → resize n x l !!! i = x.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_new. Qed.
Lemma lookup_resize_old l n x i : n ≤ i → resize n x l !! i = None.
Proof. intros ?. apply lookup_ge_None_2. by rewrite length_resize. Qed.
Lemma lookup_total_resize_old `{!Inhabited A} l n x i :
n ≤ i → resize n x l !!! i = inhabitant.
Proof. intros. by rewrite !list_lookup_total_alt, lookup_resize_old. Qed.
(** ** Properties of the [rotate] function *)
Lemma rotate_replicate n1 n2 x:
rotate n1 (replicate n2 x) = replicate n2 x.
Proof.
unfold rotate. rewrite drop_replicate, take_replicate, <-replicate_add.
f_equal. lia.
Qed.
Lemma length_rotate l n:
length (rotate n l) = length l.
Proof. unfold rotate. rewrite length_app, length_drop, length_take. lia. Qed.
Lemma lookup_rotate_r l n i:
i < length l →
rotate n l !! i = l !! rotate_nat_add n i (length l).
Proof.
intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?.
unfold rotate. rewrite rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
remember (n `mod` length l) as n'.
case_decide.
- by rewrite lookup_app_l, lookup_drop by (rewrite length_drop; lia).
- rewrite lookup_app_r, lookup_take, length_drop by (rewrite length_drop; lia).
f_equal. lia.
Qed.
Lemma lookup_rotate_r_Some l n i x:
rotate n l !! i = Some x ↔
l !! rotate_nat_add n i (length l) = Some x ∧ i < length l.
Proof.
split.
- intros Hl. pose proof (lookup_lt_Some _ _ _ Hl) as Hlen.
rewrite length_rotate in Hlen. by rewrite <-lookup_rotate_r.
- intros [??]. by rewrite lookup_rotate_r.
Qed.
Lemma lookup_rotate_l l n i:
i < length l → rotate n l !! rotate_nat_sub n i (length l) = l !! i.
Proof.
intros ?. rewrite lookup_rotate_r, rotate_nat_add_sub;[done..|].
apply rotate_nat_sub_lt. lia.
Qed.
Lemma elem_of_rotate l n x:
x ∈ rotate n l ↔ x ∈ l.
Proof.
unfold rotate. rewrite <-(take_drop (n `mod` length l) l) at 5.
rewrite !elem_of_app. naive_solver.
Qed.
Lemma rotate_insert_l l n i x:
i < length l →
rotate n (<[rotate_nat_add n i (length l):=x]> l) = <[i:=x]> (rotate n l).
Proof.
intros Hlen. pose proof (Nat.mod_upper_bound n (length l)) as ?. unfold rotate.
rewrite length_insert, rotate_nat_add_add_mod, rotate_nat_add_alt by lia.
remember (n `mod` length l) as n'.
case_decide.
- rewrite take_insert, drop_insert_le, insert_app_l
by (rewrite ?length_drop; lia). do 2 f_equal. lia.
- rewrite take_insert_lt, drop_insert_gt, insert_app_r_alt, length_drop
by (rewrite ?length_drop; lia). do 2 f_equal. lia.
Qed.
Lemma rotate_insert_r l n i x:
i < length l →
rotate n (<[i:=x]> l) = <[rotate_nat_sub n i (length l):=x]> (rotate n l).
Proof.
intros ?. rewrite <-rotate_insert_l, rotate_nat_add_sub;[done..|].
apply rotate_nat_sub_lt. lia.
Qed.
(** ** Properties of the [rotate_take] function *)
Lemma rotate_take_insert l s e i x:
i < length l →
rotate_take s e (<[i:=x]>l) =
if decide (rotate_nat_sub s i (length l) < rotate_nat_sub s e (length l)) then
<[rotate_nat_sub s i (length l):=x]> (rotate_take s e l) else rotate_take s e l.
Proof.
intros ?. unfold rotate_take. rewrite rotate_insert_r, length_insert by done.
case_decide; [rewrite take_insert_lt | rewrite take_insert]; naive_solver lia.
Qed.
Lemma rotate_take_add l b i :
i < length l →
rotate_take b (rotate_nat_add b i (length l)) l = take i (rotate b l).
Proof. intros ?. unfold rotate_take. by rewrite rotate_nat_sub_add. Qed.
(** ** Properties of the [reshape] function *)
Lemma length_reshape szs l : length (reshape szs l) = length szs.
Proof. revert l. by induction szs; intros; f_equal/=. Qed.
End general_properties.
Section more_general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
(** ** Properties of [sublist_lookup] and [sublist_alter] *)
Lemma sublist_lookup_length l i n k :
sublist_lookup i n l = Some k → length k = n.
Proof.
unfold sublist_lookup; intros; simplify_option_eq.
rewrite length_take, length_drop; lia.
Qed.
Lemma sublist_lookup_all l n : length l = n → sublist_lookup 0 n l = Some l.
Proof.
intros. unfold sublist_lookup; case_guard; [|lia].
by rewrite take_ge by (rewrite length_drop; lia).
Qed.
Lemma sublist_lookup_Some l i n :
i + n ≤ length l → sublist_lookup i n l = Some (take n (drop i l)).
Proof. by unfold sublist_lookup; intros; simplify_option_eq. Qed.
Lemma sublist_lookup_Some' l i n l' :
sublist_lookup i n l = Some l' ↔ l' = take n (drop i l) ∧ i + n ≤ length l.
Proof. unfold sublist_lookup. case_guard; naive_solver lia. Qed.
Lemma sublist_lookup_None l i n :
length l < i + n → sublist_lookup i n l = None.
Proof. by unfold sublist_lookup; intros; simplify_option_eq by lia. Qed.
Lemma sublist_eq l k n :
(n | length l) → (n | length k) →
(∀ i, sublist_lookup (i * n) n l = sublist_lookup (i * n) n k) → l = k.
Proof.
revert l k. assert (∀ l i,
n ≠ 0 → (n | length l) → ¬n * i `div` n + n ≤ length l → length l ≤ i).
{ intros l i ? [j ->] Hjn. apply Nat.nlt_ge; contradict Hjn.
rewrite <-Nat.mul_succ_r, (Nat.mul_comm n).
apply Nat.mul_le_mono_r, Nat.le_succ_l, Nat.div_lt_upper_bound; lia. }
intros l k Hl Hk Hlookup. destruct (decide (n = 0)) as [->|].
{ by rewrite (nil_length_inv l),
(nil_length_inv k) by eauto using Nat.divide_0_l. }
apply list_eq; intros i. specialize (Hlookup (i `div` n)).
rewrite (Nat.mul_comm _ n) in Hlookup.
unfold sublist_lookup in *; simplify_option_eq;
[|by rewrite !lookup_ge_None_2 by auto].
apply (f_equal (.!! i `mod` n)) in Hlookup.
by rewrite !lookup_take, !lookup_drop, <-!Nat.div_mod in Hlookup
by (auto using Nat.mod_upper_bound with lia).
Qed.
Lemma sublist_eq_same_length l k j n :
length l = j * n → length k = j * n →
(∀ i,i < j → sublist_lookup (i * n) n l = sublist_lookup (i * n) n k) → l = k.
Proof.
intros Hl Hk ?. destruct (decide (n = 0)) as [->|].
{ by rewrite (nil_length_inv l), (nil_length_inv k) by lia. }
apply sublist_eq with n; [by exists j|by exists j|].
intros i. destruct (decide (i < j)); [by auto|].
assert (∀ m, m = j * n → m < i * n + n).
{ intros ? ->. replace (i * n + n) with (S i * n) by lia.
apply Nat.mul_lt_mono_pos_r; lia. }
by rewrite !sublist_lookup_None by auto.
Qed.
Lemma sublist_lookup_reshape l i n m :
0 < n → length l = m * n →
reshape (replicate m n) l !! i = sublist_lookup (i * n) n l.
Proof.
intros Hn Hl. unfold sublist_lookup. apply option_eq; intros x; split.
- intros Hx. case_guard as Hi; simplify_eq/=.
{ f_equal. clear Hi. revert i l Hl Hx.
induction m as [|m IH]; intros [|i] l ??; simplify_eq/=; auto.
rewrite <-drop_drop. apply IH; rewrite ?length_drop; auto with lia. }
destruct Hi. rewrite Hl, <-Nat.mul_succ_l.
apply Nat.mul_le_mono_r, Nat.le_succ_l. apply lookup_lt_Some in Hx.
by rewrite length_reshape, length_replicate in Hx.
- intros Hx. case_guard as Hi; simplify_eq/=.
revert i l Hl Hi. induction m as [|m IH]; [auto with lia|].
intros [|i] l ??; simpl; [done|]. rewrite <-drop_drop.
rewrite IH; rewrite ?length_drop; auto with lia.
Qed.
Lemma sublist_lookup_compose l1 l2 l3 i n j m :
sublist_lookup i n l1 = Some l2 → sublist_lookup j m l2 = Some l3 →
sublist_lookup (i + j) m l1 = Some l3.
Proof.
unfold sublist_lookup; intros; simplify_option_eq;
repeat match goal with
| H : _ ≤ length _ |- _ => rewrite length_take, length_drop in H
end; rewrite ?take_drop_commute, ?drop_drop, ?take_take,
?Nat.min_l, Nat.add_assoc by lia; auto with lia.
Qed.
Lemma length_sublist_alter f l i n k :
sublist_lookup i n l = Some k → length (f k) = n →
length (sublist_alter f i n l) = length l.
Proof.
unfold sublist_alter, sublist_lookup. intros Hk ?; simplify_option_eq.
rewrite !length_app, Hk, !length_take, !length_drop; lia.
Qed.
Lemma sublist_lookup_alter f l i n k :
sublist_lookup i n l = Some k → length (f k) = n →
sublist_lookup i n (sublist_alter f i n l) = f <$> sublist_lookup i n l.
Proof.
unfold sublist_lookup. intros Hk ?. erewrite length_sublist_alter by eauto.
unfold sublist_alter; simplify_option_eq.
by rewrite Hk, drop_app_length', take_app_length' by (rewrite ?length_take; lia).
Qed.
Lemma sublist_lookup_alter_ne f l i j n k :
sublist_lookup j n l = Some k → length (f k) = n → i + n ≤ j ∨ j + n ≤ i →
sublist_lookup i n (sublist_alter f j n l) = sublist_lookup i n l.
Proof.
unfold sublist_lookup. intros Hk Hi ?. erewrite length_sublist_alter by eauto.
unfold sublist_alter; simplify_option_eq; f_equal; rewrite Hk.
apply list_eq; intros ii.
destruct (decide (ii < length (f k))); [|by rewrite !lookup_take_ge by lia].
rewrite !lookup_take, !lookup_drop by done. destruct (decide (i + ii < j)).
{ by rewrite lookup_app_l, lookup_take by (rewrite ?length_take; lia). }
rewrite lookup_app_r by (rewrite length_take; lia).
rewrite length_take_le, lookup_app_r, lookup_drop by lia. f_equal; lia.
Qed.
Lemma sublist_alter_all f l n : length l = n → sublist_alter f 0 n l = f l.
Proof.
intros <-. unfold sublist_alter; simpl.
by rewrite drop_all, (right_id_L [] (++)), take_ge.
Qed.
Lemma sublist_alter_compose f g l i n k :
sublist_lookup i n l = Some k → length (f k) = n → length (g k) = n →
sublist_alter (f ∘ g) i n l = sublist_alter f i n (sublist_alter g i n l).
Proof.
unfold sublist_alter, sublist_lookup. intros Hk ??; simplify_option_eq.
by rewrite !take_app_length', drop_app_length', !(assoc_L (++)), drop_app_length',
take_app_length' by (rewrite ?length_app, ?length_take, ?Hk; lia).
Qed.
(** ** Properties of the [mask] function *)
Lemma mask_nil f βs : mask f βs [] =@{list A} [].
Proof. by destruct βs. Qed.
Lemma length_mask f βs l : length (mask f βs l) = length l.
Proof. revert βs. induction l; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_true f l n : length l ≤ n → mask f (replicate n true) l = f <$> l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma mask_false f l n : mask f (replicate n false) l = l.
Proof. revert l. induction n; intros [|??]; f_equal/=; auto. Qed.
Lemma mask_app f βs1 βs2 l :
mask f (βs1 ++ βs2) l
= mask f βs1 (take (length βs1) l) ++ mask f βs2 (drop (length βs1) l).
Proof. revert l. induction βs1;intros [|??]; f_equal/=; auto using mask_nil. Qed.
Lemma mask_app_2 f βs l1 l2 :
mask f βs (l1 ++ l2)
= mask f (take (length l1) βs) l1 ++ mask f (drop (length l1) βs) l2.
Proof. revert βs. induction l1; intros [|??]; f_equal/=; auto. Qed.
Lemma take_mask f βs l n : take n (mask f βs l) = mask f (take n βs) (take n l).
Proof. revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto. Qed.
Lemma drop_mask f βs l n : drop n (mask f βs l) = mask f (drop n βs) (drop n l).
Proof.
revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto using mask_nil.
Qed.
Lemma sublist_lookup_mask f βs l i n :
sublist_lookup i n (mask f βs l)
= mask f (take n (drop i βs)) <$> sublist_lookup i n l.
Proof.
unfold sublist_lookup; rewrite length_mask; simplify_option_eq; auto.
by rewrite drop_mask, take_mask.
Qed.
Lemma mask_mask f g βs1 βs2 l :
(∀ x, f (g x) = f x) → βs1 =.>* βs2 →
mask f βs2 (mask g βs1 l) = mask f βs2 l.
Proof.
intros ? Hβs. revert l. by induction Hβs as [|[] []]; intros [|??]; f_equal/=.
Qed.
Lemma lookup_mask f βs l i :
βs !! i = Some true → mask f βs l !! i = f <$> l !! i.
Proof.
revert i βs. induction l; intros [] [] ?; simplify_eq/=; f_equal; auto.
Qed.
Lemma lookup_mask_notin f βs l i :
βs !! i ≠ Some true → mask f βs l !! i = l !! i.
Proof.
revert i βs. induction l; intros [] [|[]] ?; simplify_eq/=; auto.
Qed.
(** ** Properties of the [Permutation] predicate *)
Lemma Permutation_nil_r l : l ≡ₚ [] ↔ l = [].
Proof. split; [by intro; apply Permutation_nil | by intros ->]. Qed.
Lemma Permutation_singleton_r l x : l ≡ₚ [x] ↔ l = [x].
Proof. split; [by intro; apply Permutation_length_1_inv | by intros ->]. Qed.
Lemma Permutation_nil_l l : [] ≡ₚ l ↔ [] = l.
Proof. by rewrite (symmetry_iff (≡ₚ)), Permutation_nil_r. Qed.
Lemma Permutation_singleton_l l x : [x] ≡ₚ l ↔ [x] = l.
Proof. by rewrite (symmetry_iff (≡ₚ)), Permutation_singleton_r. Qed.
Lemma Permutation_skip x l l' : l ≡ₚ l' → x :: l ≡ₚ x :: l'.
Proof. apply perm_skip. Qed.
Lemma Permutation_swap x y l : y :: x :: l ≡ₚ x :: y :: l.
Proof. apply perm_swap. Qed.
Lemma Permutation_singleton_inj x y : [x] ≡ₚ [y] → x = y.
Proof. apply Permutation_length_1. Qed.
Global Instance length_Permutation_proper : Proper ((≡ₚ) ==> (=)) (@length A).
Proof. induction 1; simpl; auto with lia. Qed.
Global Instance elem_of_Permutation_proper x : Proper ((≡ₚ) ==> iff) (x ∈.).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Global Instance NoDup_Permutation_proper: Proper ((≡ₚ) ==> iff) (@NoDup A).
Proof.
induction 1 as [|x l k Hlk IH | |].
- by rewrite !NoDup_nil.
- by rewrite !NoDup_cons, IH, Hlk.
- rewrite !NoDup_cons, !elem_of_cons. intuition.
- intuition.
Qed.
Global Instance app_Permutation_comm : Comm (≡ₚ) (@app A).
Proof.
intros l1. induction l1 as [|x l1 IH]; intros l2; simpl.
- by rewrite (right_id_L [] (++)).
- rewrite Permutation_middle, IH. simpl. by rewrite Permutation_middle.
Qed.
Global Instance cons_Permutation_inj_r x : Inj (≡ₚ) (≡ₚ) (x ::.).
Proof. red. eauto using Permutation_cons_inv. Qed.
Global Instance app_Permutation_inj_r k : Inj (≡ₚ) (≡ₚ) (k ++.).
Proof.
induction k as [|x k IH]; intros l1 l2; simpl; auto.
intros. by apply IH, (inj (x ::.)).
Qed.
Global Instance cons_Permutation_inj_l k : Inj (=) (≡ₚ) (.:: k).
Proof.
intros x1 x2 Hperm. apply Permutation_singleton_inj.
apply (inj (k ++.)). by rewrite !(comm (++) k).
Qed.
Global Instance app_Permutation_inj_l k : Inj (≡ₚ) (≡ₚ) (.++ k).
Proof. intros l1 l2. rewrite !(comm (++) _ k). by apply (inj (k ++.)). Qed.
Lemma replicate_Permutation n x l : replicate n x ≡ₚ l → replicate n x = l.
Proof.
intros Hl. apply replicate_as_elem_of. split.
- by rewrite <-Hl, length_replicate.
- intros y. rewrite <-Hl. by apply elem_of_replicate_inv.
Qed.
Lemma reverse_Permutation l : reverse l ≡ₚ l.
Proof.
induction l as [|x l IH]; [done|].
by rewrite reverse_cons, (comm (++)), IH.
Qed.
Lemma delete_Permutation l i x : l !! i = Some x → l ≡ₚ x :: delete i l.
Proof.
revert i; induction l as [|y l IH]; intros [|i] ?; simplify_eq/=; auto.
by rewrite Permutation_swap, <-(IH i).
Qed.
Lemma elem_of_Permutation l x : x ∈ l ↔ ∃ k, l ≡ₚ x :: k.
Proof.
split.
- intros [i ?]%elem_of_list_lookup. eexists. by apply delete_Permutation.
- intros [k ->]. by left.
Qed.
Lemma Permutation_cons_inv_r l k x :
k ≡ₚ x :: l → ∃ k1 k2, k = k1 ++ x :: k2 ∧ l ≡ₚ k1 ++ k2.
Proof.
intros Hk. assert (∃ i, k !! i = Some x) as [i Hi].
{ apply elem_of_list_lookup. rewrite Hk, elem_of_cons; auto. }
exists (take i k), (drop (S i) k). split.
- by rewrite take_drop_middle.
- rewrite <-delete_take_drop. apply (inj (x ::.)).
by rewrite <-Hk, <-(delete_Permutation k) by done.
Qed.
Lemma Permutation_cons_inv_l l k x :
x :: l ≡ₚ k → ∃ k1 k2, k = k1 ++ x :: k2 ∧ l ≡ₚ k1 ++ k2.
Proof. by intros ?%(symmetry_iff (≡ₚ))%Permutation_cons_inv_r. Qed.
Lemma Permutation_cross_split (la lb lc ld : list A) :
la ++ lb ≡ₚ lc ++ ld →
∃ lac lad lbc lbd,
lac ++ lad ≡ₚ la ∧ lbc ++ lbd ≡ₚ lb ∧ lac ++ lbc ≡ₚ lc ∧ lad ++ lbd ≡ₚ ld.
Proof.
revert lc ld.
induction la as [|x la IH]; simpl; intros lc ld Hperm.
{ exists [], [], lc, ld. by rewrite !(right_id_L [] (++)). }
assert (x ∈ lc ++ ld)
as [[lc' Hlc]%elem_of_Permutation|[ld' Hld]%elem_of_Permutation]%elem_of_app.
{ rewrite <-Hperm, elem_of_cons. auto. }
- rewrite Hlc in Hperm. simpl in Hperm. apply (inj (x ::.)) in Hperm.
apply IH in Hperm as (lac&lad&lbc&lbd&Ha&Hb&Hc&Hd).
exists (x :: lac), lad, lbc, lbd; simpl. by rewrite Ha, Hb, Hc, Hd.
- rewrite Hld, <-Permutation_middle in Hperm. apply (inj (x ::.)) in Hperm.
apply IH in Hperm as (lac&lad&lbc&lbd&Ha&Hb&Hc&Hd).
exists lac, (x :: lad), lbc, lbd; simpl.
by rewrite <-Permutation_middle, Ha, Hb, Hc, Hd.
Qed.
Lemma Permutation_inj l1 l2 :
Permutation l1 l2 ↔
length l1 = length l2 ∧
∃ f : nat → nat, Inj (=) (=) f ∧ ∀ i, l1 !! i = l2 !! f i.
Proof.
split.
- intros Hl; split; [by apply Permutation_length|].
induction Hl as [|x l1 l2 _ [f [??]]|x y l|l1 l2 l3 _ [f [? Hf]] _ [g [? Hg]]].
+ exists id; split; [apply _|done].
+ exists (λ i, match i with 0 => 0 | S i => S (f i) end); split.
* by intros [|i] [|j] ?; simplify_eq/=.
* intros [|i]; simpl; auto.
+ exists (λ i, match i with 0 => 1 | 1 => 0 | _ => i end); split.
* intros [|[|i]] [|[|j]]; congruence.
* by intros [|[|i]].
+ exists (g ∘ f); split; [apply _|]. intros i; simpl. by rewrite <-Hg, <-Hf.
- intros (Hlen & f & Hf & Hl). revert l2 f Hlen Hf Hl.
induction l1 as [|x l1 IH]; intros l2 f Hlen Hf Hl; [by destruct l2|].
rewrite (delete_Permutation l2 (f 0) x) by (by rewrite <-Hl).
pose (g n := let m := f (S n) in if lt_eq_lt_dec m (f 0) then m else m - 1).
apply Permutation_skip, (IH _ g).
+ rewrite length_delete by (rewrite <-Hl; eauto); simpl in *; lia.
+ unfold g. intros i j Hg.
repeat destruct (lt_eq_lt_dec _ _) as [[?|?]|?]; simplify_eq/=; try lia.
apply (inj S), (inj f); lia.
+ intros i. unfold g. destruct (lt_eq_lt_dec _ _) as [[?|?]|?].
* by rewrite lookup_delete_lt, <-Hl.
* simplify_eq.
* rewrite lookup_delete_ge, <-Nat.sub_succ_l by lia; simpl.
by rewrite Nat.sub_0_r, <-Hl.
Qed.
(** ** Properties of the [filter] function *)
Section filter.
Context (P : A → Prop) `{∀ x, Decision (P x)}.
Local Arguments filter {_ _ _} _ {_} !_ /.
Lemma filter_nil : filter P [] = [].
Proof. done. Qed.
Lemma filter_cons x l :
filter P (x :: l) = if decide (P x) then x :: filter P l else filter P l.
Proof. done. Qed.
Lemma filter_cons_True x l : P x → filter P (x :: l) = x :: filter P l.
Proof. intros. by rewrite filter_cons, decide_True. Qed.
Lemma filter_cons_False x l : ¬P x → filter P (x :: l) = filter P l.
Proof. intros. by rewrite filter_cons, decide_False. Qed.
Lemma filter_app l1 l2 : filter P (l1 ++ l2) = filter P l1 ++ filter P l2.
Proof.
induction l1 as [|x l1 IH]; simpl; [done| ].
case_decide; [|done].
by rewrite IH.
Qed.
Lemma elem_of_list_filter l x : x ∈ filter P l ↔ P x ∧ x ∈ l.
Proof.
induction l; simpl; repeat case_decide;
rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
Qed.
Lemma NoDup_filter l : NoDup l → NoDup (filter P l).
Proof.
induction 1; simpl; repeat case_decide;
rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
Qed.
Global Instance filter_Permutation : Proper ((≡ₚ) ==> (≡ₚ)) (filter P).
Proof. induction 1; repeat (simpl; repeat case_decide); by econstructor. Qed.
Lemma length_filter l : length (filter P l) ≤ length l.
Proof. induction l; simpl; repeat case_decide; simpl; lia. Qed.
Lemma length_filter_lt l x : x ∈ l → ¬P x → length (filter P l) < length l.
Proof.
intros [k ->]%elem_of_Permutation ?; simpl.
rewrite decide_False, Nat.lt_succ_r by done. apply length_filter.
Qed.
Lemma filter_nil_not_elem_of l x : filter P l = [] → P x → x ∉ l.
Proof. induction 3; simplify_eq/=; case_decide; naive_solver. Qed.
Lemma filter_reverse l : filter P (reverse l) = reverse (filter P l).
Proof.
induction l as [|x l IHl]; [done|].
rewrite reverse_cons, filter_app, IHl, !filter_cons.
case_decide; [by rewrite reverse_cons|by rewrite filter_nil, app_nil_r].
Qed.
Lemma filter_app_complement l : filter P l ++ filter (λ x, ¬P x) l ≡ₚ l.
Proof.
induction l as [|x l IH]; simpl; [done|]. case_decide.
- rewrite decide_False by naive_solver. simpl. by rewrite IH.
- rewrite decide_True by done. by rewrite <-Permutation_middle, IH.
Qed.
End filter.
Lemma list_filter_iff (P1 P2 : A → Prop)
`{!∀ x, Decision (P1 x), !∀ x, Decision (P2 x)} (l : list A) :
(∀ x, P1 x ↔ P2 x) →
filter P1 l = filter P2 l.
Proof.
intros HPiff. induction l as [|a l IH]; [done|].
destruct (decide (P1 a)).
- rewrite !filter_cons_True by naive_solver. by rewrite IH.
- rewrite !filter_cons_False by naive_solver. by rewrite IH.
Qed.
Lemma list_filter_filter (P1 P2 : A → Prop)
`{!∀ x, Decision (P1 x), !∀ x, Decision (P2 x)} (l : list A) :
filter P1 (filter P2 l) = filter (λ a, P1 a ∧ P2 a) l.
Proof.
induction l as [|x l IH]; [done|].
rewrite !filter_cons. case (decide (P2 x)) as [HP2|HP2].
- rewrite filter_cons, IH. apply decide_ext. naive_solver.
- rewrite IH. symmetry. apply decide_False. by intros [_ ?].
Qed.
Lemma list_filter_filter_l (P1 P2 : A → Prop)
`{!∀ x, Decision (P1 x), !∀ x, Decision (P2 x)} (l : list A) :
(∀ x, P1 x → P2 x) →
filter P1 (filter P2 l) = filter P1 l.
Proof.
intros HPimp. rewrite list_filter_filter.
apply list_filter_iff. naive_solver.
Qed.
Lemma list_filter_filter_r (P1 P2 : A → Prop)
`{!∀ x, Decision (P1 x), !∀ x, Decision (P2 x)} (l : list A) :
(∀ x, P2 x → P1 x) →
filter P1 (filter P2 l) = filter P2 l.
Proof.
intros HPimp. rewrite list_filter_filter.
apply list_filter_iff. naive_solver.
Qed.
(** ** Properties of the [prefix] and [suffix] predicates *)
Global Instance: PartialOrder (@prefix A).
Proof.
split; [split|].
- intros ?. eexists []. by rewrite (right_id_L [] (++)).
- intros ???[k1->] [k2->]. exists (k1 ++ k2). by rewrite (assoc_L (++)).
- intros l1 l2 [k1 ?] [[|x2 k2] ->]; [|discriminate_list].
by rewrite (right_id_L _ _).
Qed.
Lemma prefix_nil l : [] `prefix_of` l.
Proof. by exists l. Qed.
Lemma prefix_nil_inv l : l `prefix_of` [] → l = [].
Proof. intros [k ?]. by destruct l. Qed.
Lemma prefix_nil_not x l : ¬x :: l `prefix_of` [].
Proof. by intros [k ?]. Qed.
Lemma prefix_cons x l1 l2 : l1 `prefix_of` l2 → x :: l1 `prefix_of` x :: l2.
Proof. intros [k ->]. by exists k. Qed.
Lemma prefix_cons_alt x y l1 l2 :
x = y → l1 `prefix_of` l2 → x :: l1 `prefix_of` y :: l2.
Proof. intros ->. apply prefix_cons. Qed.
Lemma prefix_cons_inv_1 x y l1 l2 : x :: l1 `prefix_of` y :: l2 → x = y.
Proof. by intros [k ?]; simplify_eq/=. Qed.
Lemma prefix_cons_inv_2 x y l1 l2 :
x :: l1 `prefix_of` y :: l2 → l1 `prefix_of` l2.
Proof. intros [k ?]; simplify_eq/=. by exists k. Qed.
Lemma prefix_app k l1 l2 : l1 `prefix_of` l2 → k ++ l1 `prefix_of` k ++ l2.
Proof. intros [k' ->]. exists k'. by rewrite (assoc_L (++)). Qed.
Lemma prefix_app_alt k1 k2 l1 l2 :
k1 = k2 → l1 `prefix_of` l2 → k1 ++ l1 `prefix_of` k2 ++ l2.
Proof. intros ->. apply prefix_app. Qed.
Lemma prefix_app_inv k l1 l2 :
k ++ l1 `prefix_of` k ++ l2 → l1 `prefix_of` l2.
Proof.
intros [k' E]. exists k'. rewrite <-(assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma prefix_app_l l1 l2 l3 : l1 ++ l3 `prefix_of` l2 → l1 `prefix_of` l2.
Proof. intros [k ->]. exists (l3 ++ k). by rewrite (assoc_L (++)). Qed.
Lemma prefix_app_r l1 l2 l3 : l1 `prefix_of` l2 → l1 `prefix_of` l2 ++ l3.
Proof. intros [k ->]. exists (k ++ l3). by rewrite (assoc_L (++)). Qed.
Lemma prefix_take l n : take n l `prefix_of` l.
Proof. rewrite <-(take_drop n l) at 2. apply prefix_app_r. done. Qed.
Lemma prefix_lookup_lt l1 l2 i :
i < length l1 → l1 `prefix_of` l2 → l1 !! i = l2 !! i.
Proof. intros ? [? ->]. by rewrite lookup_app_l. Qed.
Lemma prefix_lookup_Some l1 l2 i x :
l1 !! i = Some x → l1 `prefix_of` l2 → l2 !! i = Some x.
Proof. intros ? [k ->]. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
Lemma prefix_length l1 l2 : l1 `prefix_of` l2 → length l1 ≤ length l2.
Proof. intros [? ->]. rewrite length_app. lia. Qed.
Lemma prefix_snoc_not l x : ¬l ++ [x] `prefix_of` l.
Proof. intros [??]. discriminate_list. Qed.
Lemma elem_of_prefix l1 l2 x :
x ∈ l1 → l1 `prefix_of` l2 → x ∈ l2.
Proof. intros Hin [l' ->]. apply elem_of_app. by left. Qed.
(* [prefix] is not a total order, but [l1] and [l2] are always comparable if
they are both prefixes of some [l3]. *)
Lemma prefix_weak_total l1 l2 l3 :
l1 `prefix_of` l3 → l2 `prefix_of` l3 → l1 `prefix_of` l2 ∨ l2 `prefix_of` l1.
Proof.
intros [k1 H1] [k2 H2]. rewrite H2 in H1.
apply app_eq_inv in H1 as [(k&?&?)|(k&?&?)]; [left|right]; exists k; eauto.
Qed.
Global Instance: PartialOrder (@suffix A).
Proof.
split; [split|].
- intros ?. by eexists [].
- intros ???[k1->] [k2->]. exists (k2 ++ k1). by rewrite (assoc_L (++)).
- intros l1 l2 [k1 ?] [[|x2 k2] ->]; [done|discriminate_list].
Qed.
Global Instance prefix_dec `{!EqDecision A} : RelDecision prefix :=
fix go l1 l2 :=
match l1, l2 with
| [], _ => left (prefix_nil _)
| _, [] => right (prefix_nil_not _ _)
| x :: l1, y :: l2 =>
match decide_rel (=) x y with
| left Hxy =>
match go l1 l2 with
| left Hl1l2 => left (prefix_cons_alt _ _ _ _ Hxy Hl1l2)
| right Hl1l2 => right (Hl1l2 ∘ prefix_cons_inv_2 _ _ _ _)
end
| right Hxy => right (Hxy ∘ prefix_cons_inv_1 _ _ _ _)
end
end.
Lemma prefix_not_elem_of_app_cons_inv x y l1 l2 k1 k2 :
x ∉ k1 → y ∉ l1 →
(l1 ++ x :: l2) `prefix_of` (k1 ++ y :: k2) →
l1 = k1 ∧ x = y ∧ l2 `prefix_of` k2.
Proof.
intros Hin1 Hin2 [k Hle]. rewrite <-(assoc_L (++)) in Hle.
apply not_elem_of_app_cons_inv_l in Hle; [|done..]. unfold prefix. naive_solver.
Qed.
Lemma prefix_length_eq l1 l2 :
l1 `prefix_of` l2 → length l2 ≤ length l1 → l1 = l2.
Proof.
intros Hprefix Hlen. assert (length l1 = length l2).
{ apply prefix_length in Hprefix. lia. }
eapply list_eq_same_length with (length l1); [done..|].
intros i x y _ ??. assert (l2 !! i = Some x) by eauto using prefix_lookup_Some.
congruence.
Qed.
Section prefix_ops.
Context `{!EqDecision A}.
Lemma max_prefix_fst l1 l2 :
l1 = (max_prefix l1 l2).2 ++ (max_prefix l1 l2).1.1.
Proof.
revert l2. induction l1; intros [|??]; simpl;
repeat case_decide; f_equal/=; auto.
Qed.
Lemma max_prefix_fst_alt l1 l2 k1 k2 k3 :
max_prefix l1 l2 = (k1, k2, k3) → l1 = k3 ++ k1.
Proof.
intros. pose proof (max_prefix_fst l1 l2).
by destruct (max_prefix l1 l2) as [[]?]; simplify_eq.
Qed.
Lemma max_prefix_fst_prefix l1 l2 : (max_prefix l1 l2).2 `prefix_of` l1.
Proof. eexists. apply max_prefix_fst. Qed.
Lemma max_prefix_fst_prefix_alt l1 l2 k1 k2 k3 :
max_prefix l1 l2 = (k1, k2, k3) → k3 `prefix_of` l1.
Proof. eexists. eauto using max_prefix_fst_alt. Qed.
Lemma max_prefix_snd l1 l2 :
l2 = (max_prefix l1 l2).2 ++ (max_prefix l1 l2).1.2.
Proof.
revert l2. induction l1; intros [|??]; simpl;
repeat case_decide; f_equal/=; auto.
Qed.
Lemma max_prefix_snd_alt l1 l2 k1 k2 k3 :
max_prefix l1 l2 = (k1, k2, k3) → l2 = k3 ++ k2.
Proof.
intro. pose proof (max_prefix_snd l1 l2).
by destruct (max_prefix l1 l2) as [[]?]; simplify_eq.
Qed.
Lemma max_prefix_snd_prefix l1 l2 : (max_prefix l1 l2).2 `prefix_of` l2.
Proof. eexists. apply max_prefix_snd. Qed.
Lemma max_prefix_snd_prefix_alt l1 l2 k1 k2 k3 :
max_prefix l1 l2 = (k1,k2,k3) → k3 `prefix_of` l2.
Proof. eexists. eauto using max_prefix_snd_alt. Qed.
Lemma max_prefix_max l1 l2 k :
k `prefix_of` l1 → k `prefix_of` l2 → k `prefix_of` (max_prefix l1 l2).2.
Proof.
intros [l1' ->] [l2' ->]. by induction k; simpl; repeat case_decide;
simpl; auto using prefix_nil, prefix_cons.
Qed.
Lemma max_prefix_max_alt l1 l2 k1 k2 k3 k :
max_prefix l1 l2 = (k1,k2,k3) →
k `prefix_of` l1 → k `prefix_of` l2 → k `prefix_of` k3.
Proof.
intro. pose proof (max_prefix_max l1 l2 k).
by destruct (max_prefix l1 l2) as [[]?]; simplify_eq.
Qed.
Lemma max_prefix_max_snoc l1 l2 k1 k2 k3 x1 x2 :
max_prefix l1 l2 = (x1 :: k1, x2 :: k2, k3) → x1 ≠ x2.
Proof.
intros Hl ->. destruct (prefix_snoc_not k3 x2).
eapply max_prefix_max_alt; eauto.
- rewrite (max_prefix_fst_alt _ _ _ _ _ Hl).
apply prefix_app, prefix_cons, prefix_nil.
- rewrite (max_prefix_snd_alt _ _ _ _ _ Hl).
apply prefix_app, prefix_cons, prefix_nil.
Qed.
End prefix_ops.
Lemma prefix_suffix_reverse l1 l2 :
l1 `prefix_of` l2 ↔ reverse l1 `suffix_of` reverse l2.
Proof.
split; intros [k E]; exists (reverse k).
- by rewrite E, reverse_app.
- by rewrite <-(reverse_involutive l2), E, reverse_app, reverse_involutive.
Qed.
Lemma suffix_prefix_reverse l1 l2 :
l1 `suffix_of` l2 ↔ reverse l1 `prefix_of` reverse l2.
Proof. by rewrite prefix_suffix_reverse, !reverse_involutive. Qed.
Lemma suffix_nil l : [] `suffix_of` l.
Proof. exists l. by rewrite (right_id_L [] (++)). Qed.
Lemma suffix_nil_inv l : l `suffix_of` [] → l = [].
Proof. by intros [[|?] ?]; simplify_list_eq. Qed.
Lemma suffix_cons_nil_inv x l : ¬x :: l `suffix_of` [].
Proof. by intros [[] ?]. Qed.
Lemma suffix_snoc l1 l2 x :
l1 `suffix_of` l2 → l1 ++ [x] `suffix_of` l2 ++ [x].
Proof. intros [k ->]. exists k. by rewrite (assoc_L (++)). Qed.
Lemma suffix_snoc_alt x y l1 l2 :
x = y → l1 `suffix_of` l2 → l1 ++ [x] `suffix_of` l2 ++ [y].
Proof. intros ->. apply suffix_snoc. Qed.
Lemma suffix_app l1 l2 k : l1 `suffix_of` l2 → l1 ++ k `suffix_of` l2 ++ k.
Proof. intros [k' ->]. exists k'. by rewrite (assoc_L (++)). Qed.
Lemma suffix_app_alt l1 l2 k1 k2 :
k1 = k2 → l1 `suffix_of` l2 → l1 ++ k1 `suffix_of` l2 ++ k2.
Proof. intros ->. apply suffix_app. Qed.
Lemma suffix_snoc_inv_1 x y l1 l2 :
l1 ++ [x] `suffix_of` l2 ++ [y] → x = y.
Proof. intros [k' E]. rewrite (assoc_L (++)) in E. by simplify_list_eq. Qed.
Lemma suffix_snoc_inv_2 x y l1 l2 :
l1 ++ [x] `suffix_of` l2 ++ [y] → l1 `suffix_of` l2.
Proof.
intros [k' E]. exists k'. rewrite (assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma suffix_app_inv l1 l2 k :
l1 ++ k `suffix_of` l2 ++ k → l1 `suffix_of` l2.
Proof.
intros [k' E]. exists k'. rewrite (assoc_L (++)) in E. by simplify_list_eq.
Qed.
Lemma suffix_cons_l l1 l2 x : x :: l1 `suffix_of` l2 → l1 `suffix_of` l2.
Proof. intros [k ->]. exists (k ++ [x]). by rewrite <-(assoc_L (++)). Qed.
Lemma suffix_app_l l1 l2 l3 : l3 ++ l1 `suffix_of` l2 → l1 `suffix_of` l2.
Proof. intros [k ->]. exists (k ++ l3). by rewrite <-(assoc_L (++)). Qed.
Lemma suffix_cons_r l1 l2 x : l1 `suffix_of` l2 → l1 `suffix_of` x :: l2.
Proof. intros [k ->]. by exists (x :: k). Qed.
Lemma suffix_app_r l1 l2 l3 : l1 `suffix_of` l2 → l1 `suffix_of` l3 ++ l2.
Proof. intros [k ->]. exists (l3 ++ k). by rewrite (assoc_L (++)). Qed.
Lemma suffix_drop l n : drop n l `suffix_of` l.
Proof. rewrite <-(take_drop n l) at 2. apply suffix_app_r. done. Qed.
Lemma suffix_cons_inv l1 l2 x y :
x :: l1 `suffix_of` y :: l2 → x :: l1 = y :: l2 ∨ x :: l1 `suffix_of` l2.
Proof.
intros [[|? k] E]; [by left|]. right. simplify_eq/=. by apply suffix_app_r.
Qed.
Lemma suffix_lookup_lt l1 l2 i :
i < length l1 →
l1 `suffix_of` l2 →
l1 !! i = l2 !! (i + (length l2 - length l1)).
Proof.
intros Hi [k ->]. rewrite length_app, lookup_app_r by lia. f_equal; lia.
Qed.
Lemma suffix_lookup_Some l1 l2 i x :
l1 !! i = Some x →
l1 `suffix_of` l2 →
l2 !! (i + (length l2 - length l1)) = Some x.
Proof. intros. by rewrite <-suffix_lookup_lt by eauto using lookup_lt_Some. Qed.
Lemma suffix_length l1 l2 : l1 `suffix_of` l2 → length l1 ≤ length l2.
Proof. intros [? ->]. rewrite length_app. lia. Qed.
Lemma suffix_cons_not x l : ¬x :: l `suffix_of` l.
Proof. intros [??]. discriminate_list. Qed.
Lemma elem_of_suffix l1 l2 x :
x ∈ l1 → l1 `suffix_of` l2 → x ∈ l2.
Proof. intros Hin [l' ->]. apply elem_of_app. by right. Qed.
(* [suffix] is not a total order, but [l1] and [l2] are always comparable if
they are both suffixes of some [l3]. *)
Lemma suffix_weak_total l1 l2 l3 :
l1 `suffix_of` l3 → l2 `suffix_of` l3 → l1 `suffix_of` l2 ∨ l2 `suffix_of` l1.
Proof.
intros [k1 Hl1] [k2 Hl2]. rewrite Hl1 in Hl2.
apply app_eq_inv in Hl2 as [(k&?&?)|(k&?&?)]; [left|right]; exists k; eauto.
Qed.
Global Instance suffix_dec `{!EqDecision A} : RelDecision (@suffix A).
Proof.
refine (λ l1 l2, cast_if (decide_rel prefix (reverse l1) (reverse l2)));
abstract (by rewrite suffix_prefix_reverse).
Defined.
Lemma suffix_not_elem_of_app_cons_inv x y l1 l2 k1 k2 :
x ∉ k2 → y ∉ l2 →
(l1 ++ x :: l2) `suffix_of` (k1 ++ y :: k2) →
l1 `suffix_of` k1 ∧ x = y ∧ l2 = k2.
Proof.
intros Hin1 Hin2 [k Hle]. rewrite (assoc_L (++)) in Hle.
apply not_elem_of_app_cons_inv_r in Hle; [|done..]. unfold suffix. naive_solver.
Qed.
Lemma suffix_length_eq l1 l2 :
l1 `suffix_of` l2 → length l2 ≤ length l1 → l1 = l2.
Proof.
intros. apply (inj reverse), prefix_length_eq.
- by apply suffix_prefix_reverse.
- by rewrite !length_reverse.
Qed.
Section max_suffix.
Context `{!EqDecision A}.
Lemma max_suffix_fst l1 l2 :
l1 = (max_suffix l1 l2).1.1 ++ (max_suffix l1 l2).2.
Proof.
rewrite <-(reverse_involutive l1) at 1.
rewrite (max_prefix_fst (reverse l1) (reverse l2)). unfold max_suffix.
destruct (max_prefix (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
by rewrite reverse_app.
Qed.
Lemma max_suffix_fst_alt l1 l2 k1 k2 k3 :
max_suffix l1 l2 = (k1, k2, k3) → l1 = k1 ++ k3.
Proof.
intro. pose proof (max_suffix_fst l1 l2).
by destruct (max_suffix l1 l2) as [[]?]; simplify_eq.
Qed.
Lemma max_suffix_fst_suffix l1 l2 : (max_suffix l1 l2).2 `suffix_of` l1.
Proof. eexists. apply max_suffix_fst. Qed.
Lemma max_suffix_fst_suffix_alt l1 l2 k1 k2 k3 :
max_suffix l1 l2 = (k1, k2, k3) → k3 `suffix_of` l1.
Proof. eexists. eauto using max_suffix_fst_alt. Qed.
Lemma max_suffix_snd l1 l2 :
l2 = (max_suffix l1 l2).1.2 ++ (max_suffix l1 l2).2.
Proof.
rewrite <-(reverse_involutive l2) at 1.
rewrite (max_prefix_snd (reverse l1) (reverse l2)). unfold max_suffix.
destruct (max_prefix (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
by rewrite reverse_app.
Qed.
Lemma max_suffix_snd_alt l1 l2 k1 k2 k3 :
max_suffix l1 l2 = (k1,k2,k3) → l2 = k2 ++ k3.
Proof.
intro. pose proof (max_suffix_snd l1 l2).
by destruct (max_suffix l1 l2) as [[]?]; simplify_eq.
Qed.
Lemma max_suffix_snd_suffix l1 l2 : (max_suffix l1 l2).2 `suffix_of` l2.
Proof. eexists. apply max_suffix_snd. Qed.
Lemma max_suffix_snd_suffix_alt l1 l2 k1 k2 k3 :
max_suffix l1 l2 = (k1,k2,k3) → k3 `suffix_of` l2.
Proof. eexists. eauto using max_suffix_snd_alt. Qed.
Lemma max_suffix_max l1 l2 k :
k `suffix_of` l1 → k `suffix_of` l2 → k `suffix_of` (max_suffix l1 l2).2.
Proof.
generalize (max_prefix_max (reverse l1) (reverse l2)).
rewrite !suffix_prefix_reverse. unfold max_suffix.
destruct (max_prefix (reverse l1) (reverse l2)) as ((?&?)&?); simpl.
rewrite reverse_involutive. auto.
Qed.
Lemma max_suffix_max_alt l1 l2 k1 k2 k3 k :
max_suffix l1 l2 = (k1, k2, k3) →
k `suffix_of` l1 → k `suffix_of` l2 → k `suffix_of` k3.
Proof.
intro. pose proof (max_suffix_max l1 l2 k).
by destruct (max_suffix l1 l2) as [[]?]; simplify_eq.
Qed.
Lemma max_suffix_max_snoc l1 l2 k1 k2 k3 x1 x2 :
max_suffix l1 l2 = (k1 ++ [x1], k2 ++ [x2], k3) → x1 ≠ x2.
Proof.
intros Hl ->. destruct (suffix_cons_not x2 k3).
eapply max_suffix_max_alt; eauto.
- rewrite (max_suffix_fst_alt _ _ _ _ _ Hl).
by apply (suffix_app [x2]), suffix_app_r.
- rewrite (max_suffix_snd_alt _ _ _ _ _ Hl).
by apply (suffix_app [x2]), suffix_app_r.
Qed.
End max_suffix.
(** ** Properties of the [sublist] predicate *)
Lemma sublist_length l1 l2 : l1 `sublist_of` l2 → length l1 ≤ length l2.
Proof. induction 1; simpl; auto with arith. Qed.
Lemma sublist_nil_l l : [] `sublist_of` l.
Proof. induction l; try constructor; auto. Qed.
Lemma sublist_nil_r l : l `sublist_of` [] ↔ l = [].
Proof. split; [by inv 1|]. intros ->. constructor. Qed.
Lemma sublist_app l1 l2 k1 k2 :
l1 `sublist_of` l2 → k1 `sublist_of` k2 → l1 ++ k1 `sublist_of` l2 ++ k2.
Proof. induction 1; simpl; try constructor; auto. Qed.
Lemma sublist_inserts_l k l1 l2 : l1 `sublist_of` l2 → l1 `sublist_of` k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma sublist_inserts_r k l1 l2 : l1 `sublist_of` l2 → l1 `sublist_of` l2 ++ k.
Proof. induction 1; simpl; try constructor; auto using sublist_nil_l. Qed.
Lemma sublist_cons_r x l k :
l `sublist_of` x :: k ↔ l `sublist_of` k ∨ ∃ l', l = x :: l' ∧ l' `sublist_of` k.
Proof. split; [inv 1; eauto|]. intros [?|(?&->&?)]; constructor; auto. Qed.
Lemma sublist_cons_l x l k :
x :: l `sublist_of` k ↔ ∃ k1 k2, k = k1 ++ x :: k2 ∧ l `sublist_of` k2.
Proof.
split.
- intros Hlk. induction k as [|y k IH]; inv Hlk.
+ eexists [], k. by repeat constructor.
+ destruct IH as (k1&k2&->&?); auto. by exists (y :: k1), k2.
- intros (k1&k2&->&?). by apply sublist_inserts_l, sublist_skip.
Qed.
Lemma sublist_app_r l k1 k2 :
l `sublist_of` k1 ++ k2 ↔
∃ l1 l2, l = l1 ++ l2 ∧ l1 `sublist_of` k1 ∧ l2 `sublist_of` k2.
Proof.
split.
- revert l k2. induction k1 as [|y k1 IH]; intros l k2; simpl.
{ eexists [], l. by repeat constructor. }
rewrite sublist_cons_r. intros [?|(l' & ? &?)]; subst.
+ destruct (IH l k2) as (l1&l2&?&?&?); trivial; subst.
exists l1, l2. auto using sublist_cons.
+ destruct (IH l' k2) as (l1&l2&?&?&?); trivial; subst.
exists (y :: l1), l2. auto using sublist_skip.
- intros (?&?&?&?&?); subst. auto using sublist_app.
Qed.
Lemma sublist_app_l l1 l2 k :
l1 ++ l2 `sublist_of` k ↔
∃ k1 k2, k = k1 ++ k2 ∧ l1 `sublist_of` k1 ∧ l2 `sublist_of` k2.
Proof.
split.
- revert l2 k. induction l1 as [|x l1 IH]; intros l2 k; simpl.
{ eexists [], k. by repeat constructor. }
rewrite sublist_cons_l. intros (k1 & k2 &?&?); subst.
destruct (IH l2 k2) as (h1 & h2 &?&?&?); trivial; subst.
exists (k1 ++ x :: h1), h2. rewrite <-(assoc_L (++)).
auto using sublist_inserts_l, sublist_skip.
- intros (?&?&?&?&?); subst. auto using sublist_app.
Qed.
Lemma sublist_app_inv_l k l1 l2 : k ++ l1 `sublist_of` k ++ l2 → l1 `sublist_of` l2.
Proof.
induction k as [|y k IH]; simpl; [done |].
rewrite sublist_cons_r. intros [Hl12|(?&?&?)]; [|simplify_eq; eauto].
rewrite sublist_cons_l in Hl12. destruct Hl12 as (k1&k2&Hk&?).
apply IH. rewrite Hk. eauto using sublist_inserts_l, sublist_cons.
Qed.
Lemma sublist_app_inv_r k l1 l2 : l1 ++ k `sublist_of` l2 ++ k → l1 `sublist_of` l2.
Proof.
revert l1 l2. induction k as [|y k IH]; intros l1 l2.
{ by rewrite !(right_id_L [] (++)). }
intros. opose proof* (IH (l1 ++ [_]) (l2 ++ [_])) as Hl12.
{ by rewrite <-!(assoc_L (++)). }
rewrite sublist_app_l in Hl12. destruct Hl12 as (k1&k2&E&?&Hk2).
destruct k2 as [|z k2] using rev_ind; [inv Hk2|].
rewrite (assoc_L (++)) in E; simplify_list_eq.
eauto using sublist_inserts_r.
Qed.
Global Instance: PartialOrder (@sublist A).
Proof.
split; [split|].
- intros l. induction l; constructor; auto.
- intros l1 l2 l3 Hl12. revert l3. induction Hl12.
+ auto using sublist_nil_l.
+ intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
eauto using sublist_inserts_l, sublist_skip.
+ intros ?. rewrite sublist_cons_l. intros (?&?&?&?); subst.
eauto using sublist_inserts_l, sublist_cons.
- intros l1 l2 Hl12 Hl21. apply sublist_length in Hl21.
induction Hl12 as [| |??? Hl12]; f_equal/=; auto with arith.
apply sublist_length in Hl12. lia.
Qed.
Lemma sublist_take l i : take i l `sublist_of` l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_inserts_r. Qed.
Lemma sublist_drop l i : drop i l `sublist_of` l.
Proof. rewrite <-(take_drop i l) at 2. by apply sublist_inserts_l. Qed.
Lemma sublist_delete l i : delete i l `sublist_of` l.
Proof. revert i. by induction l; intros [|?]; simpl; constructor. Qed.
Lemma sublist_foldr_delete l is : foldr delete l is `sublist_of` l.
Proof.
induction is as [|i is IH]; simpl; [done |].
trans (foldr delete l is); auto using sublist_delete.
Qed.
Lemma sublist_alt l1 l2 : l1 `sublist_of` l2 ↔ ∃ is, l1 = foldr delete l2 is.
Proof.
split; [|intros [is ->]; apply sublist_foldr_delete].
intros Hl12. cut (∀ k, ∃ is, k ++ l1 = foldr delete (k ++ l2) is).
{ intros help. apply (help []). }
induction Hl12 as [|x l1 l2 _ IH|x l1 l2 _ IH]; intros k.
- by eexists [].
- destruct (IH (k ++ [x])) as [is His]. exists is.
by rewrite <-!(assoc_L (++)) in His.
- destruct (IH k) as [is His]. exists (is ++ [length k]).
rewrite fold_right_app. simpl. by rewrite delete_middle.
Qed.
Lemma Permutation_sublist l1 l2 l3 :
l1 ≡ₚ l2 → l2 `sublist_of` l3 → ∃ l4, l1 `sublist_of` l4 ∧ l4 ≡ₚ l3.
Proof.
intros Hl1l2. revert l3.
induction Hl1l2 as [|x l1 l2 ? IH|x y l1|l1 l1' l2 ? IH1 ? IH2].
- intros l3. by exists l3.
- intros l3. rewrite sublist_cons_l. intros (l3'&l3''&?&?); subst.
destruct (IH l3'') as (l4&?&Hl4); auto. exists (l3' ++ x :: l4).
split.
+ by apply sublist_inserts_l, sublist_skip.
+ by rewrite Hl4.
- intros l3. rewrite sublist_cons_l. intros (l3'&l3''&?& Hl3); subst.
rewrite sublist_cons_l in Hl3. destruct Hl3 as (l5'&l5''&?& Hl5); subst.
exists (l3' ++ y :: l5' ++ x :: l5''). split.
+ by do 2 apply sublist_inserts_l, sublist_skip.
+ by rewrite !Permutation_middle, Permutation_swap.
- intros l3 ?. destruct (IH2 l3) as (l3'&?&?); trivial.
destruct (IH1 l3') as (l3'' &?&?); trivial. exists l3''.
split; [done|]. etrans; eauto.
Qed.
Lemma sublist_Permutation l1 l2 l3 :
l1 `sublist_of` l2 → l2 ≡ₚ l3 → ∃ l4, l1 ≡ₚ l4 ∧ l4 `sublist_of` l3.
Proof.
intros Hl1l2 Hl2l3. revert l1 Hl1l2.
induction Hl2l3 as [|x l2 l3 ? IH|x y l2|l2 l2' l3 ? IH1 ? IH2].
- intros l1. by exists l1.
- intros l1. rewrite sublist_cons_r. intros [?|(l1'&l1''&?)]; subst.
{ destruct (IH l1) as (l4&?&?); trivial.
exists l4. split.
- done.
- by constructor. }
destruct (IH l1') as (l4&?&Hl4); auto. exists (x :: l4).
split; [ by constructor | by constructor ].
- intros l1. rewrite sublist_cons_r. intros [Hl1|(l1'&l1''&Hl1)]; subst.
{ exists l1. split; [done|]. rewrite sublist_cons_r in Hl1.
destruct Hl1 as [?|(l1'&?&?)]; subst; by repeat constructor. }
rewrite sublist_cons_r in Hl1. destruct Hl1 as [?|(l1''&?&?)]; subst.
+ exists (y :: l1'). by repeat constructor.
+ exists (x :: y :: l1''). by repeat constructor.
- intros l1 ?. destruct (IH1 l1) as (l3'&?&?); trivial.
destruct (IH2 l3') as (l3'' &?&?); trivial. exists l3''.
split; [|done]. etrans; eauto.
Qed.
(** Properties of the [submseteq] predicate *)
Lemma submseteq_length l1 l2 : l1 ⊆+ l2 → length l1 ≤ length l2.
Proof. induction 1; simpl; auto with lia. Qed.
Lemma submseteq_nil_l l : [] ⊆+ l.
Proof. induction l; constructor; auto. Qed.
Lemma submseteq_nil_r l : l ⊆+ [] ↔ l = [].
Proof.
split; [|intros ->; constructor].
intros Hl. apply submseteq_length in Hl. destruct l; simpl in *; auto with lia.
Qed.
Global Instance: PreOrder (@submseteq A).
Proof.
split.
- intros l. induction l; constructor; auto.
- red. apply submseteq_trans.
Qed.
Lemma Permutation_submseteq l1 l2 : l1 ≡ₚ l2 → l1 ⊆+ l2.
Proof. induction 1; econstructor; eauto. Qed.
Lemma sublist_submseteq l1 l2 : l1 `sublist_of` l2 → l1 ⊆+ l2.
Proof. induction 1; constructor; auto. Qed.
Lemma submseteq_Permutation l1 l2 : l1 ⊆+ l2 → ∃ k, l2 ≡ₚ l1 ++ k.
Proof.
induction 1 as
[|x y l ? [k Hk]| |x l1 l2 ? [k Hk]|l1 l2 l3 ? [k Hk] ? [k' Hk']].
- by eexists [].
- exists k. by rewrite Hk.
- eexists []. rewrite (right_id_L [] (++)). by constructor.
- exists (x :: k). by rewrite Hk, Permutation_middle.
- exists (k ++ k'). by rewrite Hk', Hk, (assoc_L (++)).
Qed.
Global Instance: Proper ((≡ₚ) ==> (≡ₚ) ==> iff) (@submseteq A).
Proof.
intros l1 l2 ? k1 k2 ?. split; intros.
- trans l1; [by apply Permutation_submseteq|].
trans k1; [done|]. by apply Permutation_submseteq.
- trans l2; [by apply Permutation_submseteq|].
trans k2; [done|]. by apply Permutation_submseteq.
Qed.
Lemma submseteq_length_Permutation l1 l2 :
l1 ⊆+ l2 → length l2 ≤ length l1 → l1 ≡ₚ l2.
Proof.
intros Hsub Hlen. destruct (submseteq_Permutation l1 l2) as [[|??] Hk]; auto.
- by rewrite Hk, (right_id_L [] (++)).
- rewrite Hk, length_app in Hlen. simpl in *; lia.
Qed.
Global Instance: AntiSymm (≡ₚ) (@submseteq A).
Proof.
intros l1 l2 ??.
apply submseteq_length_Permutation; auto using submseteq_length.
Qed.
Lemma elem_of_submseteq l k x : x ∈ l → l ⊆+ k → x ∈ k.
Proof. intros ? [l' ->]%submseteq_Permutation. apply elem_of_app; auto. Qed.
Lemma lookup_submseteq l k i x :
l !! i = Some x →
l ⊆+ k →
∃ j, k !! j = Some x.
Proof.
intros Hsub Hlook.
eapply elem_of_list_lookup_1, elem_of_submseteq;
eauto using elem_of_list_lookup_2.
Qed.
Lemma submseteq_take l i : take i l ⊆+ l.
Proof. auto using sublist_take, sublist_submseteq. Qed.
Lemma submseteq_drop l i : drop i l ⊆+ l.
Proof. auto using sublist_drop, sublist_submseteq. Qed.
Lemma submseteq_delete l i : delete i l ⊆+ l.
Proof. auto using sublist_delete, sublist_submseteq. Qed.
Lemma submseteq_foldr_delete l is : foldr delete l is `sublist_of` l.
Proof. auto using sublist_foldr_delete, sublist_submseteq. Qed.
Lemma submseteq_sublist_l l1 l3 : l1 ⊆+ l3 ↔ ∃ l2, l1 `sublist_of` l2 ∧ l2 ≡ₚ l3.
Proof.
split.
{ intros Hl13. elim Hl13; clear l1 l3 Hl13.
- by eexists [].
- intros x l1 l3 ? (l2&?&?). exists (x :: l2). by repeat constructor.
- intros x y l. exists (y :: x :: l). by repeat constructor.
- intros x l1 l3 ? (l2&?&?). exists (x :: l2). by repeat constructor.
- intros l1 l3 l5 ? (l2&?&?) ? (l4&?&?).
destruct (Permutation_sublist l2 l3 l4) as (l3'&?&?); trivial.
exists l3'. split; etrans; eauto. }
intros (l2&?&?).
trans l2; auto using sublist_submseteq, Permutation_submseteq.
Qed.
Lemma submseteq_sublist_r l1 l3 :
l1 ⊆+ l3 ↔ ∃ l2, l1 ≡ₚ l2 ∧ l2 `sublist_of` l3.
Proof.
rewrite submseteq_sublist_l.
split; intros (l2&?&?); eauto using sublist_Permutation, Permutation_sublist.
Qed.
Lemma submseteq_inserts_l k l1 l2 : l1 ⊆+ l2 → l1 ⊆+ k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma submseteq_inserts_r k l1 l2 : l1 ⊆+ l2 → l1 ⊆+ l2 ++ k.
Proof. rewrite (comm (++)). apply submseteq_inserts_l. Qed.
Lemma submseteq_skips_l k l1 l2 : l1 ⊆+ l2 → k ++ l1 ⊆+ k ++ l2.
Proof. induction k; try constructor; auto. Qed.
Lemma submseteq_skips_r k l1 l2 : l1 ⊆+ l2 → l1 ++ k ⊆+ l2 ++ k.
Proof. rewrite !(comm (++) _ k). apply submseteq_skips_l. Qed.
Lemma submseteq_app l1 l2 k1 k2 : l1 ⊆+ l2 → k1 ⊆+ k2 → l1 ++ k1 ⊆+ l2 ++ k2.
Proof. trans (l1 ++ k2); auto using submseteq_skips_l, submseteq_skips_r. Qed.
Lemma submseteq_cons_r x l k :
l ⊆+ x :: k ↔ l ⊆+ k ∨ ∃ l', l ≡ₚ x :: l' ∧ l' ⊆+ k.
Proof.
split.
- rewrite submseteq_sublist_r. intros (l'&E&Hl').
rewrite sublist_cons_r in Hl'. destruct Hl' as [?|(?&?&?)]; subst.
+ left. rewrite E. eauto using sublist_submseteq.
+ right. eauto using sublist_submseteq.
- intros [?|(?&E&?)]; [|rewrite E]; by constructor.
Qed.
Lemma submseteq_cons_l x l k : x :: l ⊆+ k ↔ ∃ k', k ≡ₚ x :: k' ∧ l ⊆+ k'.
Proof.
split.
- rewrite submseteq_sublist_l. intros (l'&Hl'&E).
rewrite sublist_cons_l in Hl'. destruct Hl' as (k1&k2&?&?); subst.
exists (k1 ++ k2). split; eauto using submseteq_inserts_l, sublist_submseteq.
by rewrite Permutation_middle.
- intros (?&E&?). rewrite E. by constructor.
Qed.
Lemma submseteq_app_r l k1 k2 :
l ⊆+ k1 ++ k2 ↔ ∃ l1 l2, l ≡ₚ l1 ++ l2 ∧ l1 ⊆+ k1 ∧ l2 ⊆+ k2.
Proof.
split.
- rewrite submseteq_sublist_r. intros (l'&E&Hl').
rewrite sublist_app_r in Hl'. destruct Hl' as (l1&l2&?&?&?); subst.
exists l1, l2. eauto using sublist_submseteq.
- intros (?&?&E&?&?). rewrite E. eauto using submseteq_app.
Qed.
Lemma submseteq_app_l l1 l2 k :
l1 ++ l2 ⊆+ k ↔ ∃ k1 k2, k ≡ₚ k1 ++ k2 ∧ l1 ⊆+ k1 ∧ l2 ⊆+ k2.
Proof.
split.
- rewrite submseteq_sublist_l. intros (l'&Hl'&E).
rewrite sublist_app_l in Hl'. destruct Hl' as (k1&k2&?&?&?); subst.
exists k1, k2. split; [done|]. eauto using sublist_submseteq.
- intros (?&?&E&?&?). rewrite E. eauto using submseteq_app.
Qed.
Lemma submseteq_app_inv_l l1 l2 k : k ++ l1 ⊆+ k ++ l2 → l1 ⊆+ l2.
Proof.
induction k as [|y k IH]; simpl; [done |]. rewrite submseteq_cons_l.
intros (?&E%(inj (cons y))&?). apply IH. by rewrite E.
Qed.
Lemma submseteq_app_inv_r l1 l2 k : l1 ++ k ⊆+ l2 ++ k → l1 ⊆+ l2.
Proof. rewrite <-!(comm (++) k). apply submseteq_app_inv_l. Qed.
Lemma submseteq_cons_middle x l k1 k2 : l ⊆+ k1 ++ k2 → x :: l ⊆+ k1 ++ x :: k2.
Proof. rewrite <-Permutation_middle. by apply submseteq_skip. Qed.
Lemma submseteq_app_middle l1 l2 k1 k2 :
l2 ⊆+ k1 ++ k2 → l1 ++ l2 ⊆+ k1 ++ l1 ++ k2.
Proof.
rewrite !(assoc (++)), (comm (++) k1 l1), <-(assoc_L (++)).
by apply submseteq_skips_l.
Qed.
Lemma submseteq_middle l k1 k2 : l ⊆+ k1 ++ l ++ k2.
Proof. by apply submseteq_inserts_l, submseteq_inserts_r. Qed.
Lemma NoDup_submseteq l k : NoDup l → (∀ x, x ∈ l → x ∈ k) → l ⊆+ k.
Proof.
intros Hl. revert k. induction Hl as [|x l Hx ? IH].
{ intros k Hk. by apply submseteq_nil_l. }
intros k Hlk. destruct (elem_of_list_split k x) as (l1&l2&?); subst.
{ apply Hlk. by constructor. }
rewrite <-Permutation_middle. apply submseteq_skip, IH.
intros y Hy. rewrite elem_of_app.
specialize (Hlk y). rewrite elem_of_app, !elem_of_cons in Hlk.
by destruct Hlk as [?|[?|?]]; subst; eauto.
Qed.
Lemma NoDup_Permutation l k : NoDup l → NoDup k → (∀ x, x ∈ l ↔ x ∈ k) → l ≡ₚ k.
Proof.
intros. apply (anti_symm submseteq); apply NoDup_submseteq; naive_solver.
Qed.
Lemma submseteq_insert l1 l2 i j x y :
l1 !! i = Some x →
l2 !! j = Some x →
l1 ⊆+ l2 →
(<[i := y]> l1) ⊆+ (<[j := y]> l2).
Proof.
intros ?? Hsub.
rewrite !insert_take_drop,
<-!Permutation_middle by eauto using lookup_lt_Some.
rewrite <-(take_drop_middle l1 i x), <-(take_drop_middle l2 j x),
<-!Permutation_middle in Hsub by done.
by apply submseteq_skip, (submseteq_app_inv_l _ _ [x]).
Qed.
Lemma singleton_submseteq_l l x :
[x] ⊆+ l ↔ x ∈ l.
Proof.
split.
- intros Hsub. eapply elem_of_submseteq; [|done].
apply elem_of_list_singleton. done.
- intros (l1&l2&->)%elem_of_list_split.
apply submseteq_cons_middle, submseteq_nil_l.
Qed.
Lemma singleton_submseteq x y :
[x] ⊆+ [y] ↔ x = y.
Proof. rewrite singleton_submseteq_l. apply elem_of_list_singleton. Qed.
Section submseteq_dec.
Context `{!EqDecision A}.
Lemma list_remove_Permutation l1 l2 k1 x :
l1 ≡ₚ l2 → list_remove x l1 = Some k1 →
∃ k2, list_remove x l2 = Some k2 ∧ k1 ≡ₚ k2.
Proof.
intros Hl. revert k1. induction Hl
as [|y l1 l2 ? IH|y1 y2 l|l1 l2 l3 ? IH1 ? IH2]; simpl; intros k1 Hk1.
- done.
- case_decide; simplify_eq; eauto.
destruct (list_remove x l1) as [l|] eqn:?; simplify_eq.
destruct (IH l) as (?&?&?); simplify_option_eq; eauto.
- simplify_option_eq; eauto using Permutation_swap.
- destruct (IH1 k1) as (k2&?&?); trivial.
destruct (IH2 k2) as (k3&?&?); trivial.
exists k3. split; eauto. by trans k2.
Qed.
Lemma list_remove_Some l k x : list_remove x l = Some k → l ≡ₚ x :: k.
Proof.
revert k. induction l as [|y l IH]; simpl; intros k ?; [done |].
simplify_option_eq; auto. by rewrite Permutation_swap, <-IH.
Qed.
Lemma list_remove_Some_inv l k x :
l ≡ₚ x :: k → ∃ k', list_remove x l = Some k' ∧ k ≡ₚ k'.
Proof.
intros. destruct (list_remove_Permutation (x :: k) l k x) as (k'&?&?).
- done.
- simpl; by case_decide.
- by exists k'.
Qed.
Lemma list_remove_list_submseteq l1 l2 :
l1 ⊆+ l2 ↔ is_Some (list_remove_list l1 l2).
Proof.
split.
- revert l2. induction l1 as [|x l1 IH]; simpl.
{ intros l2 _. by exists l2. }
intros l2. rewrite submseteq_cons_l. intros (k&Hk&?).
destruct (list_remove_Some_inv l2 k x) as (k2&?&Hk2); trivial.
simplify_option_eq. apply IH. by rewrite <-Hk2.
- intros [k Hk]. revert l2 k Hk.
induction l1 as [|x l1 IH]; simpl; intros l2 k.
{ intros. apply submseteq_nil_l. }
destruct (list_remove x l2) as [k'|] eqn:?; intros; simplify_eq.
rewrite submseteq_cons_l. eauto using list_remove_Some.
Qed.
Global Instance submseteq_dec : RelDecision (submseteq : relation (list A)).
Proof using Type*.
refine (λ l1 l2, cast_if (decide (is_Some (list_remove_list l1 l2))));
abstract (rewrite list_remove_list_submseteq; tauto).
Defined.
Global Instance Permutation_dec : RelDecision (≡ₚ@{A}).
Proof using Type*.
refine (λ l1 l2, cast_if_and
(decide (l1 ⊆+ l2)) (decide (length l2 ≤ length l1)));
[by apply submseteq_length_Permutation
|abstract (intros He; by rewrite He in *)..].
Defined.
End submseteq_dec.
(** ** Properties of the [Forall] and [Exists] predicate *)
Lemma Forall_Exists_dec (P Q : A → Prop) (dec : ∀ x, {P x} + {Q x}) :
∀ l, {Forall P l} + {Exists Q l}.
Proof.
refine (
fix go l :=
match l return {Forall P l} + {Exists Q l} with
| [] => left _
| x :: l => cast_if_and (dec x) (go l)
end); clear go; intuition.
Defined.
(** Export the Coq stdlib constructors under different names,
because we use [Forall_nil] and [Forall_cons] for a version with a biimplication. *)
Definition Forall_nil_2 := @Forall_nil A.
Definition Forall_cons_2 := @Forall_cons A.
Global Instance Forall_proper:
Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Forall A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Global Instance Exists_proper:
Proper (pointwise_relation _ (↔) ==> (=) ==> (↔)) (@Exists A).
Proof. split; subst; induction 1; constructor; by firstorder auto. Qed.
Section Forall_Exists.
Context (P : A → Prop).
Lemma Forall_forall l : Forall P l ↔ ∀ x, x ∈ l → P x.
Proof.
split; [induction 1; inv 1; auto|].
intros Hin; induction l as [|x l IH]; constructor; [apply Hin; constructor|].
apply IH. intros ??. apply Hin. by constructor.
Qed.
Lemma Forall_nil : Forall P [] ↔ True.
Proof. done. Qed.
Lemma Forall_cons_1 x l : Forall P (x :: l) → P x ∧ Forall P l.
Proof. by inv 1. Qed.
Lemma Forall_cons x l : Forall P (x :: l) ↔ P x ∧ Forall P l.
Proof. split; [by inv 1|]. intros [??]. by constructor. Qed.
Lemma Forall_singleton x : Forall P [x] ↔ P x.
Proof. rewrite Forall_cons, Forall_nil; tauto. Qed.
Lemma Forall_app_2 l1 l2 : Forall P l1 → Forall P l2 → Forall P (l1 ++ l2).
Proof. induction 1; simpl; auto. Qed.
Lemma Forall_app l1 l2 : Forall P (l1 ++ l2) ↔ Forall P l1 ∧ Forall P l2.
Proof.
split; [induction l1; inv 1; naive_solver|].
intros [??]; auto using Forall_app_2.
Qed.
Lemma Forall_true l : (∀ x, P x) → Forall P l.
Proof. intros ?. induction l; auto. Defined.
Lemma Forall_impl (Q : A → Prop) l :
Forall P l → (∀ x, P x → Q x) → Forall Q l.
Proof. intros H ?. induction H; auto. Defined.
Lemma Forall_iff l (Q : A → Prop) :
(∀ x, P x ↔ Q x) → Forall P l ↔ Forall Q l.
Proof. intros H. apply Forall_proper. { red; apply H. } done. Qed.
Lemma Forall_not l : length l ≠ 0 → Forall (not ∘ P) l → ¬Forall P l.
Proof. by destruct 2; inv 1. Qed.
Lemma Forall_and {Q} l : Forall (λ x, P x ∧ Q x) l ↔ Forall P l ∧ Forall Q l.
Proof.
split; [induction 1; constructor; naive_solver|].
intros [Hl Hl']; revert Hl'; induction Hl; inv 1; auto.
Qed.
Lemma Forall_and_l {Q} l : Forall (λ x, P x ∧ Q x) l → Forall P l.
Proof. rewrite Forall_and; tauto. Qed.
Lemma Forall_and_r {Q} l : Forall (λ x, P x ∧ Q x) l → Forall Q l.
Proof. rewrite Forall_and; tauto. Qed.
Lemma Forall_delete l i : Forall P l → Forall P (delete i l).
Proof. intros H. revert i. by induction H; intros [|i]; try constructor. Qed.
Lemma Forall_lookup l : Forall P l ↔ ∀ i x, l !! i = Some x → P x.
Proof.
rewrite Forall_forall. setoid_rewrite elem_of_list_lookup. naive_solver.
Qed.
Lemma Forall_lookup_total `{!Inhabited A} l :
Forall P l ↔ ∀ i, i < length l → P (l !!! i).
Proof. rewrite Forall_lookup. setoid_rewrite list_lookup_alt. naive_solver. Qed.
Lemma Forall_lookup_1 l i x : Forall P l → l !! i = Some x → P x.
Proof. rewrite Forall_lookup. eauto. Qed.
Lemma Forall_lookup_total_1 `{!Inhabited A} l i :
Forall P l → i < length l → P (l !!! i).
Proof. rewrite Forall_lookup_total. eauto. Qed.
Lemma Forall_lookup_2 l : (∀ i x, l !! i = Some x → P x) → Forall P l.
Proof. by rewrite Forall_lookup. Qed.
Lemma Forall_lookup_total_2 `{!Inhabited A} l :
(∀ i, i < length l → P (l !!! i)) → Forall P l.
Proof. by rewrite Forall_lookup_total. Qed.
Lemma Forall_nth d l : Forall P l ↔ ∀ i, i < length l → P (nth i l d).
Proof.
rewrite Forall_lookup. split.
- intros Hl ? [x Hl']%lookup_lt_is_Some_2.
rewrite (nth_lookup_Some _ _ _ _ Hl'). by eapply Hl.
- intros Hl i x Hl'. specialize (Hl _ (lookup_lt_Some _ _ _ Hl')).
by rewrite (nth_lookup_Some _ _ _ _ Hl') in Hl.
Qed.
Lemma Forall_reverse l : Forall P (reverse l) ↔ Forall P l.
Proof.
induction l as [|x l IH]; simpl; [done|].
rewrite reverse_cons, Forall_cons, Forall_app, Forall_singleton. naive_solver.
Qed.
Lemma Forall_tail l : Forall P l → Forall P (tail l).
Proof. destruct 1; simpl; auto. Qed.
Lemma Forall_alter f l i :
Forall P l → (∀ x, l !! i = Some x → P x → P (f x)) → Forall P (alter f i l).
Proof.
intros Hl. revert i. induction Hl; simpl; intros [|i]; constructor; auto.
Qed.
Lemma Forall_alter_inv f l i :
Forall P (alter f i l) → (∀ x, l !! i = Some x → P (f x) → P x) → Forall P l.
Proof.
revert i. induction l; intros [|?]; simpl;
inv 1; constructor; eauto.
Qed.
Lemma Forall_insert l i x : Forall P l → P x → Forall P (<[i:=x]>l).
Proof. rewrite list_insert_alter; auto using Forall_alter. Qed.
Lemma Forall_inserts l i k :
Forall P l → Forall P k → Forall P (list_inserts i k l).
Proof.
intros Hl Hk; revert i.
induction Hk; simpl; auto using Forall_insert.
Qed.
Lemma Forall_replicate n x : P x → Forall P (replicate n x).
Proof. induction n; simpl; constructor; auto. Qed.
Lemma Forall_replicate_eq n (x : A) : Forall (x =.) (replicate n x).
Proof using -(P). induction n; simpl; constructor; auto. Qed.
Lemma Forall_take n l : Forall P l → Forall P (take n l).
Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
Lemma Forall_drop n l : Forall P l → Forall P (drop n l).
Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
Lemma Forall_resize n x l : P x → Forall P l → Forall P (resize n x l).
Proof.
intros ? Hl. revert n.
induction Hl; intros [|?]; simpl; auto using Forall_replicate.
Qed.
Lemma Forall_resize_inv n x l :
length l ≤ n → Forall P (resize n x l) → Forall P l.
Proof. intros ?. rewrite resize_ge, Forall_app by done. by intros []. Qed.
Lemma Forall_sublist_lookup l i n k :
sublist_lookup i n l = Some k → Forall P l → Forall P k.
Proof.
unfold sublist_lookup. intros; simplify_option_eq.
auto using Forall_take, Forall_drop.
Qed.
Lemma Forall_sublist_alter f l i n k :
Forall P l → sublist_lookup i n l = Some k → Forall P (f k) →
Forall P (sublist_alter f i n l).
Proof.
unfold sublist_alter, sublist_lookup. intros; simplify_option_eq.
auto using Forall_app_2, Forall_drop, Forall_take.
Qed.
Lemma Forall_sublist_alter_inv f l i n k :
sublist_lookup i n l = Some k →
Forall P (sublist_alter f i n l) → Forall P (f k).
Proof.
unfold sublist_alter, sublist_lookup. intros ?; simplify_option_eq.
rewrite !Forall_app; tauto.
Qed.
Lemma Forall_reshape l szs : Forall P l → Forall (Forall P) (reshape szs l).
Proof.
revert l. induction szs; simpl; auto using Forall_take, Forall_drop.
Qed.
Lemma Forall_rev_ind (Q : list A → Prop) :
Q [] → (∀ x l, P x → Forall P l → Q l → Q (l ++ [x])) →
∀ l, Forall P l → Q l.
Proof.
intros ?? l. induction l using rev_ind; auto.
rewrite Forall_app, Forall_singleton; intros [??]; auto.
Qed.
Lemma Exists_exists l : Exists P l ↔ ∃ x, x ∈ l ∧ P x.
Proof.
split.
- induction 1 as [x|y ?? [x [??]]]; exists x; by repeat constructor.
- intros [x [Hin ?]]. induction l; [by destruct (not_elem_of_nil x)|].
inv Hin; subst; [left|right]; auto.
Qed.
Lemma Exists_inv x l : Exists P (x :: l) → P x ∨ Exists P l.
Proof. inv 1; intuition trivial. Qed.
Lemma Exists_app l1 l2 : Exists P (l1 ++ l2) ↔ Exists P l1 ∨ Exists P l2.
Proof.
split.
- induction l1; inv 1; naive_solver.
- intros [H|H]; [induction H | induction l1]; simpl; intuition.
Qed.
Lemma Exists_impl (Q : A → Prop) l :
Exists P l → (∀ x, P x → Q x) → Exists Q l.
Proof. intros H ?. induction H; auto. Defined.
Lemma Exists_not_Forall l : Exists (not ∘ P) l → ¬Forall P l.
Proof. induction 1; inv 1; contradiction. Qed.
Lemma Forall_not_Exists l : Forall (not ∘ P) l → ¬Exists P l.
Proof. induction 1; inv 1; contradiction. Qed.
Lemma Forall_list_difference `{!EqDecision A} l k :
Forall P l → Forall P (list_difference l k).
Proof.
rewrite !Forall_forall.
intros ? x; rewrite elem_of_list_difference; naive_solver.
Qed.
Lemma Forall_list_union `{!EqDecision A} l k :
Forall P l → Forall P k → Forall P (list_union l k).
Proof. intros. apply Forall_app; auto using Forall_list_difference. Qed.
Lemma Forall_list_intersection `{!EqDecision A} l k :
Forall P l → Forall P (list_intersection l k).
Proof.
rewrite !Forall_forall.
intros ? x; rewrite elem_of_list_intersection; naive_solver.
Qed.
Context {dec : ∀ x, Decision (P x)}.
Lemma not_Forall_Exists l : ¬Forall P l → Exists (not ∘ P) l.
Proof using Type*. intro. by destruct (Forall_Exists_dec P (not ∘ P) dec l). Qed.
Lemma not_Exists_Forall l : ¬Exists P l → Forall (not ∘ P) l.
Proof using Type*.
by destruct (Forall_Exists_dec (not ∘ P) P
(λ x : A, swap_if (decide (P x))) l).
Qed.
Global Instance Forall_dec l : Decision (Forall P l) :=
match Forall_Exists_dec P (not ∘ P) dec l with
| left H => left H
| right H => right (Exists_not_Forall _ H)
end.
Global Instance Exists_dec l : Decision (Exists P l) :=
match Forall_Exists_dec (not ∘ P) P (λ x, swap_if (decide (P x))) l with
| left H => right (Forall_not_Exists _ H)
| right H => left H
end.
End Forall_Exists.
Global Instance Forall_Permutation :
Proper (pointwise_relation _ (↔) ==> (≡ₚ) ==> (↔)) (@Forall A).
Proof.
intros P1 P2 HP l1 l2 Hl. rewrite !Forall_forall.
apply forall_proper; intros x. by rewrite Hl, (HP x).
Qed.
Global Instance Exists_Permutation :
Proper (pointwise_relation _ (↔) ==> (≡ₚ) ==> (↔)) (@Exists A).
Proof.
intros P1 P2 HP l1 l2 Hl. rewrite !Exists_exists.
f_equiv; intros x. by rewrite Hl, (HP x).
Qed.
Lemma head_filter_Some P `{!∀ x : A, Decision (P x)} l x :
head (filter P l) = Some x →
∃ l1 l2, l = l1 ++ x :: l2 ∧ Forall (λ z, ¬P z) l1.
Proof.
intros Hl. induction l as [|x' l IH]; [done|].
rewrite filter_cons in Hl. case_decide; simplify_eq/=.
- exists [], l. repeat constructor.
- destruct IH as (l1&l2&->&?); [done|].
exists (x' :: l1), l2. by repeat constructor.
Qed.
Lemma last_filter_Some P `{!∀ x : A, Decision (P x)} l x :
last (filter P l) = Some x →
∃ l1 l2, l = l1 ++ x :: l2 ∧ Forall (λ z, ¬P z) l2.
Proof.
rewrite <-(reverse_involutive (filter P l)), last_reverse, <-filter_reverse.
intros (l1&l2&Heq&Hl)%head_filter_Some.
exists (reverse l2), (reverse l1).
rewrite <-(reverse_involutive l), Heq, reverse_app, reverse_cons, <-(assoc_L (++)).
split; [done|by apply Forall_reverse].
Qed.
Lemma list_exist_dec P l :
(∀ x, Decision (P x)) → Decision (∃ x, x ∈ l ∧ P x).
Proof.
refine (λ _, cast_if (decide (Exists P l))); by rewrite <-Exists_exists.
Defined.
Lemma list_forall_dec P l :
(∀ x, Decision (P x)) → Decision (∀ x, x ∈ l → P x).
Proof.
refine (λ _, cast_if (decide (Forall P l))); by rewrite <-Forall_forall.
Defined.
Lemma forallb_True (f : A → bool) xs : forallb f xs ↔ Forall f xs.
Proof.
split.
- induction xs; naive_solver.
- induction 1; naive_solver.
Qed.
Lemma existb_True (f : A → bool) xs : existsb f xs ↔ Exists f xs.
Proof.
split.
- induction xs; naive_solver.
- induction 1; naive_solver.
Qed.
Lemma replicate_as_Forall (x : A) n l :
replicate n x = l ↔ length l = n ∧ Forall (x =.) l.
Proof. rewrite replicate_as_elem_of, Forall_forall. naive_solver. Qed.
Lemma replicate_as_Forall_2 (x : A) n l :
length l = n → Forall (x =.) l → replicate n x = l.
Proof. by rewrite replicate_as_Forall. Qed.
End more_general_properties.
Lemma Forall_swap {A B} (Q : A → B → Prop) l1 l2 :
Forall (λ y, Forall (Q y) l1) l2 ↔ Forall (λ x, Forall (flip Q x) l2) l1.
Proof. repeat setoid_rewrite Forall_forall. simpl. split; eauto. Qed.
(** ** Properties of the [Forall2] predicate *)
Lemma Forall_Forall2_diag {A} (Q : A → A → Prop) l :
Forall (λ x, Q x x) l → Forall2 Q l l.
Proof. induction 1; constructor; auto. Qed.
Lemma Forall2_forall `{Inhabited A} B C (Q : A → B → C → Prop) l k :
Forall2 (λ x y, ∀ z, Q z x y) l k ↔ ∀ z, Forall2 (Q z) l k.
Proof.
split; [induction 1; constructor; auto|].
intros Hlk. induction (Hlk inhabitant) as [|x y l k _ _ IH]; constructor.
- intros z. by oinv Hlk.
- apply IH. intros z. by oinv Hlk.
Qed.
Lemma Forall2_same_length {A B} (l : list A) (k : list B) :
Forall2 (λ _ _, True) l k ↔ length l = length k.
Proof.
split; [by induction 1; f_equal/=|].
revert k. induction l; intros [|??] ?; simplify_eq/=; auto.
Qed.
Lemma Forall2_Forall {A} P (l1 l2 : list A) :
Forall2 P l1 l2 → Forall (uncurry P) (zip l1 l2).
Proof. induction 1; constructor; auto. Qed.
(** Export the Coq stdlib constructors under a different name,
because we use [Forall2_nil] and [Forall2_cons] for a version with a biimplication. *)
Definition Forall2_nil_2 := @Forall2_nil.
Definition Forall2_cons_2 := @Forall2_cons.
Section Forall2.
Context {A B} (P : A → B → Prop).
Implicit Types x : A.
Implicit Types y : B.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma Forall2_length l k : Forall2 P l k → length l = length k.
Proof. by induction 1; f_equal/=. Qed.
Lemma Forall2_length_l l k n : Forall2 P l k → length l = n → length k = n.
Proof. intros ? <-; symmetry. by apply Forall2_length. Qed.
Lemma Forall2_length_r l k n : Forall2 P l k → length k = n → length l = n.
Proof. intros ? <-. by apply Forall2_length. Qed.
Lemma Forall2_true l k : (∀ x y, P x y) → length l = length k → Forall2 P l k.
Proof. rewrite <-Forall2_same_length. induction 2; naive_solver. Qed.
Lemma Forall2_flip l k : Forall2 (flip P) k l ↔ Forall2 P l k.
Proof. split; induction 1; constructor; auto. Qed.
Lemma Forall2_transitive {C} (Q : B → C → Prop) (R : A → C → Prop) l k lC :
(∀ x y z, P x y → Q y z → R x z) →
Forall2 P l k → Forall2 Q k lC → Forall2 R l lC.
Proof. intros ? Hl. revert lC. induction Hl; inv 1; eauto. Qed.
Lemma Forall2_impl (Q : A → B → Prop) l k :
Forall2 P l k → (∀ x y, P x y → Q x y) → Forall2 Q l k.
Proof. intros H ?. induction H; auto. Defined.
Lemma Forall2_unique l k1 k2 :
Forall2 P l k1 → Forall2 P l k2 →
(∀ x y1 y2, P x y1 → P x y2 → y1 = y2) → k1 = k2.
Proof.
intros H. revert k2. induction H; inv 1; intros; f_equal; eauto.
Qed.
Lemma Forall_Forall2_l l k :
length l = length k → Forall (λ x, ∀ y, P x y) l → Forall2 P l k.
Proof. rewrite <-Forall2_same_length. induction 1; inv 1; auto. Qed.
Lemma Forall_Forall2_r l k :
length l = length k → Forall (λ y, ∀ x, P x y) k → Forall2 P l k.
Proof. rewrite <-Forall2_same_length. induction 1; inv 1; auto. Qed.
Lemma Forall2_Forall_l (Q : A → Prop) l k :
Forall2 P l k → Forall (λ y, ∀ x, P x y → Q x) k → Forall Q l.
Proof. induction 1; inv 1; eauto. Qed.
Lemma Forall2_Forall_r (Q : B → Prop) l k :
Forall2 P l k → Forall (λ x, ∀ y, P x y → Q y) l → Forall Q k.
Proof. induction 1; inv 1; eauto. Qed.
Lemma Forall2_nil_inv_l k : Forall2 P [] k → k = [].
Proof. by inv 1. Qed.
Lemma Forall2_nil_inv_r l : Forall2 P l [] → l = [].
Proof. by inv 1. Qed.
Lemma Forall2_nil : Forall2 P [] [] ↔ True.
Proof. done. Qed.
Lemma Forall2_cons_1 x l y k :
Forall2 P (x :: l) (y :: k) → P x y ∧ Forall2 P l k.
Proof. by inv 1. Qed.
Lemma Forall2_cons_inv_l x l k :
Forall2 P (x :: l) k → ∃ y k', P x y ∧ Forall2 P l k' ∧ k = y :: k'.
Proof. inv 1; eauto. Qed.
Lemma Forall2_cons_inv_r l k y :
Forall2 P l (y :: k) → ∃ x l', P x y ∧ Forall2 P l' k ∧ l = x :: l'.
Proof. inv 1; eauto. Qed.
Lemma Forall2_cons_nil_inv x l : Forall2 P (x :: l) [] → False.
Proof. by inv 1. Qed.
Lemma Forall2_nil_cons_inv y k : Forall2 P [] (y :: k) → False.
Proof. by inv 1. Qed.
Lemma Forall2_cons x l y k :
Forall2 P (x :: l) (y :: k) ↔ P x y ∧ Forall2 P l k.
Proof.
split; [by apply Forall2_cons_1|]. intros []. by apply Forall2_cons_2.
Qed.
Lemma Forall2_app_l l1 l2 k :
Forall2 P l1 (take (length l1) k) → Forall2 P l2 (drop (length l1) k) →
Forall2 P (l1 ++ l2) k.
Proof. intros. rewrite <-(take_drop (length l1) k). by apply Forall2_app. Qed.
Lemma Forall2_app_r l k1 k2 :
Forall2 P (take (length k1) l) k1 → Forall2 P (drop (length k1) l) k2 →
Forall2 P l (k1 ++ k2).
Proof. intros. rewrite <-(take_drop (length k1) l). by apply Forall2_app. Qed.
Lemma Forall2_app_inv l1 l2 k1 k2 :
length l1 = length k1 →
Forall2 P (l1 ++ l2) (k1 ++ k2) → Forall2 P l1 k1 ∧ Forall2 P l2 k2.
Proof.
rewrite <-Forall2_same_length. induction 1; inv 1; naive_solver.
Qed.
Lemma Forall2_app_inv_l l1 l2 k :
Forall2 P (l1 ++ l2) k ↔
∃ k1 k2, Forall2 P l1 k1 ∧ Forall2 P l2 k2 ∧ k = k1 ++ k2.
Proof.
split; [|intros (?&?&?&?&->); by apply Forall2_app].
revert k. induction l1; inv 1; naive_solver.
Qed.
Lemma Forall2_app_inv_r l k1 k2 :
Forall2 P l (k1 ++ k2) ↔
∃ l1 l2, Forall2 P l1 k1 ∧ Forall2 P l2 k2 ∧ l = l1 ++ l2.
Proof.
split; [|intros (?&?&?&?&->); by apply Forall2_app].
revert l. induction k1; inv 1; naive_solver.
Qed.
Lemma Forall2_tail l k : Forall2 P l k → Forall2 P (tail l) (tail k).
Proof. destruct 1; simpl; auto. Qed.
Lemma Forall2_take l k n : Forall2 P l k → Forall2 P (take n l) (take n k).
Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
Lemma Forall2_drop l k n : Forall2 P l k → Forall2 P (drop n l) (drop n k).
Proof. intros Hl. revert n. induction Hl; intros [|?]; simpl; auto. Qed.
Lemma Forall2_lookup l k :
Forall2 P l k ↔ ∀ i, option_Forall2 P (l !! i) (k !! i).
Proof.
split; [induction 1; intros [|?]; simpl; try constructor; eauto|].
revert k. induction l as [|x l IH]; intros [| y k] H.
- done.
- oinv (H 0).
- oinv (H 0).
- constructor; [by oinv (H 0)|]. apply (IH _ $ λ i, H (S i)).
Qed.
Lemma Forall2_lookup_lr l k i x y :
Forall2 P l k → l !! i = Some x → k !! i = Some y → P x y.
Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
Lemma Forall2_lookup_l l k i x :
Forall2 P l k → l !! i = Some x → ∃ y, k !! i = Some y ∧ P x y.
Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
Lemma Forall2_lookup_r l k i y :
Forall2 P l k → k !! i = Some y → ∃ x, l !! i = Some x ∧ P x y.
Proof. rewrite Forall2_lookup; intros H; destruct (H i); naive_solver. Qed.
Lemma Forall2_same_length_lookup_2 l k :
length l = length k →
(∀ i x y, l !! i = Some x → k !! i = Some y → P x y) → Forall2 P l k.
Proof.
rewrite <-Forall2_same_length. intros Hl Hlookup.
induction Hl as [|?????? IH]; constructor; [by apply (Hlookup 0)|].
apply IH. apply (λ i, Hlookup (S i)).
Qed.
Lemma Forall2_same_length_lookup l k :
Forall2 P l k ↔
length l = length k ∧
(∀ i x y, l !! i = Some x → k !! i = Some y → P x y).
Proof.
naive_solver eauto using Forall2_length,
Forall2_lookup_lr, Forall2_same_length_lookup_2.
Qed.
Lemma Forall2_alter_l f l k i :
Forall2 P l k →
(∀ x y, l !! i = Some x → k !! i = Some y → P x y → P (f x) y) →
Forall2 P (alter f i l) k.
Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
Lemma Forall2_alter_r f l k i :
Forall2 P l k →
(∀ x y, l !! i = Some x → k !! i = Some y → P x y → P x (f y)) →
Forall2 P l (alter f i k).
Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
Lemma Forall2_alter f g l k i :
Forall2 P l k →
(∀ x y, l !! i = Some x → k !! i = Some y → P x y → P (f x) (g y)) →
Forall2 P (alter f i l) (alter g i k).
Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
Lemma Forall2_insert l k x y i :
Forall2 P l k → P x y → Forall2 P (<[i:=x]> l) (<[i:=y]> k).
Proof. intros Hl. revert i. induction Hl; intros [|]; constructor; auto. Qed.
Lemma Forall2_inserts l k l' k' i :
Forall2 P l k → Forall2 P l' k' →
Forall2 P (list_inserts i l' l) (list_inserts i k' k).
Proof. intros ? H. revert i. induction H; eauto using Forall2_insert. Qed.
Lemma Forall2_delete l k i :
Forall2 P l k → Forall2 P (delete i l) (delete i k).
Proof. intros Hl. revert i. induction Hl; intros [|]; simpl; intuition. Qed.
Lemma Forall2_option_list mx my :
option_Forall2 P mx my → Forall2 P (option_list mx) (option_list my).
Proof. destruct 1; by constructor. Qed.
Lemma Forall2_filter Q1 Q2 `{∀ x, Decision (Q1 x), ∀ y, Decision (Q2 y)} l k:
(∀ x y, P x y → Q1 x ↔ Q2 y) →
Forall2 P l k → Forall2 P (filter Q1 l) (filter Q2 k).
Proof.
intros HP; induction 1 as [|x y l k]; unfold filter; simpl; auto.
simplify_option_eq by (by rewrite <-(HP x y)); repeat constructor; auto.
Qed.
Lemma Forall2_replicate_l k n x :
length k = n → Forall (P x) k → Forall2 P (replicate n x) k.
Proof. intros <-. induction 1; simpl; auto. Qed.
Lemma Forall2_replicate_r l n y :
length l = n → Forall (flip P y) l → Forall2 P l (replicate n y).
Proof. intros <-. induction 1; simpl; auto. Qed.
Lemma Forall2_replicate n x y :
P x y → Forall2 P (replicate n x) (replicate n y).
Proof. induction n; simpl; constructor; auto. Qed.
Lemma Forall2_rotate n l k :
Forall2 P l k → Forall2 P (rotate n l) (rotate n k).
Proof.
intros HAll. unfold rotate. rewrite (Forall2_length _ _ HAll).
eauto using Forall2_app, Forall2_take, Forall2_drop.
Qed.
Lemma Forall2_rotate_take s e l k :
Forall2 P l k → Forall2 P (rotate_take s e l) (rotate_take s e k).
Proof.
intros HAll. unfold rotate_take. rewrite (Forall2_length _ _ HAll).
eauto using Forall2_take, Forall2_rotate.
Qed.
Lemma Forall2_reverse l k : Forall2 P l k → Forall2 P (reverse l) (reverse k).
Proof.
induction 1; rewrite ?reverse_nil, ?reverse_cons; eauto using Forall2_app.
Qed.
Lemma Forall2_last l k : Forall2 P l k → option_Forall2 P (last l) (last k).
Proof. induction 1 as [|????? []]; simpl; repeat constructor; auto. Qed.
Lemma Forall2_resize l k x y n :
P x y → Forall2 P l k → Forall2 P (resize n x l) (resize n y k).
Proof.
intros. rewrite !resize_spec, (Forall2_length l k) by done.
auto using Forall2_app, Forall2_take, Forall2_replicate.
Qed.
Lemma Forall2_resize_l l k x y n m :
P x y → Forall (flip P y) l →
Forall2 P (resize n x l) k → Forall2 P (resize m x l) (resize m y k).
Proof.
intros. destruct (decide (m ≤ n)).
{ rewrite <-(resize_resize l m n) by done. by apply Forall2_resize. }
intros. assert (n = length k); subst.
{ by rewrite <-(Forall2_length (resize n x l) k), length_resize. }
rewrite (Nat.le_add_sub (length k) m), !resize_add,
resize_all, drop_all, resize_nil by lia.
auto using Forall2_app, Forall2_replicate_r,
Forall_resize, Forall_drop, length_resize.
Qed.
Lemma Forall2_resize_r l k x y n m :
P x y → Forall (P x) k →
Forall2 P l (resize n y k) → Forall2 P (resize m x l) (resize m y k).
Proof.
intros. destruct (decide (m ≤ n)).
{ rewrite <-(resize_resize k m n) by done. by apply Forall2_resize. }
assert (n = length l); subst.
{ by rewrite (Forall2_length l (resize n y k)), length_resize. }
rewrite (Nat.le_add_sub (length l) m), !resize_add,
resize_all, drop_all, resize_nil by lia.
auto using Forall2_app, Forall2_replicate_l,
Forall_resize, Forall_drop, length_resize.
Qed.
Lemma Forall2_resize_r_flip l k x y n m :
P x y → Forall (P x) k →
length k = m → Forall2 P l (resize n y k) → Forall2 P (resize m x l) k.
Proof.
intros ?? <- ?. rewrite <-(resize_all k y) at 2.
apply Forall2_resize_r with n; auto using Forall_true.
Qed.
Lemma Forall2_sublist_lookup_l l k n i l' :
Forall2 P l k → sublist_lookup n i l = Some l' →
∃ k', sublist_lookup n i k = Some k' ∧ Forall2 P l' k'.
Proof.
unfold sublist_lookup. intros Hlk Hl.
exists (take i (drop n k)); simplify_option_eq.
- auto using Forall2_take, Forall2_drop.
- apply Forall2_length in Hlk; lia.
Qed.
Lemma Forall2_sublist_lookup_r l k n i k' :
Forall2 P l k → sublist_lookup n i k = Some k' →
∃ l', sublist_lookup n i l = Some l' ∧ Forall2 P l' k'.
Proof.
intro. unfold sublist_lookup.
erewrite Forall2_length by eauto; intros; simplify_option_eq.
eauto using Forall2_take, Forall2_drop.
Qed.
Lemma Forall2_sublist_alter f g l k i n l' k' :
Forall2 P l k → sublist_lookup i n l = Some l' →
sublist_lookup i n k = Some k' → Forall2 P (f l') (g k') →
Forall2 P (sublist_alter f i n l) (sublist_alter g i n k).
Proof.
intro. unfold sublist_alter, sublist_lookup.
erewrite Forall2_length by eauto; intros; simplify_option_eq.
auto using Forall2_app, Forall2_drop, Forall2_take.
Qed.
Lemma Forall2_sublist_alter_l f l k i n l' k' :
Forall2 P l k → sublist_lookup i n l = Some l' →
sublist_lookup i n k = Some k' → Forall2 P (f l') k' →
Forall2 P (sublist_alter f i n l) k.
Proof.
intro. unfold sublist_lookup, sublist_alter.
erewrite <-Forall2_length by eauto; intros; simplify_option_eq.
apply Forall2_app_l;
rewrite ?length_take_le by lia; auto using Forall2_take.
apply Forall2_app_l; erewrite Forall2_length, length_take,
length_drop, <-Forall2_length, Nat.min_l by eauto with lia; [done|].
rewrite drop_drop; auto using Forall2_drop.
Qed.
Global Instance Forall2_dec `{dec : ∀ x y, Decision (P x y)} :
RelDecision (Forall2 P).
Proof.
refine (
fix go l k : Decision (Forall2 P l k) :=
match l, k with
| [], [] => left _
| x :: l, y :: k => cast_if_and (decide (P x y)) (go l k)
| _, _ => right _
end); clear dec go; abstract first [by constructor | by inv 1].
Defined.
End Forall2.
Section Forall2_proper.
Context {A} (R : relation A).
Global Instance: Reflexive R → Reflexive (Forall2 R).
Proof. intros ? l. induction l; by constructor. Qed.
Global Instance: Symmetric R → Symmetric (Forall2 R).
Proof. intros. induction 1; constructor; auto. Qed.
Global Instance: Transitive R → Transitive (Forall2 R).
Proof. intros ????. apply Forall2_transitive. by apply @transitivity. Qed.
Global Instance: Equivalence R → Equivalence (Forall2 R).
Proof. split; apply _. Qed.
Global Instance: PreOrder R → PreOrder (Forall2 R).
Proof. split; apply _. Qed.
Global Instance: AntiSymm (=) R → AntiSymm (=) (Forall2 R).
Proof. induction 2; inv 1; f_equal; auto. Qed.
Global Instance: Proper (R ==> Forall2 R ==> Forall2 R) (::).
Proof. by constructor. Qed.
Global Instance: Proper (Forall2 R ==> Forall2 R ==> Forall2 R) (++).
Proof. repeat intro. by apply Forall2_app. Qed.
Global Instance: Proper (Forall2 R ==> (=)) length.
Proof. repeat intro. eauto using Forall2_length. Qed.
Global Instance: Proper (Forall2 R ==> Forall2 R) tail.
Proof. repeat intro. eauto using Forall2_tail. Qed.
Global Instance: ∀ n, Proper (Forall2 R ==> Forall2 R) (take n).
Proof. repeat intro. eauto using Forall2_take. Qed.
Global Instance: ∀ n, Proper (Forall2 R ==> Forall2 R) (drop n).
Proof. repeat intro. eauto using Forall2_drop. Qed.
Global Instance: ∀ i, Proper (Forall2 R ==> option_Forall2 R) (lookup i).
Proof. repeat intro. by apply Forall2_lookup. Qed.
Global Instance:
Proper ((R ==> R) ==> (=) ==> Forall2 R ==> Forall2 R) (alter (M:=list A)).
Proof. repeat intro. subst. eauto using Forall2_alter. Qed.
Global Instance: ∀ i, Proper (R ==> Forall2 R ==> Forall2 R) (insert i).
Proof. repeat intro. eauto using Forall2_insert. Qed.
Global Instance: ∀ i,
Proper (Forall2 R ==> Forall2 R ==> Forall2 R) (list_inserts i).
Proof. repeat intro. eauto using Forall2_inserts. Qed.
Global Instance: ∀ i, Proper (Forall2 R ==> Forall2 R) (delete i).
Proof. repeat intro. eauto using Forall2_delete. Qed.
Global Instance: Proper (option_Forall2 R ==> Forall2 R) option_list.
Proof. repeat intro. eauto using Forall2_option_list. Qed.
Global Instance: ∀ P `{∀ x, Decision (P x)},
Proper (R ==> iff) P → Proper (Forall2 R ==> Forall2 R) (filter P).
Proof. repeat intro; eauto using Forall2_filter. Qed.
Global Instance: ∀ n, Proper (R ==> Forall2 R) (replicate n).
Proof. repeat intro. eauto using Forall2_replicate. Qed.
Global Instance: ∀ n, Proper (Forall2 R ==> Forall2 R) (rotate n).
Proof. repeat intro. eauto using Forall2_rotate. Qed.
Global Instance: ∀ s e, Proper (Forall2 R ==> Forall2 R) (rotate_take s e).
Proof. repeat intro. eauto using Forall2_rotate_take. Qed.
Global Instance: Proper (Forall2 R ==> Forall2 R) reverse.
Proof. repeat intro. eauto using Forall2_reverse. Qed.
Global Instance: Proper (Forall2 R ==> option_Forall2 R) last.
Proof. repeat intro. eauto using Forall2_last. Qed.
Global Instance: ∀ n, Proper (R ==> Forall2 R ==> Forall2 R) (resize n).
Proof. repeat intro. eauto using Forall2_resize. Qed.
End Forall2_proper.
Section Forall3.
Context {A B C} (P : A → B → C → Prop).
Local Hint Extern 0 (Forall3 _ _ _ _) => constructor : core.
Lemma Forall3_app l1 l2 k1 k2 k1' k2' :
Forall3 P l1 k1 k1' → Forall3 P l2 k2 k2' →
Forall3 P (l1 ++ l2) (k1 ++ k2) (k1' ++ k2').
Proof. induction 1; simpl; auto. Qed.
Lemma Forall3_cons_inv_l x l k k' :
Forall3 P (x :: l) k k' → ∃ y k2 z k2',
k = y :: k2 ∧ k' = z :: k2' ∧ P x y z ∧ Forall3 P l k2 k2'.
Proof. inv 1; naive_solver. Qed.
Lemma Forall3_app_inv_l l1 l2 k k' :
Forall3 P (l1 ++ l2) k k' → ∃ k1 k2 k1' k2',
k = k1 ++ k2 ∧ k' = k1' ++ k2' ∧ Forall3 P l1 k1 k1' ∧ Forall3 P l2 k2 k2'.
Proof.
revert k k'. induction l1 as [|x l1 IH]; simpl; inv 1.
- by repeat eexists; eauto.
- by repeat eexists; eauto.
- edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
Qed.
Lemma Forall3_cons_inv_m l y k k' :
Forall3 P l (y :: k) k' → ∃ x l2 z k2',
l = x :: l2 ∧ k' = z :: k2' ∧ P x y z ∧ Forall3 P l2 k k2'.
Proof. inv 1; naive_solver. Qed.
Lemma Forall3_app_inv_m l k1 k2 k' :
Forall3 P l (k1 ++ k2) k' → ∃ l1 l2 k1' k2',
l = l1 ++ l2 ∧ k' = k1' ++ k2' ∧ Forall3 P l1 k1 k1' ∧ Forall3 P l2 k2 k2'.
Proof.
revert l k'. induction k1 as [|x k1 IH]; simpl; inv 1.
- by repeat eexists; eauto.
- by repeat eexists; eauto.
- edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
Qed.
Lemma Forall3_cons_inv_r l k z k' :
Forall3 P l k (z :: k') → ∃ x l2 y k2,
l = x :: l2 ∧ k = y :: k2 ∧ P x y z ∧ Forall3 P l2 k2 k'.
Proof. inv 1; naive_solver. Qed.
Lemma Forall3_app_inv_r l k k1' k2' :
Forall3 P l k (k1' ++ k2') → ∃ l1 l2 k1 k2,
l = l1 ++ l2 ∧ k = k1 ++ k2 ∧ Forall3 P l1 k1 k1' ∧ Forall3 P l2 k2 k2'.
Proof.
revert l k. induction k1' as [|x k1' IH]; simpl; inv 1.
- by repeat eexists; eauto.
- by repeat eexists; eauto.
- edestruct IH as (?&?&?&?&?&?&?&?); eauto; naive_solver.
Qed.
Lemma Forall3_impl (Q : A → B → C → Prop) l k k' :
Forall3 P l k k' → (∀ x y z, P x y z → Q x y z) → Forall3 Q l k k'.
Proof. intros Hl ?; induction Hl; auto. Defined.
Lemma Forall3_length_lm l k k' : Forall3 P l k k' → length l = length k.
Proof. by induction 1; f_equal/=. Qed.
Lemma Forall3_length_lr l k k' : Forall3 P l k k' → length l = length k'.
Proof. by induction 1; f_equal/=. Qed.
Lemma Forall3_lookup_lmr l k k' i x y z :
Forall3 P l k k' →
l !! i = Some x → k !! i = Some y → k' !! i = Some z → P x y z.
Proof.
intros H. revert i. induction H; intros [|?] ???; simplify_eq/=; eauto.
Qed.
Lemma Forall3_lookup_l l k k' i x :
Forall3 P l k k' → l !! i = Some x →
∃ y z, k !! i = Some y ∧ k' !! i = Some z ∧ P x y z.
Proof.
intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
Qed.
Lemma Forall3_lookup_m l k k' i y :
Forall3 P l k k' → k !! i = Some y →
∃ x z, l !! i = Some x ∧ k' !! i = Some z ∧ P x y z.
Proof.
intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
Qed.
Lemma Forall3_lookup_r l k k' i z :
Forall3 P l k k' → k' !! i = Some z →
∃ x y, l !! i = Some x ∧ k !! i = Some y ∧ P x y z.
Proof.
intros H. revert i. induction H; intros [|?] ?; simplify_eq/=; eauto.
Qed.
Lemma Forall3_alter_lm f g l k k' i :
Forall3 P l k k' →
(∀ x y z, l !! i = Some x → k !! i = Some y → k' !! i = Some z →
P x y z → P (f x) (g y) z) →
Forall3 P (alter f i l) (alter g i k) k'.
Proof. intros Hl. revert i. induction Hl; intros [|]; auto. Qed.
End Forall3.
(** ** Properties of [subseteq] *)
Section subseteq.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
Global Instance list_subseteq_po : PreOrder (⊆@{list A}).
Proof. split; firstorder. Qed.
Lemma list_subseteq_nil l : [] ⊆ l.
Proof. intros x. by rewrite elem_of_nil. Qed.
Lemma list_nil_subseteq l : l ⊆ [] → l = [].
Proof.
intro Hl. destruct l as [|x l1]; [done|]. exfalso.
rewrite <-(elem_of_nil x).
apply Hl, elem_of_cons. by left.
Qed.
Lemma list_subseteq_skip x l1 l2 : l1 ⊆ l2 → x :: l1 ⊆ x :: l2.
Proof.
intros Hin y Hy%elem_of_cons.
destruct Hy as [-> | Hy]; [by left|]. right. by apply Hin.
Qed.
Lemma list_subseteq_cons x l1 l2 : l1 ⊆ l2 → l1 ⊆ x :: l2.
Proof. intros Hin y Hy. right. by apply Hin. Qed.
Lemma list_subseteq_app_l l1 l2 l : l1 ⊆ l2 → l1 ⊆ l2 ++ l.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_app. naive_solver. Qed.
Lemma list_subseteq_app_r l1 l2 l : l1 ⊆ l2 → l1 ⊆ l ++ l2.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_app. naive_solver. Qed.
Lemma list_subseteq_app_iff_l l1 l2 l :
l1 ++ l2 ⊆ l ↔ l1 ⊆ l ∧ l2 ⊆ l.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_app. naive_solver. Qed.
Lemma list_subseteq_cons_iff x l1 l2 :
x :: l1 ⊆ l2 ↔ x ∈ l2 ∧ l1 ⊆ l2.
Proof. unfold subseteq, list_subseteq. setoid_rewrite elem_of_cons. naive_solver. Qed.
Lemma list_delete_subseteq i l : delete i l ⊆ l.
Proof.
revert i. induction l as [|x l IHl]; intros i; [done|].
destruct i as [|i];
[by apply list_subseteq_cons|by apply list_subseteq_skip].
Qed.
Lemma list_filter_subseteq P `{!∀ x : A, Decision (P x)} l :
filter P l ⊆ l.
Proof.
induction l as [|x l IHl]; [done|]. rewrite filter_cons.
destruct (decide (P x));
[by apply list_subseteq_skip|by apply list_subseteq_cons].
Qed.
Lemma subseteq_drop n l : drop n l ⊆ l.
Proof. rewrite <-(take_drop n l) at 2. apply list_subseteq_app_r. done. Qed.
Lemma subseteq_take n l : take n l ⊆ l.
Proof. rewrite <-(take_drop n l) at 2. apply list_subseteq_app_l. done. Qed.
Global Instance list_subseteq_Permutation:
Proper ((≡ₚ) ==> (≡ₚ) ==> (↔)) (⊆@{list A}) .
Proof.
intros l1 l2 Hl k1 k2 Hk. apply forall_proper; intros x. by rewrite Hl, Hk.
Qed.
Global Program Instance list_subseteq_dec `{!EqDecision A} : RelDecision (⊆@{list A}) :=
λ xs ys, cast_if (decide (Forall (λ x, x ∈ ys) xs)).
Next Obligation. intros ???. by rewrite Forall_forall. Qed.
Next Obligation. intros ???. by rewrite Forall_forall. Qed.
End subseteq.
(** Setoids *)
Section setoid.
Context `{Equiv A}.
Implicit Types l k : list A.
Lemma list_equiv_Forall2 l k : l ≡ k ↔ Forall2 (≡) l k.
Proof. split; induction 1; constructor; auto. Qed.
Lemma list_equiv_lookup l k : l ≡ k ↔ ∀ i, l !! i ≡ k !! i.
Proof.
rewrite list_equiv_Forall2, Forall2_lookup.
by setoid_rewrite option_equiv_Forall2.
Qed.
Global Instance list_equivalence :
Equivalence (≡@{A}) → Equivalence (≡@{list A}).
Proof.
split.
- intros l. by apply list_equiv_Forall2.
- intros l k; rewrite !list_equiv_Forall2; by intros.
- intros l1 l2 l3; rewrite !list_equiv_Forall2; intros; by trans l2.
Qed.
Global Instance list_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (list A).
Proof. induction 1; f_equal; fold_leibniz; auto. Qed.
Global Instance cons_proper : Proper ((≡) ==> (≡) ==> (≡@{list A})) cons.
Proof. by constructor. Qed.
Global Instance app_proper : Proper ((≡) ==> (≡) ==> (≡@{list A})) app.
Proof. induction 1; intros ???; simpl; try constructor; auto. Qed.
Global Instance length_proper : Proper ((≡@{list A}) ==> (=)) length.
Proof. induction 1; f_equal/=; auto. Qed.
Global Instance tail_proper : Proper ((≡@{list A}) ==> (≡)) tail.
Proof. destruct 1; try constructor; auto. Qed.
Global Instance take_proper n : Proper ((≡@{list A}) ==> (≡)) (take n).
Proof. induction n; destruct 1; constructor; auto. Qed.
Global Instance drop_proper n : Proper ((≡@{list A}) ==> (≡)) (drop n).
Proof. induction n; destruct 1; simpl; try constructor; auto. Qed.
Global Instance list_lookup_proper i : Proper ((≡@{list A}) ==> (≡)) (lookup i).
Proof. induction i; destruct 1; simpl; try constructor; auto. Qed.
Global Instance list_lookup_total_proper `{!Inhabited A} i :
Proper (≡@{A}) inhabitant →
Proper ((≡@{list A}) ==> (≡)) (lookup_total i).
Proof. intros ?. induction i; destruct 1; simpl; auto. Qed.
Global Instance list_alter_proper :
Proper (((≡) ==> (≡)) ==> (=) ==> (≡) ==> (≡@{list A})) alter.
Proof.
intros f1 f2 Hf i ? <-. induction i; destruct 1; constructor; eauto.
Qed.
Global Instance list_insert_proper i :
Proper ((≡) ==> (≡) ==> (≡@{list A})) (insert i).
Proof. intros ???; induction i; destruct 1; constructor; eauto. Qed.
Global Instance list_inserts_proper i :
Proper ((≡) ==> (≡) ==> (≡@{list A})) (list_inserts i).
Proof.
intros k1 k2 Hk; revert i.
induction Hk; intros ????; simpl; try f_equiv; naive_solver.
Qed.
Global Instance list_delete_proper i :
Proper ((≡) ==> (≡@{list A})) (delete i).
Proof. induction i; destruct 1; try constructor; eauto. Qed.
Global Instance option_list_proper : Proper ((≡) ==> (≡@{list A})) option_list.
Proof. destruct 1; repeat constructor; auto. Qed.
Global Instance list_filter_proper P `{∀ x, Decision (P x)} :
Proper ((≡) ==> iff) P → Proper ((≡) ==> (≡@{list A})) (filter P).
Proof. intros ???. rewrite !list_equiv_Forall2. by apply Forall2_filter. Qed.
Global Instance replicate_proper n : Proper ((≡@{A}) ==> (≡)) (replicate n).
Proof. induction n; constructor; auto. Qed.
Global Instance rotate_proper n : Proper ((≡@{list A}) ==> (≡)) (rotate n).
Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate. Qed.
Global Instance rotate_take_proper s e : Proper ((≡@{list A}) ==> (≡)) (rotate_take s e).
Proof. intros ??. rewrite !list_equiv_Forall2. by apply Forall2_rotate_take. Qed.
Global Instance reverse_proper : Proper ((≡) ==> (≡@{list A})) reverse.
Proof.
induction 1; rewrite ?reverse_cons; simpl; [constructor|].
apply app_proper; repeat constructor; auto.
Qed.
Global Instance last_proper : Proper ((≡) ==> (≡)) (@last A).
Proof. induction 1 as [|????? []]; simpl; repeat constructor; auto. Qed.
Global Instance resize_proper n : Proper ((≡) ==> (≡) ==> (≡@{list A})) (resize n).
Proof.
induction n; destruct 2; simpl; repeat (constructor || f_equiv); auto.
Qed.
Global Instance cons_equiv_inj : Inj2 (≡) (≡) (≡) (@cons A).
Proof. inv 1; auto. Qed.
Lemma nil_equiv_eq l : l ≡ [] ↔ l = [].
Proof. split; [by inv 1|intros ->; constructor]. Qed.
Lemma cons_equiv_eq l x k : l ≡ x :: k ↔ ∃ x' k', l = x' :: k' ∧ x' ≡ x ∧ k' ≡ k.
Proof. split; [inv 1; naive_solver|naive_solver (by constructor)]. Qed.
Lemma list_singleton_equiv_eq l x : l ≡ [x] ↔ ∃ x', l = [x'] ∧ x' ≡ x.
Proof. rewrite cons_equiv_eq. setoid_rewrite nil_equiv_eq. naive_solver. Qed.
Lemma app_equiv_eq l k1 k2 :
l ≡ k1 ++ k2 ↔ ∃ k1' k2', l = k1' ++ k2' ∧ k1' ≡ k1 ∧ k2' ≡ k2.
Proof.
split; [|intros (?&?&->&?&?); by f_equiv].
setoid_rewrite list_equiv_Forall2. rewrite Forall2_app_inv_r. naive_solver.
Qed.
Lemma equiv_Permutation l1 l2 l3 :
l1 ≡ l2 → l2 ≡ₚ l3 → ∃ l2', l1 ≡ₚ l2' ∧ l2' ≡ l3.
Proof.
intros Hequiv Hperm. revert l1 Hequiv.
induction Hperm as [|x l2 l3 _ IH|x y l2|l2 l3 l4 _ IH1 _ IH2]; intros l1.
- intros ?. by exists l1.
- intros (x'&l2'&->&?&(l2''&?&?)%IH)%cons_equiv_eq.
exists (x' :: l2''). by repeat constructor.
- intros (y'&?&->&?&(x'&l2'&->&?&?)%cons_equiv_eq)%cons_equiv_eq.
exists (x' :: y' :: l2'). by repeat constructor.
- intros (l2'&?&(l3'&?&?)%IH2)%IH1. exists l3'. split; [by etrans|done].
Qed.
Lemma Permutation_equiv `{!Equivalence (≡@{A})} l1 l2 l3 :
l1 ≡ₚ l2 → l2 ≡ l3 → ∃ l2', l1 ≡ l2' ∧ l2' ≡ₚ l3.
Proof.
intros Hperm%symmetry Hequiv%symmetry.
destruct (equiv_Permutation _ _ _ Hequiv Hperm) as (l2'&?&?).
by exists l2'.
Qed.
End setoid.
(** * Properties of the [find] function *)
Section find.
Context {A} (P : A → Prop) `{∀ x, Decision (P x)}.
Lemma list_find_Some l i x :
list_find P l = Some (i,x) ↔
l !! i = Some x ∧ P x ∧ ∀ j y, l !! j = Some y → j < i → ¬P y.
Proof.
revert i. induction l as [|y l IH]; intros i; csimpl; [naive_solver|].
case_decide.
- split; [naive_solver lia|]. intros (Hi&HP&Hlt).
destruct i as [|i]; simplify_eq/=; [done|].
destruct (Hlt 0 y); naive_solver lia.
- split.
+ intros ([i' x']&Hl&?)%fmap_Some; simplify_eq/=.
apply IH in Hl as (?&?&Hlt). split_and!; [done..|].
intros [|j] ?; naive_solver lia.
+ intros (?&?&Hlt). destruct i as [|i]; simplify_eq/=; [done|].
rewrite (proj2 (IH i)); [done|]. split_and!; [done..|].
intros j z ???. destruct (Hlt (S j) z); naive_solver lia.
Qed.
Lemma list_find_elem_of l x : x ∈ l → P x → is_Some (list_find P l).
Proof.
induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
by destruct IH as [[i x'] ->]; [|exists (S i, x')].
Qed.
Lemma list_find_None l :
list_find P l = None ↔ Forall (λ x, ¬P x) l.
Proof.
rewrite eq_None_not_Some, Forall_forall. split.
- intros Hl x Hx HP. destruct Hl. eauto using list_find_elem_of.
- intros HP [[i x] (?%elem_of_list_lookup_2&?&?)%list_find_Some]; naive_solver.
Qed.
Lemma list_find_app_None l1 l2 :
list_find P (l1 ++ l2) = None ↔ list_find P l1 = None ∧ list_find P l2 = None.
Proof. by rewrite !list_find_None, Forall_app. Qed.
Lemma list_find_app_Some l1 l2 i x :
list_find P (l1 ++ l2) = Some (i,x) ↔
list_find P l1 = Some (i,x) ∨
length l1 ≤ i ∧ list_find P l1 = None ∧ list_find P l2 = Some (i - length l1,x).
Proof.
split.
- intros ([?|[??]]%lookup_app_Some&?&Hleast)%list_find_Some.
+ left. apply list_find_Some; eauto using lookup_app_l_Some.
+ right. split; [lia|]. split.
{ apply list_find_None, Forall_lookup. intros j z ??.
assert (j < length l1) by eauto using lookup_lt_Some.
naive_solver eauto using lookup_app_l_Some with lia. }
apply list_find_Some. split_and!; [done..|].
intros j z ??. eapply (Hleast (length l1 + j)); [|lia].
by rewrite lookup_app_r, Nat.add_sub' by lia.
- intros [(?&?&Hleast)%list_find_Some|(?&Hl1&(?&?&Hleast)%list_find_Some)].
+ apply list_find_Some. split_and!; [by auto using lookup_app_l_Some..|].
assert (i < length l1) by eauto using lookup_lt_Some.
intros j y ?%lookup_app_Some; naive_solver eauto with lia.
+ rewrite list_find_Some, lookup_app_Some. split_and!; [by auto..|].
intros j y [?|?]%lookup_app_Some ?; [|naive_solver auto with lia].
by eapply (Forall_lookup_1 (not ∘ P) l1); [by apply list_find_None|..].
Qed.
Lemma list_find_app_l l1 l2 i x:
list_find P l1 = Some (i, x) → list_find P (l1 ++ l2) = Some (i, x).
Proof. rewrite list_find_app_Some. auto. Qed.
Lemma list_find_app_r l1 l2:
list_find P l1 = None →
list_find P (l1 ++ l2) = prod_map (λ x, x + length l1) id <$> list_find P l2.
Proof.
intros. apply option_eq; intros [j y]. rewrite list_find_app_Some. split.
- intros [?|(?&?&->)]; naive_solver auto with f_equal lia.
- intros ([??]&->&?)%fmap_Some; naive_solver auto with f_equal lia.
Qed.
Lemma list_find_insert_Some l i j x y :
list_find P (<[i:=x]> l) = Some (j,y) ↔
(j < i ∧ list_find P l = Some (j,y)) ∨
(i = j ∧ x = y ∧ j < length l ∧ P x ∧ ∀ k z, l !! k = Some z → k < i → ¬P z) ∨
(i < j ∧ ¬P x ∧ list_find P l = Some (j,y) ∧ ∀ z, l !! i = Some z → ¬P z) ∨
(∃ z, i < j ∧ ¬P x ∧ P y ∧ P z ∧ l !! i = Some z ∧ l !! j = Some y ∧
∀ k z, l !! k = Some z → k ≠ i → k < j → ¬P z).
Proof.
split.
- intros ([(->&->&?)|[??]]%list_lookup_insert_Some&?&Hleast)%list_find_Some.
{ right; left. split_and!; [done..|]. intros k z ??.
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
assert (j < i ∨ i < j) as [?|?] by lia.
{ left. rewrite list_find_Some. split_and!; [by auto..|]. intros k z ??.
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
right; right. assert (j < length l) by eauto using lookup_lt_Some.
destruct (lookup_lt_is_Some_2 l i) as [z ?]; [lia|].
destruct (decide (P z)).
{ right. exists z. split_and!; [done| |done..|].
+ apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
+ intros k z' ???.
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia. }
left. split_and!; [done|..|naive_solver].
+ apply (Hleast i); [|done]. by rewrite list_lookup_insert by lia.
+ apply list_find_Some. split_and!; [by auto..|]. intros k z' ??.
destruct (decide (k = i)) as [->|]; [naive_solver|].
apply (Hleast k); [|lia]. by rewrite list_lookup_insert_ne by lia.
- intros [[? Hl]|[(->&->&?&?&Hleast)|[(?&?&Hl&Hnot)|(z&?&?&?&?&?&?&?Hleast)]]];
apply list_find_Some.
+ apply list_find_Some in Hl as (?&?&Hleast).
rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
+ rewrite list_lookup_insert by done. split_and!; [by auto..|].
intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
+ apply list_find_Some in Hl as (?&?&Hleast).
rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
intros k z [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
+ rewrite list_lookup_insert_ne by lia. split_and!; [done..|].
intros k z' [(->&->&?)|[??]]%list_lookup_insert_Some; eauto with lia.
Qed.
Lemma list_find_fmap {B : Type} (f : B → A) (l : list B) :
list_find P (f <$> l) = prod_map id f <$> list_find (P ∘ f) l.
Proof.
induction l as [|x l IH]; [done|]; csimpl. (* csimpl re-folds fmap *)
case_decide; [done|].
rewrite IH. by destruct (list_find (P ∘ f) l).
Qed.
Lemma list_find_ext (Q : A → Prop) `{∀ x, Decision (Q x)} l :
(∀ x, P x ↔ Q x) →
list_find P l = list_find Q l.
Proof.
intros HPQ. induction l as [|x l IH]; simpl; [done|].
by rewrite (decide_ext (P x) (Q x)), IH by done.
Qed.
End find.
(** * Properties of the monadic operations *)
Lemma list_fmap_id {A} (l : list A) : id <$> l = l.
Proof. induction l; f_equal/=; auto. Qed.
Global Instance list_fmap_proper `{!Equiv A, !Equiv B} :
Proper (((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{list B})) fmap.
Proof. induction 2; csimpl; constructor; auto. Qed.
Section fmap.
Context {A B : Type} (f : A → B).
Implicit Types l : list A.
Lemma list_fmap_compose {C} (g : B → C) l : g ∘ f <$> l = g <$> (f <$> l).
Proof. induction l; f_equal/=; auto. Qed.
Lemma list_fmap_inj_1 f' l x :
f <$> l = f' <$> l → x ∈ l → f x = f' x.
Proof. intros Hf Hin. induction Hin; naive_solver. Qed.
Definition fmap_nil : f <$> [] = [] := eq_refl.
Definition fmap_cons x l : f <$> x :: l = f x :: (f <$> l) := eq_refl.
Lemma list_fmap_singleton x : f <$> [x] = [f x].
Proof. reflexivity. Qed.
Lemma fmap_app l1 l2 : f <$> l1 ++ l2 = (f <$> l1) ++ (f <$> l2).
Proof. by induction l1; f_equal/=. Qed.
Lemma fmap_snoc l x : f <$> l ++ [x] = (f <$> l) ++ [f x].
Proof. rewrite fmap_app, list_fmap_singleton. done. Qed.
Lemma fmap_nil_inv k : f <$> k = [] → k = [].
Proof. by destruct k. Qed.
Lemma fmap_cons_inv y l k :
f <$> l = y :: k → ∃ x l', y = f x ∧ k = f <$> l' ∧ l = x :: l'.
Proof. intros. destruct l; simplify_eq/=; eauto. Qed.
Lemma fmap_app_inv l k1 k2 :
f <$> l = k1 ++ k2 → ∃ l1 l2, k1 = f <$> l1 ∧ k2 = f <$> l2 ∧ l = l1 ++ l2.
Proof.
revert l. induction k1 as [|y k1 IH]; simpl; [intros l ?; by eexists [],l|].
intros [|x l] ?; simplify_eq/=.
destruct (IH l) as (l1&l2&->&->&->); [done|]. by exists (x :: l1), l2.
Qed.
Lemma fmap_option_list mx :
f <$> (option_list mx) = option_list (f <$> mx).
Proof. by destruct mx. Qed.
Lemma list_fmap_alt l :
f <$> l = omap (λ x, Some (f x)) l.
Proof. induction l; simplify_eq/=; done. Qed.
Lemma length_fmap l : length (f <$> l) = length l.
Proof. by induction l; f_equal/=. Qed.
Lemma fmap_reverse l : f <$> reverse l = reverse (f <$> l).
Proof.
induction l as [|?? IH]; csimpl; by rewrite ?reverse_cons, ?fmap_app, ?IH.
Qed.
Lemma fmap_tail l : f <$> tail l = tail (f <$> l).
Proof. by destruct l. Qed.
Lemma fmap_last l : last (f <$> l) = f <$> last l.
Proof. induction l as [|? []]; simpl; auto. Qed.
Lemma fmap_replicate n x : f <$> replicate n x = replicate n (f x).
Proof. by induction n; f_equal/=. Qed.
Lemma fmap_take n l : f <$> take n l = take n (f <$> l).
Proof. revert n. by induction l; intros [|?]; f_equal/=. Qed.
Lemma fmap_drop n l : f <$> drop n l = drop n (f <$> l).
Proof. revert n. by induction l; intros [|?]; f_equal/=. Qed.
Lemma fmap_resize n x l : f <$> resize n x l = resize n (f x) (f <$> l).
Proof.
revert n. induction l; intros [|?]; f_equal/=; auto using fmap_replicate.
Qed.
Lemma const_fmap (l : list A) (y : B) :
(∀ x, f x = y) → f <$> l = replicate (length l) y.
Proof. intros; induction l; f_equal/=; auto. Qed.
Lemma list_lookup_fmap l i : (f <$> l) !! i = f <$> (l !! i).
Proof. revert i. induction l; intros [|n]; by try revert n. Qed.
Lemma list_lookup_fmap_Some l i x :
(f <$> l) !! i = Some x ↔ ∃ y, l !! i = Some y ∧ x = f y.
Proof. by rewrite list_lookup_fmap, fmap_Some. Qed.
Lemma list_lookup_total_fmap `{!Inhabited A, !Inhabited B} l i :
i < length l → (f <$> l) !!! i = f (l !!! i).
Proof.
intros [x Hx]%lookup_lt_is_Some_2.
by rewrite !list_lookup_total_alt, list_lookup_fmap, Hx.
Qed.
Lemma list_lookup_fmap_inv l i x :
(f <$> l) !! i = Some x → ∃ y, x = f y ∧ l !! i = Some y.
Proof.
intros Hi. rewrite list_lookup_fmap in Hi.
destruct (l !! i) eqn:?; simplify_eq/=; eauto.
Qed.
Lemma list_fmap_insert l i x: f <$> <[i:=x]>l = <[i:=f x]>(f <$> l).
Proof. revert i. by induction l; intros [|i]; f_equal/=. Qed.
Lemma list_alter_fmap (g : A → A) (h : B → B) l i :
Forall (λ x, f (g x) = h (f x)) l → f <$> alter g i l = alter h i (f <$> l).
Proof. intros Hl. revert i. by induction Hl; intros [|i]; f_equal/=. Qed.
Lemma list_fmap_delete l i : f <$> (delete i l) = delete i (f <$> l).
Proof.
revert i. induction l; intros i; destruct i; csimpl; eauto.
naive_solver congruence.
Qed.
Lemma elem_of_list_fmap_1 l x : x ∈ l → f x ∈ f <$> l.
Proof. induction 1; csimpl; rewrite elem_of_cons; intuition. Qed.
Lemma elem_of_list_fmap_1_alt l x y : x ∈ l → y = f x → y ∈ f <$> l.
Proof. intros. subst. by apply elem_of_list_fmap_1. Qed.
Lemma elem_of_list_fmap_2 l x : x ∈ f <$> l → ∃ y, x = f y ∧ y ∈ l.
Proof.
induction l as [|y l IH]; simpl; inv 1.
- exists y. split; [done | by left].
- destruct IH as [z [??]]; [done|]. exists z. split; [done | by right].
Qed.
Lemma elem_of_list_fmap l x : x ∈ f <$> l ↔ ∃ y, x = f y ∧ y ∈ l.
Proof.
naive_solver eauto using elem_of_list_fmap_1_alt, elem_of_list_fmap_2.
Qed.
Lemma elem_of_list_fmap_2_inj `{!Inj (=) (=) f} l x : f x ∈ f <$> l → x ∈ l.
Proof.
intros (y, (E, I))%elem_of_list_fmap_2. by rewrite (inj f) in I.
Qed.
Lemma elem_of_list_fmap_inj `{!Inj (=) (=) f} l x : f x ∈ f <$> l ↔ x ∈ l.
Proof.
naive_solver eauto using elem_of_list_fmap_1, elem_of_list_fmap_2_inj.
Qed.
Lemma list_fmap_inj R1 R2 :
Inj R1 R2 f → Inj (Forall2 R1) (Forall2 R2) (fmap f).
Proof.
intros ? l1. induction l1; intros [|??]; inv 1; constructor; auto.
Qed.
Global Instance list_fmap_eq_inj : Inj (=) (=) f → Inj (=@{list A}) (=) (fmap f).
Proof.
intros ?%list_fmap_inj ?? ?%list_eq_Forall2%(inj _). by apply list_eq_Forall2.
Qed.
Global Instance list_fmap_equiv_inj `{!Equiv A, !Equiv B} :
Inj (≡) (≡) f → Inj (≡@{list A}) (≡) (fmap f).
Proof.
intros ?%list_fmap_inj ?? ?%list_equiv_Forall2%(inj _).
by apply list_equiv_Forall2.
Qed.
(** A version of [NoDup_fmap_2] that does not require [f] to be injective for
*all* inputs. *)
Lemma NoDup_fmap_2_strong l :
(∀ x y, x ∈ l → y ∈ l → f x = f y → x = y) →
NoDup l →
NoDup (f <$> l).
Proof.
intros Hinj. induction 1 as [|x l ?? IH]; simpl; constructor.
- intros [y [Hxy ?]]%elem_of_list_fmap.
apply Hinj in Hxy; [by subst|by constructor..].
- apply IH. clear- Hinj.
intros x' y Hx' Hy. apply Hinj; by constructor.
Qed.
Lemma NoDup_fmap_1 l : NoDup (f <$> l) → NoDup l.
Proof.
induction l; simpl; inv 1; constructor; auto.
rewrite elem_of_list_fmap in *. naive_solver.
Qed.
Lemma NoDup_fmap_2 `{!Inj (=) (=) f} l : NoDup l → NoDup (f <$> l).
Proof. apply NoDup_fmap_2_strong. intros ?? _ _. apply (inj f). Qed.
Lemma NoDup_fmap `{!Inj (=) (=) f} l : NoDup (f <$> l) ↔ NoDup l.
Proof. split; auto using NoDup_fmap_1, NoDup_fmap_2. Qed.
Global Instance fmap_sublist: Proper (sublist ==> sublist) (fmap f).
Proof. induction 1; simpl; econstructor; eauto. Qed.
Global Instance fmap_submseteq: Proper (submseteq ==> submseteq) (fmap f).
Proof. induction 1; simpl; econstructor; eauto. Qed.
Global Instance fmap_Permutation: Proper ((≡ₚ) ==> (≡ₚ)) (fmap f).
Proof. induction 1; simpl; econstructor; eauto. Qed.
Lemma Forall_fmap_ext_1 (g : A → B) (l : list A) :
Forall (λ x, f x = g x) l → fmap f l = fmap g l.
Proof. by induction 1; f_equal/=. Qed.
Lemma Forall_fmap_ext (g : A → B) (l : list A) :
Forall (λ x, f x = g x) l ↔ fmap f l = fmap g l.
Proof.
split; [auto using Forall_fmap_ext_1|].
induction l; simpl; constructor; simplify_eq; auto.
Qed.
Lemma Forall_fmap (P : B → Prop) l : Forall P (f <$> l) ↔ Forall (P ∘ f) l.
Proof. split; induction l; inv 1; constructor; auto. Qed.
Lemma Exists_fmap (P : B → Prop) l : Exists P (f <$> l) ↔ Exists (P ∘ f) l.
Proof. split; induction l; inv 1; constructor; by auto. Qed.
Lemma Forall2_fmap_l {C} (P : B → C → Prop) l k :
Forall2 P (f <$> l) k ↔ Forall2 (P ∘ f) l k.
Proof.
split; revert k; induction l; inv 1; constructor; auto.
Qed.
Lemma Forall2_fmap_r {C} (P : C → B → Prop) k l :
Forall2 P k (f <$> l) ↔ Forall2 (λ x, P x ∘ f) k l.
Proof.
split; revert k; induction l; inv 1; constructor; auto.
Qed.
Lemma Forall2_fmap_1 {C D} (g : C → D) (P : B → D → Prop) l k :
Forall2 P (f <$> l) (g <$> k) → Forall2 (λ x1 x2, P (f x1) (g x2)) l k.
Proof. revert k; induction l; intros [|??]; inv 1; auto. Qed.
Lemma Forall2_fmap_2 {C D} (g : C → D) (P : B → D → Prop) l k :
Forall2 (λ x1 x2, P (f x1) (g x2)) l k → Forall2 P (f <$> l) (g <$> k).
Proof. induction 1; csimpl; auto. Qed.
Lemma Forall2_fmap {C D} (g : C → D) (P : B → D → Prop) l k :
Forall2 P (f <$> l) (g <$> k) ↔ Forall2 (λ x1 x2, P (f x1) (g x2)) l k.
Proof. split; auto using Forall2_fmap_1, Forall2_fmap_2. Qed.
Lemma list_fmap_bind {C} (g : B → list C) l : (f <$> l) ≫= g = l ≫= g ∘ f.
Proof. by induction l; f_equal/=. Qed.
End fmap.
Section ext.
Context {A B : Type}.
Implicit Types l : list A.
Lemma list_fmap_ext (f g : A → B) l :
(∀ i x, l !! i = Some x → f x = g x) → f <$> l = g <$> l.
Proof.
intros Hfg. apply list_eq; intros i. rewrite !list_lookup_fmap.
destruct (l !! i) eqn:?; f_equal/=; eauto.
Qed.
Lemma list_fmap_equiv_ext `{!Equiv B} (f g : A → B) l :
(∀ i x, l !! i = Some x → f x ≡ g x) → f <$> l ≡ g <$> l.
Proof.
intros Hl. apply list_equiv_lookup; intros i. rewrite !list_lookup_fmap.
destruct (l !! i) eqn:?; simpl; constructor; eauto.
Qed.
End ext.
Lemma list_alter_fmap_mono {A} (f : A → A) (g : A → A) l i :
Forall (λ x, f (g x) = g (f x)) l → f <$> alter g i l = alter g i (f <$> l).
Proof. auto using list_alter_fmap. Qed.
Lemma NoDup_fmap_fst {A B} (l : list (A * B)) :
(∀ x y1 y2, (x,y1) ∈ l → (x,y2) ∈ l → y1 = y2) → NoDup l → NoDup (l.*1).
Proof.
intros Hunique. induction 1 as [|[x1 y1] l Hin Hnodup IH]; csimpl; constructor.
- rewrite elem_of_list_fmap.
intros [[x2 y2] [??]]; simpl in *; subst. destruct Hin.
rewrite (Hunique x2 y1 y2); rewrite ?elem_of_cons; auto.
- apply IH. intros. eapply Hunique; rewrite ?elem_of_cons; eauto.
Qed.
Global Instance list_omap_proper `{!Equiv A, !Equiv B} :
Proper (((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{list B})) omap.
Proof.
intros f1 f2 Hf. induction 1 as [|x1 x2 l1 l2 Hx Hl]; csimpl; [constructor|].
destruct (Hf _ _ Hx); by repeat f_equiv.
Qed.
Section omap.
Context {A B : Type} (f : A → option B).
Implicit Types l : list A.
Lemma list_fmap_omap {C} (g : B → C) l :
g <$> omap f l = omap (λ x, g <$> (f x)) l.
Proof.
induction l as [|x y IH]; [done|]. csimpl.
destruct (f x); csimpl; [|done]. by f_equal.
Qed.
Lemma list_omap_ext {A'} (g : A' → option B) l1 (l2 : list A') :
Forall2 (λ a b, f a = g b) l1 l2 →
omap f l1 = omap g l2.
Proof.
induction 1 as [|x y l l' Hfg ? IH]; [done|].
csimpl. rewrite Hfg. destruct (g y); [|done]. by f_equal.
Qed.
Lemma elem_of_list_omap l y : y ∈ omap f l ↔ ∃ x, x ∈ l ∧ f x = Some y.
Proof.
split.
- induction l as [|x l]; csimpl; repeat case_match;
repeat (setoid_rewrite elem_of_nil || setoid_rewrite elem_of_cons);
naive_solver.
- intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
simplify_eq; try constructor; auto.
Qed.
Global Instance omap_Permutation : Proper ((≡ₚ) ==> (≡ₚ)) (omap f).
Proof. induction 1; simpl; repeat case_match; econstructor; eauto. Qed.
Lemma omap_app l1 l2 :
omap f (l1 ++ l2) = omap f l1 ++ omap f l2.
Proof. induction l1; csimpl; repeat case_match; naive_solver congruence. Qed.
Lemma omap_option_list mx :
omap f (option_list mx) = option_list (mx ≫= f).
Proof. by destruct mx. Qed.
End omap.
Global Instance list_bind_proper `{!Equiv A, !Equiv B} :
Proper (((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{list B})) mbind.
Proof. induction 2; csimpl; constructor || f_equiv; auto. Qed.
Section bind.
Context {A B : Type} (f : A → list B).
Lemma list_bind_ext (g : A → list B) l1 l2 :
(∀ x, f x = g x) → l1 = l2 → l1 ≫= f = l2 ≫= g.
Proof. intros ? <-. by induction l1; f_equal/=. Qed.
Lemma Forall_bind_ext (g : A → list B) (l : list A) :
Forall (λ x, f x = g x) l → l ≫= f = l ≫= g.
Proof. by induction 1; f_equal/=. Qed.
Global Instance bind_sublist: Proper (sublist ==> sublist) (mbind f).
Proof.
induction 1; simpl; auto;
[by apply sublist_app|by apply sublist_inserts_l].
Qed.
Global Instance bind_submseteq: Proper (submseteq ==> submseteq) (mbind f).
Proof.
induction 1; csimpl; auto.
- by apply submseteq_app.
- by rewrite !(assoc_L (++)), (comm (++) (f _)).
- by apply submseteq_inserts_l.
- etrans; eauto.
Qed.
Global Instance bind_Permutation: Proper ((≡ₚ) ==> (≡ₚ)) (mbind f).
Proof.
induction 1; csimpl; auto.
- by f_equiv.
- by rewrite !(assoc_L (++)), (comm (++) (f _)).
- etrans; eauto.
Qed.
Lemma bind_cons x l : (x :: l) ≫= f = f x ++ l ≫= f.
Proof. done. Qed.
Lemma bind_singleton x : [x] ≫= f = f x.
Proof. csimpl. by rewrite (right_id_L _ (++)). Qed.
Lemma bind_app l1 l2 : (l1 ++ l2) ≫= f = (l1 ≫= f) ++ (l2 ≫= f).
Proof. by induction l1; csimpl; rewrite <-?(assoc_L (++)); f_equal. Qed.
Lemma elem_of_list_bind (x : B) (l : list A) :
x ∈ l ≫= f ↔ ∃ y, x ∈ f y ∧ y ∈ l.
Proof.
split.
- induction l as [|y l IH]; csimpl; [inv 1|].
rewrite elem_of_app. intros [?|?].
+ exists y. split; [done | by left].
+ destruct IH as [z [??]]; [done|]. exists z. split; [done | by right].
- intros [y [Hx Hy]]. induction Hy; csimpl; rewrite elem_of_app; intuition.
Qed.
Lemma Forall_bind (P : B → Prop) l :
Forall P (l ≫= f) ↔ Forall (Forall P ∘ f) l.
Proof.
split.
- induction l; csimpl; rewrite ?Forall_app; constructor; csimpl; intuition.
- induction 1; csimpl; rewrite ?Forall_app; auto.
Qed.
Lemma Forall2_bind {C D} (g : C → list D) (P : B → D → Prop) l1 l2 :
Forall2 (λ x1 x2, Forall2 P (f x1) (g x2)) l1 l2 →
Forall2 P (l1 ≫= f) (l2 ≫= g).
Proof. induction 1; csimpl; auto using Forall2_app. Qed.
Lemma NoDup_bind l :
(∀ x1 x2 y, x1 ∈ l → x2 ∈ l → y ∈ f x1 → y ∈ f x2 → x1 = x2) →
(∀ x, x ∈ l → NoDup (f x)) → NoDup l → NoDup (l ≫= f).
Proof.
intros Hinj Hf. induction 1 as [|x l ?? IH]; csimpl; [constructor|].
apply NoDup_app. split_and!.
- eauto 10 using elem_of_list_here.
- intros y ? (x'&?&?)%elem_of_list_bind.
destruct (Hinj x x' y); auto using elem_of_list_here, elem_of_list_further.
- eauto 10 using elem_of_list_further.
Qed.
End bind.
Global Instance list_join_proper `{!Equiv A} :
Proper ((≡) ==> (≡@{list A})) mjoin.
Proof. induction 1; simpl; [constructor|solve_proper]. Qed.
Section ret_join.
Context {A : Type}.
Lemma list_join_bind (ls : list (list A)) : mjoin ls = ls ≫= id.
Proof. by induction ls; f_equal/=. Qed.
Global Instance join_Permutation : Proper ((≡ₚ@{list A}) ==> (≡ₚ)) mjoin.
Proof. intros ?? E. by rewrite !list_join_bind, E. Qed.
Lemma elem_of_list_ret (x y : A) : x ∈ @mret list _ A y ↔ x = y.
Proof. apply elem_of_list_singleton. Qed.
Lemma elem_of_list_join (x : A) (ls : list (list A)) :
x ∈ mjoin ls ↔ ∃ l : list A, x ∈ l ∧ l ∈ ls.
Proof. by rewrite list_join_bind, elem_of_list_bind. Qed.
Lemma join_nil (ls : list (list A)) : mjoin ls = [] ↔ Forall (.= []) ls.
Proof.
split; [|by induction 1 as [|[|??] ?]].
by induction ls as [|[|??] ?]; constructor; auto.
Qed.
Lemma join_nil_1 (ls : list (list A)) : mjoin ls = [] → Forall (.= []) ls.
Proof. by rewrite join_nil. Qed.
Lemma join_nil_2 (ls : list (list A)) : Forall (.= []) ls → mjoin ls = [].
Proof. by rewrite join_nil. Qed.
Lemma join_app (l1 l2 : list (list A)) :
mjoin (l1 ++ l2) = mjoin l1 ++ mjoin l2.
Proof.
induction l1 as [|x l1 IH]; simpl; [done|]. by rewrite <-(assoc_L _ _), IH.
Qed.
Lemma Forall_join (P : A → Prop) (ls: list (list A)) :
Forall (Forall P) ls → Forall P (mjoin ls).
Proof. induction 1; simpl; auto using Forall_app_2. Qed.
Lemma Forall2_join {B} (P : A → B → Prop) ls1 ls2 :
Forall2 (Forall2 P) ls1 ls2 → Forall2 P (mjoin ls1) (mjoin ls2).
Proof. induction 1; simpl; auto using Forall2_app. Qed.
End ret_join.
Global Instance mapM_proper `{!Equiv A, !Equiv B} :
Proper (((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{option (list B)})) mapM.
Proof.
induction 2; csimpl; repeat (f_equiv || constructor || intro || auto).
Qed.
Section mapM.
Context {A B : Type} (f : A → option B).
Lemma mapM_ext (g : A → option B) l : (∀ x, f x = g x) → mapM f l = mapM g l.
Proof. intros Hfg. by induction l as [|?? IHl]; simpl; rewrite ?Hfg, ?IHl. Qed.
Lemma Forall2_mapM_ext (g : A → option B) l k :
Forall2 (λ x y, f x = g y) l k → mapM f l = mapM g k.
Proof. induction 1 as [|???? Hfg ? IH]; simpl; [done|]. by rewrite Hfg, IH. Qed.
Lemma Forall_mapM_ext (g : A → option B) l :
Forall (λ x, f x = g x) l → mapM f l = mapM g l.
Proof. induction 1 as [|?? Hfg ? IH]; simpl; [done|]. by rewrite Hfg, IH. Qed.
Lemma mapM_Some_1 l k : mapM f l = Some k → Forall2 (λ x y, f x = Some y) l k.
Proof.
revert k. induction l as [|x l]; intros [|y k]; simpl; try done.
- destruct (f x); simpl; [|discriminate]. by destruct (mapM f l).
- destruct (f x) eqn:?; intros; simplify_option_eq; auto.
Qed.
Lemma mapM_Some_2 l k : Forall2 (λ x y, f x = Some y) l k → mapM f l = Some k.
Proof.
induction 1 as [|???? Hf ? IH]; simpl; [done |].
rewrite Hf. simpl. by rewrite IH.
Qed.
Lemma mapM_Some l k : mapM f l = Some k ↔ Forall2 (λ x y, f x = Some y) l k.
Proof. split; auto using mapM_Some_1, mapM_Some_2. Qed.
Lemma length_mapM l k : mapM f l = Some k → length l = length k.
Proof. intros. by eapply Forall2_length, mapM_Some_1. Qed.
Lemma mapM_None_1 l : mapM f l = None → Exists (λ x, f x = None) l.
Proof.
induction l as [|x l IH]; simpl; [done|].
destruct (f x) eqn:?; simpl; eauto. by destruct (mapM f l); eauto.
Qed.
Lemma mapM_None_2 l : Exists (λ x, f x = None) l → mapM f l = None.
Proof.
induction 1 as [x l Hx|x l ? IH]; simpl; [by rewrite Hx|].
by destruct (f x); simpl; rewrite ?IH.
Qed.
Lemma mapM_None l : mapM f l = None ↔ Exists (λ x, f x = None) l.
Proof. split; auto using mapM_None_1, mapM_None_2. Qed.
Lemma mapM_is_Some_1 l : is_Some (mapM f l) → Forall (is_Some ∘ f) l.
Proof.
unfold compose. setoid_rewrite <-not_eq_None_Some.
rewrite mapM_None. apply (not_Exists_Forall _).
Qed.
Lemma mapM_is_Some_2 l : Forall (is_Some ∘ f) l → is_Some (mapM f l).
Proof.
unfold compose. setoid_rewrite <-not_eq_None_Some.
rewrite mapM_None. apply (Forall_not_Exists _).
Qed.
Lemma mapM_is_Some l : is_Some (mapM f l) ↔ Forall (is_Some ∘ f) l.
Proof. split; auto using mapM_is_Some_1, mapM_is_Some_2. Qed.
Lemma mapM_fmap_Forall_Some (g : B → A) (l : list B) :
Forall (λ x, f (g x) = Some x) l → mapM f (g <$> l) = Some l.
Proof. by induction 1; simpl; simplify_option_eq. Qed.
Lemma mapM_fmap_Some (g : B → A) (l : list B) :
(∀ x, f (g x) = Some x) → mapM f (g <$> l) = Some l.
Proof. intros. by apply mapM_fmap_Forall_Some, Forall_true. Qed.
Lemma mapM_fmap_Forall2_Some_inv (g : B → A) (l : list A) (k : list B) :
mapM f l = Some k → Forall2 (λ x y, f x = Some y → g y = x) l k → g <$> k = l.
Proof. induction 2; simplify_option_eq; naive_solver. Qed.
Lemma mapM_fmap_Some_inv (g : B → A) (l : list A) (k : list B) :
mapM f l = Some k → (∀ x y, f x = Some y → g y = x) → g <$> k = l.
Proof. eauto using mapM_fmap_Forall2_Some_inv, Forall2_true, length_mapM. Qed.
End mapM.
Lemma imap_const {A B} (f : A → B) l : imap (const f) l = f <$> l.
Proof. induction l; f_equal/=; auto. Qed.
Global Instance imap_proper `{!Equiv A, !Equiv B} :
Proper (pointwise_relation _ ((≡) ==> (≡)) ==> (≡@{list A}) ==> (≡@{list B}))
imap.
Proof.
intros f f' Hf l l' Hl. revert f f' Hf.
induction Hl as [|x1 x2 l1 l2 ?? IH]; intros f f' Hf; simpl; constructor.
- by apply Hf.
- apply IH. intros i y y' ?; simpl. by apply Hf.
Qed.
Section imap.
Context {A B : Type} (f : nat → A → B).
Lemma imap_ext g l :
(∀ i x, l !! i = Some x → f i x = g i x) → imap f l = imap g l.
Proof. revert f g; induction l as [|x l IH]; intros; f_equal/=; eauto. Qed.
Lemma imap_nil : imap f [] = [].
Proof. done. Qed.
Lemma imap_app l1 l2 :
imap f (l1 ++ l2) = imap f l1 ++ imap (λ n, f (length l1 + n)) l2.
Proof.
revert f. induction l1 as [|x l1 IH]; intros f; f_equal/=.
by rewrite IH.
Qed.
Lemma imap_cons x l : imap f (x :: l) = f 0 x :: imap (f ∘ S) l.
Proof. done. Qed.
Lemma imap_fmap {C} (g : C → A) l : imap f (g <$> l) = imap (λ n, f n ∘ g) l.
Proof. revert f. induction l; intros; f_equal/=; eauto. Qed.
Lemma fmap_imap {C} (g : B → C) l : g <$> imap f l = imap (λ n, g ∘ f n) l.
Proof. revert f. induction l; intros; f_equal/=; eauto. Qed.
Lemma list_lookup_imap l i : imap f l !! i = f i <$> l !! i.
Proof.
revert f i. induction l as [|x l IH]; intros f [|i]; f_equal/=; auto.
by rewrite IH.
Qed.
Lemma list_lookup_imap_Some l i x :
imap f l !! i = Some x ↔ ∃ y, l !! i = Some y ∧ x = f i y.
Proof. by rewrite list_lookup_imap, fmap_Some. Qed.
Lemma list_lookup_total_imap `{!Inhabited A, !Inhabited B} l i :
i < length l → imap f l !!! i = f i (l !!! i).
Proof.
intros [x Hx]%lookup_lt_is_Some_2.
by rewrite !list_lookup_total_alt, list_lookup_imap, Hx.
Qed.
Lemma length_imap l : length (imap f l) = length l.
Proof. revert f. induction l; simpl; eauto. Qed.
Lemma elem_of_lookup_imap_1 l x :
x ∈ imap f l → ∃ i y, x = f i y ∧ l !! i = Some y.
Proof.
intros [i Hin]%elem_of_list_lookup. rewrite list_lookup_imap in Hin.
simplify_option_eq; naive_solver.
Qed.
Lemma elem_of_lookup_imap_2 l x i : l !! i = Some x → f i x ∈ imap f l.
Proof.
intros Hl. rewrite elem_of_list_lookup.
exists i. by rewrite list_lookup_imap, Hl.
Qed.
Lemma elem_of_lookup_imap l x :
x ∈ imap f l ↔ ∃ i y, x = f i y ∧ l !! i = Some y.
Proof. naive_solver eauto using elem_of_lookup_imap_1, elem_of_lookup_imap_2. Qed.
End imap.
(** ** Properties of the [permutations] function *)
Section permutations.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l : list A.
Lemma interleave_cons x l : x :: l ∈ interleave x l.
Proof. destruct l; simpl; rewrite elem_of_cons; auto. Qed.
Lemma interleave_Permutation x l l' : l' ∈ interleave x l → l' ≡ₚ x :: l.
Proof.
revert l'. induction l as [|y l IH]; intros l'; simpl.
- rewrite elem_of_list_singleton. by intros ->.
- rewrite elem_of_cons, elem_of_list_fmap. intros [->|[? [-> H]]]; [done|].
rewrite (IH _ H). constructor.
Qed.
Lemma permutations_refl l : l ∈ permutations l.
Proof.
induction l; simpl; [by apply elem_of_list_singleton|].
apply elem_of_list_bind. eauto using interleave_cons.
Qed.
Lemma permutations_skip x l l' :
l ∈ permutations l' → x :: l ∈ permutations (x :: l').
Proof. intro. apply elem_of_list_bind; eauto using interleave_cons. Qed.
Lemma permutations_swap x y l : y :: x :: l ∈ permutations (x :: y :: l).
Proof.
simpl. apply elem_of_list_bind. exists (y :: l). split; simpl.
- destruct l; csimpl; rewrite !elem_of_cons; auto.
- apply elem_of_list_bind. simpl.
eauto using interleave_cons, permutations_refl.
Qed.
Lemma permutations_nil l : l ∈ permutations [] ↔ l = [].
Proof. simpl. by rewrite elem_of_list_singleton. Qed.
Lemma interleave_interleave_toggle x1 x2 l1 l2 l3 :
l1 ∈ interleave x1 l2 → l2 ∈ interleave x2 l3 → ∃ l4,
l1 ∈ interleave x2 l4 ∧ l4 ∈ interleave x1 l3.
Proof.
revert l1 l2. induction l3 as [|y l3 IH]; intros l1 l2; simpl.
{ rewrite !elem_of_list_singleton. intros ? ->. exists [x1].
change (interleave x2 [x1]) with ([[x2; x1]] ++ [[x1; x2]]).
by rewrite (comm (++)), elem_of_list_singleton. }
rewrite elem_of_cons, elem_of_list_fmap.
intros Hl1 [? | [l2' [??]]]; simplify_eq/=.
- rewrite !elem_of_cons, elem_of_list_fmap in Hl1.
destruct Hl1 as [? | [? | [l4 [??]]]]; subst.
+ exists (x1 :: y :: l3). csimpl. rewrite !elem_of_cons. tauto.
+ exists (x1 :: y :: l3). csimpl. rewrite !elem_of_cons. tauto.
+ exists l4. simpl. rewrite elem_of_cons. auto using interleave_cons.
- rewrite elem_of_cons, elem_of_list_fmap in Hl1.
destruct Hl1 as [? | [l1' [??]]]; subst.
+ exists (x1 :: y :: l3). csimpl.
rewrite !elem_of_cons, !elem_of_list_fmap.
split; [| by auto]. right. right. exists (y :: l2').
rewrite elem_of_list_fmap. naive_solver.
+ destruct (IH l1' l2') as [l4 [??]]; auto. exists (y :: l4). simpl.
rewrite !elem_of_cons, !elem_of_list_fmap. naive_solver.
Qed.
Lemma permutations_interleave_toggle x l1 l2 l3 :
l1 ∈ permutations l2 → l2 ∈ interleave x l3 → ∃ l4,
l1 ∈ interleave x l4 ∧ l4 ∈ permutations l3.
Proof.
revert l1 l2. induction l3 as [|y l3 IH]; intros l1 l2; simpl.
{ rewrite elem_of_list_singleton. intros Hl1 ->. eexists [].
by rewrite elem_of_list_singleton. }
rewrite elem_of_cons, elem_of_list_fmap.
intros Hl1 [? | [l2' [? Hl2']]]; simplify_eq/=.
- rewrite elem_of_list_bind in Hl1.
destruct Hl1 as [l1' [??]]. by exists l1'.
- rewrite elem_of_list_bind in Hl1. setoid_rewrite elem_of_list_bind.
destruct Hl1 as [l1' [??]]. destruct (IH l1' l2') as (l1''&?&?); auto.
destruct (interleave_interleave_toggle y x l1 l1' l1'') as (?&?&?); eauto.
Qed.
Lemma permutations_trans l1 l2 l3 :
l1 ∈ permutations l2 → l2 ∈ permutations l3 → l1 ∈ permutations l3.
Proof.
revert l1 l2. induction l3 as [|x l3 IH]; intros l1 l2; simpl.
- rewrite !elem_of_list_singleton. intros Hl1 ->; simpl in *.
by rewrite elem_of_list_singleton in Hl1.
- rewrite !elem_of_list_bind. intros Hl1 [l2' [Hl2 Hl2']].
destruct (permutations_interleave_toggle x l1 l2 l2') as [? [??]]; eauto.
Qed.
Lemma permutations_Permutation l l' : l' ∈ permutations l ↔ l ≡ₚ l'.
Proof.
split.
- revert l'. induction l; simpl; intros l''.
+ rewrite elem_of_list_singleton. by intros ->.
+ rewrite elem_of_list_bind. intros [l' [Hl'' ?]].
rewrite (interleave_Permutation _ _ _ Hl''). constructor; auto.
- induction 1; eauto using permutations_refl,
permutations_skip, permutations_swap, permutations_trans.
Qed.
End permutations.
(** ** Properties of the folding functions *)
(** Note that [foldr] has much better support, so when in doubt, it should be
preferred over [foldl]. *)
Definition foldr_app := @fold_right_app.
Lemma foldr_cons {A B} (f : B → A → A) (a : A) l x :
foldr f a (x :: l) = f x (foldr f a l).
Proof. done. Qed.
Lemma foldr_snoc {A B} (f : B → A → A) (a : A) l x :
foldr f a (l ++ [x]) = foldr f (f x a) l.
Proof. rewrite foldr_app. done. Qed.
Lemma foldr_fmap {A B C} (f : B → A → A) x (l : list C) g :
foldr f x (g <$> l) = foldr (λ b a, f (g b) a) x l.
Proof. induction l; f_equal/=; auto. Qed.
Lemma foldr_ext {A B} (f1 f2 : B → A → A) x1 x2 l1 l2 :
(∀ b a, f1 b a = f2 b a) → l1 = l2 → x1 = x2 → foldr f1 x1 l1 = foldr f2 x2 l2.
Proof. intros Hf -> ->. induction l2 as [|x l2 IH]; f_equal/=; by rewrite Hf, IH. Qed.
Lemma foldr_permutation {A B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (b : B) `{Hf : !∀ x, Proper (R ==> R) (f x)} (l1 l2 : list A) :
(∀ j1 a1 j2 a2 b,
j1 ≠ j2 → l1 !! j1 = Some a1 → l1 !! j2 = Some a2 →
R (f a1 (f a2 b)) (f a2 (f a1 b))) →
l1 ≡ₚ l2 → R (foldr f b l1) (foldr f b l2).
Proof.
intros Hf'. induction 1 as [|x l1 l2 _ IH|x y l|l1 l2 l3 Hl12 IH _ IH']; simpl.
- done.
- apply Hf, IH; eauto.
- apply (Hf' 0 _ 1); eauto.
- etrans; [eapply IH, Hf'|].
apply IH'; intros j1 a1 j2 a2 b' ???.
symmetry in Hl12; apply Permutation_inj in Hl12 as [_ (g&?&Hg)].
apply (Hf' (g j1) _ (g j2)); [naive_solver|by rewrite <-Hg..].
Qed.
Lemma foldr_permutation_proper {A B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (b : B) `{!∀ x, Proper (R ==> R) (f x)}
(Hf : ∀ a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) :
Proper ((≡ₚ) ==> R) (foldr f b).
Proof. intros l1 l2 Hl. apply foldr_permutation; auto. Qed.
Global Instance foldr_permutation_proper' {A} (R : relation A) `{!PreOrder R}
(f : A → A → A) (a : A) `{!∀ a, Proper (R ==> R) (f a), !Assoc R f, !Comm R f} :
Proper ((≡ₚ) ==> R) (foldr f a).
Proof.
apply (foldr_permutation_proper R f); [solve_proper|].
assert (Proper (R ==> R ==> R) f).
{ intros a1 a2 Ha b1 b2 Hb. by rewrite Hb, (comm f a1), Ha, (comm f). }
intros a1 a2 b.
by rewrite (assoc f), (comm f _ b), (assoc f), (comm f b), (comm f _ a2).
Qed.
Lemma foldr_cons_permute_strong {A B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (b : B) `{!∀ a, Proper (R ==> R) (f a)} x l :
(∀ j1 a1 j2 a2 b,
j1 ≠ j2 → (x :: l) !! j1 = Some a1 → (x :: l) !! j2 = Some a2 →
R (f a1 (f a2 b)) (f a2 (f a1 b))) →
R (foldr f b (x :: l)) (foldr f (f x b) l).
Proof.
intros. rewrite <-foldr_snoc.
apply (foldr_permutation _ f b); [done|]. by rewrite Permutation_app_comm.
Qed.
Lemma foldr_cons_permute {A} (f : A → A → A) (a : A) x l :
Assoc (=) f →
Comm (=) f →
foldr f a (x :: l) = foldr f (f x a) l.
Proof.
intros. apply (foldr_cons_permute_strong (=) f a).
intros j1 a1 j2 a2 b _ _ _. by rewrite !(assoc_L f), (comm_L f a1).
Qed.
(** The following lemma shows that folding over a list twice (using the result
of the first fold as input for the second fold) is equivalent to folding over
the list once, *if* the function is idempotent for the elements of the list
and does not care about the order in which elements are processed. *)
Lemma foldr_idemp_strong {A B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (b : B) `{!∀ x, Proper (R ==> R) (f x)} (l : list A) :
(∀ j a b,
(** This is morally idempotence for elements of [l] *)
l !! j = Some a →
R (f a (f a b)) (f a b)) →
(∀ j1 a1 j2 a2 b,
(** This is morally commutativity + associativity for elements of [l] *)
j1 ≠ j2 → l !! j1 = Some a1 → l !! j2 = Some a2 →
R (f a1 (f a2 b)) (f a2 (f a1 b))) →
R (foldr f (foldr f b l) l) (foldr f b l).
Proof.
intros Hfidem Hfcomm. induction l as [|x l IH]; simpl; [done|].
trans (f x (f x (foldr f (foldr f b l) l))).
{ f_equiv. rewrite <-foldr_snoc, <-foldr_cons.
apply (foldr_permutation (flip R) f).
- solve_proper.
- intros j1 a1 j2 a2 b' ???. by apply (Hfcomm j2 _ j1).
- by rewrite <-Permutation_cons_append. }
rewrite <-foldr_cons.
trans (f x (f x (foldr f b l))); [|by apply (Hfidem 0)].
simpl. do 2 f_equiv. apply IH.
- intros j a b' ?. by apply (Hfidem (S j)).
- intros j1 a1 j2 a2 b' ???. apply (Hfcomm (S j1) _ (S j2)); auto with lia.
Qed.
Lemma foldr_idemp {A} (f : A → A → A) (a : A) (l : list A) :
IdemP (=) f →
Assoc (=) f →
Comm (=) f →
foldr f (foldr f a l) l = foldr f a l.
Proof.
intros. apply (foldr_idemp_strong (=) f a).
- intros j a1 a2 _. by rewrite (assoc_L f), (idemp f).
- intros x1 a1 x2 a2 a3 _ _ _. by rewrite !(assoc_L f), (comm_L f a1).
Qed.
Lemma foldr_comm_acc_strong {A B} (R : relation B) `{!PreOrder R}
(f : A → B → B) (g : B → B) b l :
(∀ x, Proper (R ==> R) (f x)) →
(∀ x y, x ∈ l → R (f x (g y)) (g (f x y))) →
R (foldr f (g b) l) (g (foldr f b l)).
Proof.
intros ? Hcomm. induction l as [|x l IH]; simpl; [done|].
rewrite <-Hcomm by eauto using elem_of_list_here.
by rewrite IH by eauto using elem_of_list_further.
Qed.
Lemma foldr_comm_acc {A B} (f : A → B → B) (g : B → B) (b : B) l :
(∀ x y, f x (g y) = g (f x y)) →
foldr f (g b) l = g (foldr f b l).
Proof. intros. apply (foldr_comm_acc_strong _); [solve_proper|done]. Qed.
Lemma foldl_app {A B} (f : A → B → A) (l k : list B) (a : A) :
foldl f a (l ++ k) = foldl f (foldl f a l) k.
Proof. revert a. induction l; simpl; auto. Qed.
Lemma foldl_snoc {A B} (f : A → B → A) (a : A) l x :
foldl f a (l ++ [x]) = f (foldl f a l) x.
Proof. rewrite foldl_app. done. Qed.
Lemma foldl_fmap {A B C} (f : A → B → A) x (l : list C) g :
foldl f x (g <$> l) = foldl (λ a b, f a (g b)) x l.
Proof. revert x. induction l; f_equal/=; auto. Qed.
(** ** Properties of the [zip_with] and [zip] functions *)
Global Instance zip_with_proper `{!Equiv A, !Equiv B, !Equiv C} :
Proper (((≡) ==> (≡) ==> (≡)) ==>
(≡@{list A}) ==> (≡@{list B}) ==> (≡@{list C})) zip_with.
Proof.
intros f1 f2 Hf. induction 1; destruct 1; simpl; [constructor..|].
f_equiv; [|by auto]. by apply Hf.
Qed.
Section zip_with.
Context {A B C : Type} (f : A → B → C).
Implicit Types x : A.
Implicit Types y : B.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma zip_with_nil_r l : zip_with f l [] = [].
Proof. by destruct l. Qed.
Lemma zip_with_app l1 l2 k1 k2 :
length l1 = length k1 →
zip_with f (l1 ++ l2) (k1 ++ k2) = zip_with f l1 k1 ++ zip_with f l2 k2.
Proof. rewrite <-Forall2_same_length. induction 1; f_equal/=; auto. Qed.
Lemma zip_with_app_l l1 l2 k :
zip_with f (l1 ++ l2) k
= zip_with f l1 (take (length l1) k) ++ zip_with f l2 (drop (length l1) k).
Proof.
revert k. induction l1; intros [|??]; f_equal/=; auto. by destruct l2.
Qed.
Lemma zip_with_app_r l k1 k2 :
zip_with f l (k1 ++ k2)
= zip_with f (take (length k1) l) k1 ++ zip_with f (drop (length k1) l) k2.
Proof. revert l. induction k1; intros [|??]; f_equal/=; auto. Qed.
Lemma zip_with_flip l k : zip_with (flip f) k l = zip_with f l k.
Proof. revert k. induction l; intros [|??]; f_equal/=; auto. Qed.
Lemma zip_with_ext (g : A → B → C) l1 l2 k1 k2 :
(∀ x y, f x y = g x y) → l1 = l2 → k1 = k2 →
zip_with f l1 k1 = zip_with g l2 k2.
Proof. intros ? <-<-. revert k1. by induction l1; intros [|??]; f_equal/=. Qed.
Lemma Forall_zip_with_ext_l (g : A → B → C) l k1 k2 :
Forall (λ x, ∀ y, f x y = g x y) l → k1 = k2 →
zip_with f l k1 = zip_with g l k2.
Proof. intros Hl <-. revert k1. by induction Hl; intros [|??]; f_equal/=. Qed.
Lemma Forall_zip_with_ext_r (g : A → B → C) l1 l2 k :
l1 = l2 → Forall (λ y, ∀ x, f x y = g x y) k →
zip_with f l1 k = zip_with g l2 k.
Proof. intros <- Hk. revert l1. by induction Hk; intros [|??]; f_equal/=. Qed.
Lemma zip_with_fmap_l {D} (g : D → A) lD k :
zip_with f (g <$> lD) k = zip_with (λ z, f (g z)) lD k.
Proof. revert k. by induction lD; intros [|??]; f_equal/=. Qed.
Lemma zip_with_fmap_r {D} (g : D → B) l kD :
zip_with f l (g <$> kD) = zip_with (λ x z, f x (g z)) l kD.
Proof. revert kD. by induction l; intros [|??]; f_equal/=. Qed.
Lemma zip_with_nil_inv l k : zip_with f l k = [] → l = [] ∨ k = [].
Proof. destruct l, k; intros; simplify_eq/=; auto. Qed.
Lemma zip_with_cons_inv l k z lC :
zip_with f l k = z :: lC →
∃ x y l' k', z = f x y ∧ lC = zip_with f l' k' ∧ l = x :: l' ∧ k = y :: k'.
Proof. intros. destruct l, k; simplify_eq/=; repeat eexists. Qed.
Lemma zip_with_app_inv l k lC1 lC2 :
zip_with f l k = lC1 ++ lC2 →
∃ l1 k1 l2 k2, lC1 = zip_with f l1 k1 ∧ lC2 = zip_with f l2 k2 ∧
l = l1 ++ l2 ∧ k = k1 ++ k2 ∧ length l1 = length k1.
Proof.
revert l k. induction lC1 as [|z lC1 IH]; simpl.
{ intros l k ?. by eexists [], [], l, k. }
intros [|x l] [|y k] ?; simplify_eq/=.
destruct (IH l k) as (l1&k1&l2&k2&->&->&->&->&?); [done |].
exists (x :: l1), (y :: k1), l2, k2; simpl; auto with congruence.
Qed.
Lemma zip_with_inj `{!Inj2 (=) (=) (=) f} l1 l2 k1 k2 :
length l1 = length k1 → length l2 = length k2 →
zip_with f l1 k1 = zip_with f l2 k2 → l1 = l2 ∧ k1 = k2.
Proof.
rewrite <-!Forall2_same_length. intros Hl. revert l2 k2.
induction Hl; intros ?? [] ?; f_equal; naive_solver.
Qed.
Lemma length_zip_with l k :
length (zip_with f l k) = min (length l) (length k).
Proof. revert k. induction l; intros [|??]; simpl; auto with lia. Qed.
Lemma length_zip_with_l l k :
length l ≤ length k → length (zip_with f l k) = length l.
Proof. rewrite length_zip_with; lia. Qed.
Lemma length_zip_with_l_eq l k :
length l = length k → length (zip_with f l k) = length l.
Proof. rewrite length_zip_with; lia. Qed.
Lemma length_zip_with_r l k :
length k ≤ length l → length (zip_with f l k) = length k.
Proof. rewrite length_zip_with; lia. Qed.
Lemma length_zip_with_r_eq l k :
length k = length l → length (zip_with f l k) = length k.
Proof. rewrite length_zip_with; lia. Qed.
Lemma length_zip_with_same_l P l k :
Forall2 P l k → length (zip_with f l k) = length l.
Proof. induction 1; simpl; auto. Qed.
Lemma length_zip_with_same_r P l k :
Forall2 P l k → length (zip_with f l k) = length k.
Proof. induction 1; simpl; auto. Qed.
Lemma lookup_zip_with l k i :
zip_with f l k !! i = (x ← l !! i; y ← k !! i; Some (f x y)).
Proof.
revert k i. induction l; intros [|??] [|?]; f_equal/=; auto.
by destruct (_ !! _).
Qed.
Lemma lookup_total_zip_with `{!Inhabited A, !Inhabited B, !Inhabited C} l k i :
i < length l → i < length k → zip_with f l k !!! i = f (l !!! i) (k !!! i).
Proof.
intros [x Hx]%lookup_lt_is_Some_2 [y Hy]%lookup_lt_is_Some_2.
by rewrite !list_lookup_total_alt, lookup_zip_with, Hx, Hy.
Qed.
Lemma lookup_zip_with_Some l k i z :
zip_with f l k !! i = Some z
↔ ∃ x y, z = f x y ∧ l !! i = Some x ∧ k !! i = Some y.
Proof. rewrite lookup_zip_with. destruct (l !! i), (k !! i); naive_solver. Qed.
Lemma insert_zip_with l k i x y :
<[i:=f x y]>(zip_with f l k) = zip_with f (<[i:=x]>l) (<[i:=y]>k).
Proof. revert i k. induction l; intros [|?] [|??]; f_equal/=; auto. Qed.
Lemma fmap_zip_with_l (g : C → A) l k :
(∀ x y, g (f x y) = x) → length l ≤ length k → g <$> zip_with f l k = l.
Proof. revert k. induction l; intros [|??] ??; f_equal/=; auto with lia. Qed.
Lemma fmap_zip_with_r (g : C → B) l k :
(∀ x y, g (f x y) = y) → length k ≤ length l → g <$> zip_with f l k = k.
Proof. revert l. induction k; intros [|??] ??; f_equal/=; auto with lia. Qed.
Lemma zip_with_zip l k : zip_with f l k = uncurry f <$> zip l k.
Proof. revert k. by induction l; intros [|??]; f_equal/=. Qed.
Lemma zip_with_fst_snd lk : zip_with f (lk.*1) (lk.*2) = uncurry f <$> lk.
Proof. by induction lk as [|[]]; f_equal/=. Qed.
Lemma zip_with_replicate n x y :
zip_with f (replicate n x) (replicate n y) = replicate n (f x y).
Proof. by induction n; f_equal/=. Qed.
Lemma zip_with_replicate_l n x k :
length k ≤ n → zip_with f (replicate n x) k = f x <$> k.
Proof. revert n. induction k; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma zip_with_replicate_r n y l :
length l ≤ n → zip_with f l (replicate n y) = flip f y <$> l.
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Lemma zip_with_replicate_r_eq n y l :
length l = n → zip_with f l (replicate n y) = flip f y <$> l.
Proof. intros; apply zip_with_replicate_r; lia. Qed.
Lemma zip_with_take n l k :
take n (zip_with f l k) = zip_with f (take n l) (take n k).
Proof. revert n k. by induction l; intros [|?] [|??]; f_equal/=. Qed.
Lemma zip_with_drop n l k :
drop n (zip_with f l k) = zip_with f (drop n l) (drop n k).
Proof.
revert n k. induction l; intros [] []; f_equal/=; auto using zip_with_nil_r.
Qed.
Lemma zip_with_take_l' n l k :
length l `min` length k ≤ n → zip_with f (take n l) k = zip_with f l k.
Proof. revert n k. induction l; intros [] [] ?; f_equal/=; auto with lia. Qed.
Lemma zip_with_take_l l k :
zip_with f (take (length k) l) k = zip_with f l k.
Proof. apply zip_with_take_l'; lia. Qed.
Lemma zip_with_take_r' n l k :
length l `min` length k ≤ n → zip_with f l (take n k) = zip_with f l k.
Proof. revert n k. induction l; intros [] [] ?; f_equal/=; auto with lia. Qed.
Lemma zip_with_take_r l k :
zip_with f l (take (length l) k) = zip_with f l k.
Proof. apply zip_with_take_r'; lia. Qed.
Lemma zip_with_take_both' n1 n2 l k :
length l `min` length k ≤ n1 → length l `min` length k ≤ n2 →
zip_with f (take n1 l) (take n2 k) = zip_with f l k.
Proof.
intros.
rewrite zip_with_take_l'; [apply zip_with_take_r' | rewrite length_take]; lia.
Qed.
Lemma zip_with_take_both l k :
zip_with f (take (length k) l) (take (length l) k) = zip_with f l k.
Proof. apply zip_with_take_both'; lia. Qed.
Lemma Forall_zip_with_fst (P : A → Prop) (Q : C → Prop) l k :
Forall P l → Forall (λ y, ∀ x, P x → Q (f x y)) k →
Forall Q (zip_with f l k).
Proof. intros Hl. revert k. induction Hl; destruct 1; simpl in *; auto. Qed.
Lemma Forall_zip_with_snd (P : B → Prop) (Q : C → Prop) l k :
Forall (λ x, ∀ y, P y → Q (f x y)) l → Forall P k →
Forall Q (zip_with f l k).
Proof. intros Hl. revert k. induction Hl; destruct 1; simpl in *; auto. Qed.
Lemma elem_of_lookup_zip_with_1 l k (z : C) :
z ∈ zip_with f l k → ∃ i x y, z = f x y ∧ l !! i = Some x ∧ k !! i = Some y.
Proof.
intros [i Hin]%elem_of_list_lookup. rewrite lookup_zip_with in Hin.
simplify_option_eq; naive_solver.
Qed.
Lemma elem_of_lookup_zip_with_2 l k x y (z : C) i :
l !! i = Some x → k !! i = Some y → f x y ∈ zip_with f l k.
Proof.
intros Hl Hk. rewrite elem_of_list_lookup.
exists i. by rewrite lookup_zip_with, Hl, Hk.
Qed.
Lemma elem_of_lookup_zip_with l k (z : C) :
z ∈ zip_with f l k ↔ ∃ i x y, z = f x y ∧ l !! i = Some x ∧ k !! i = Some y.
Proof.
naive_solver eauto using
elem_of_lookup_zip_with_1, elem_of_lookup_zip_with_2.
Qed.
Lemma elem_of_zip_with l k (z : C) :
z ∈ zip_with f l k → ∃ x y, z = f x y ∧ x ∈ l ∧ y ∈ k.
Proof.
intros ?%elem_of_lookup_zip_with.
naive_solver eauto using elem_of_list_lookup_2.
Qed.
End zip_with.
Lemma zip_with_diag {A C} (f : A → A → C) l :
zip_with f l l = (λ x, f x x) <$> l.
Proof. induction l as [|?? IH]; [done|]. simpl. rewrite IH. done. Qed.
Lemma zip_with_sublist_alter {A B} (f : A → B → A) g l k i n l' k' :
length l = length k →
sublist_lookup i n l = Some l' → sublist_lookup i n k = Some k' →
length (g l') = length k' → zip_with f (g l') k' = g (zip_with f l' k') →
zip_with f (sublist_alter g i n l) k = sublist_alter g i n (zip_with f l k).
Proof.
unfold sublist_lookup, sublist_alter. intros Hlen; rewrite Hlen.
intros ?? Hl' Hk'. simplify_option_eq.
by rewrite !zip_with_app_l, !zip_with_drop, Hl', drop_drop, !zip_with_take,
!length_take_le, Hk' by (rewrite ?length_drop; auto with lia).
Qed.
Section zip.
Context {A B : Type}.
Implicit Types l : list A.
Implicit Types k : list B.
Lemma fst_zip l k : length l ≤ length k → (zip l k).*1 = l.
Proof. by apply fmap_zip_with_l. Qed.
Lemma snd_zip l k : length k ≤ length l → (zip l k).*2 = k.
Proof. by apply fmap_zip_with_r. Qed.
Lemma zip_fst_snd (lk : list (A * B)) : zip (lk.*1) (lk.*2) = lk.
Proof. by induction lk as [|[]]; f_equal/=. Qed.
Lemma Forall2_fst P l1 l2 k1 k2 :
length l2 = length k2 → Forall2 P l1 k1 →
Forall2 (λ x y, P (x.1) (y.1)) (zip l1 l2) (zip k1 k2).
Proof.
rewrite <-Forall2_same_length. intros Hlk2 Hlk1. revert l2 k2 Hlk2.
induction Hlk1; intros ?? [|??????]; simpl; auto.
Qed.
Lemma Forall2_snd P l1 l2 k1 k2 :
length l1 = length k1 → Forall2 P l2 k2 →
Forall2 (λ x y, P (x.2) (y.2)) (zip l1 l2) (zip k1 k2).
Proof.
rewrite <-Forall2_same_length. intros Hlk1 Hlk2. revert l1 k1 Hlk1.
induction Hlk2; intros ?? [|??????]; simpl; auto.
Qed.
Lemma elem_of_zip_l x1 x2 l k :
(x1, x2) ∈ zip l k → x1 ∈ l.
Proof. intros ?%elem_of_zip_with. naive_solver. Qed.
Lemma elem_of_zip_r x1 x2 l k :
(x1, x2) ∈ zip l k → x2 ∈ k.
Proof. intros ?%elem_of_zip_with. naive_solver. Qed.
End zip.
Lemma zip_diag {A} (l : list A) :
zip l l = (λ x, (x, x)) <$> l.
Proof. apply zip_with_diag. Qed.
Lemma elem_of_zipped_map {A B} (f : list A → list A → A → B) l k x :
x ∈ zipped_map f l k ↔
∃ k' k'' y, k = k' ++ [y] ++ k'' ∧ x = f (reverse k' ++ l) k'' y.
Proof.
split.
- revert l. induction k as [|z k IH]; simpl; intros l; inv 1.
{ by eexists [], k, z. }
destruct (IH (z :: l)) as (k'&k''&y&->&->); [done |].
eexists (z :: k'), k'', y. by rewrite reverse_cons, <-(assoc_L (++)).
- intros (k'&k''&y&->&->). revert l. induction k' as [|z k' IH]; [by left|].
intros l; right. by rewrite reverse_cons, <-!(assoc_L (++)).
Qed.
Section zipped_list_ind.
Context {A} (P : list A → list A → Prop).
Context (Pnil : ∀ l, P l []) (Pcons : ∀ l k x, P (x :: l) k → P l (x :: k)).
Fixpoint zipped_list_ind l k : P l k :=
match k with
| [] => Pnil _ | x :: k => Pcons _ _ _ (zipped_list_ind (x :: l) k)
end.
End zipped_list_ind.
Lemma zipped_Forall_app {A} (P : list A → list A → A → Prop) l k k' :
zipped_Forall P l (k ++ k') → zipped_Forall P (reverse k ++ l) k'.
Proof.
revert l. induction k as [|x k IH]; simpl; [done |].
inv 1. rewrite reverse_cons, <-(assoc_L (++)). by apply IH.
Qed.
Lemma TCForall_Forall {A} (P : A → Prop) xs : TCForall P xs ↔ Forall P xs.
Proof. split; induction 1; constructor; auto. Qed.
Global Instance TCForall_app {A} (P : A → Prop) xs ys :
TCForall P xs → TCForall P ys → TCForall P (xs ++ ys).
Proof. rewrite !TCForall_Forall. apply Forall_app_2. Qed.
Lemma TCForall2_Forall2 {A B} (P : A → B → Prop) xs ys :
TCForall2 P xs ys ↔ Forall2 P xs ys.
Proof. split; induction 1; constructor; auto. Qed.
Lemma TCExists_Exists {A} (P : A → Prop) l : TCExists P l ↔ Exists P l.
Proof. split; induction 1; constructor; solve [auto]. Qed.
Section positives_flatten_unflatten.
Local Open Scope positive_scope.
Lemma positives_flatten_go_app xs acc :
positives_flatten_go xs acc = acc ++ positives_flatten_go xs 1.
Proof.
revert acc.
induction xs as [|x xs IH]; intros acc; simpl.
- reflexivity.
- rewrite IH.
rewrite (IH (6 ++ _)).
rewrite 2!(assoc_L (++)).
reflexivity.
Qed.
Lemma positives_unflatten_go_app p suffix xs acc :
positives_unflatten_go (suffix ++ Pos.reverse (Pos.dup p)) xs acc =
positives_unflatten_go suffix xs (acc ++ p).
Proof.
revert suffix acc.
induction p as [p IH|p IH|]; intros acc suffix; simpl.
- rewrite 2!Pos.reverse_xI.
rewrite 2!(assoc_L (++)).
rewrite IH.
reflexivity.
- rewrite 2!Pos.reverse_xO.
rewrite 2!(assoc_L (++)).
rewrite IH.
reflexivity.
- reflexivity.
Qed.
Lemma positives_unflatten_flatten_go suffix xs acc :
positives_unflatten_go (suffix ++ positives_flatten_go xs 1) acc 1 =
positives_unflatten_go suffix (xs ++ acc) 1.
Proof.
revert suffix acc.
induction xs as [|x xs IH]; intros suffix acc; simpl.
- reflexivity.
- rewrite positives_flatten_go_app.
rewrite (assoc_L (++)).
rewrite IH.
rewrite (assoc_L (++)).
rewrite positives_unflatten_go_app.
simpl.
rewrite (left_id_L 1 (++)).
reflexivity.
Qed.
Lemma positives_unflatten_flatten xs :
positives_unflatten (positives_flatten xs) = Some xs.
Proof.
unfold positives_flatten, positives_unflatten.
replace (positives_flatten_go xs 1)
with (1 ++ positives_flatten_go xs 1)
by apply (left_id_L 1 (++)).
rewrite positives_unflatten_flatten_go.
simpl.
rewrite (right_id_L [] (++)%list).
reflexivity.
Qed.
Lemma positives_flatten_app xs ys :
positives_flatten (xs ++ ys) = positives_flatten xs ++ positives_flatten ys.
Proof.
unfold positives_flatten.
revert ys.
induction xs as [|x xs IH]; intros ys; simpl.
- rewrite (left_id_L 1 (++)).
reflexivity.
- rewrite positives_flatten_go_app, (positives_flatten_go_app xs).
rewrite IH.
rewrite (assoc_L (++)).
reflexivity.
Qed.
Lemma positives_flatten_cons x xs :
positives_flatten (x :: xs)
= 1~1~0 ++ Pos.reverse (Pos.dup x) ++ positives_flatten xs.
Proof.
change (x :: xs) with ([x] ++ xs)%list.
rewrite positives_flatten_app.
rewrite (assoc_L (++)).
reflexivity.
Qed.
Lemma positives_flatten_suffix (l k : list positive) :
l `suffix_of` k → ∃ q, positives_flatten k = q ++ positives_flatten l.
Proof.
intros [l' ->].
exists (positives_flatten l').
apply positives_flatten_app.
Qed.
Lemma positives_flatten_suffix_eq p1 p2 (xs ys : list positive) :
length xs = length ys →
p1 ++ positives_flatten xs = p2 ++ positives_flatten ys →
xs = ys.
Proof.
revert p1 p2 ys; induction xs as [|x xs IH];
intros p1 p2 [|y ys] ?; simplify_eq/=; auto.
rewrite !positives_flatten_cons, !(assoc _); intros Hl.
assert (xs = ys) as <- by eauto; clear IH; f_equal.
apply (inj (.++ positives_flatten xs)) in Hl.
rewrite 2!Pos.reverse_dup in Hl.
apply (Pos.dup_suffix_eq _ _ p1 p2) in Hl.
by apply (inj Pos.reverse).
Qed.
End positives_flatten_unflatten.
(** * Reflection over lists *)
(** We define a simple data structure [rlist] to capture a syntactic
representation of lists consisting of constants, applications and the nil list.
Note that we represent [(x ::.)] as [rapp (rnode [x])]. For now, we abstract
over the type of constants, but later we use [nat]s and a list representing
a corresponding environment. *)
Inductive rlist (A : Type) :=
rnil : rlist A | rnode : A → rlist A | rapp : rlist A → rlist A → rlist A.
Global Arguments rnil {_} : assert.
Global Arguments rnode {_} _ : assert.
Global Arguments rapp {_} _ _ : assert.
Module rlist.
Fixpoint to_list {A} (t : rlist A) : list A :=
match t with
| rnil => [] | rnode l => [l] | rapp t1 t2 => to_list t1 ++ to_list t2
end.
Notation env A := (list (list A)) (only parsing).
Definition eval {A} (E : env A) : rlist nat → list A :=
fix go t :=
match t with
| rnil => []
| rnode i => default [] (E !! i)
| rapp t1 t2 => go t1 ++ go t2
end.
(** A simple quoting mechanism using type classes. [QuoteLookup E1 E2 x i]
means: starting in environment [E1], look up the index [i] corresponding to the
constant [x]. In case [x] has a corresponding index [i] in [E1], the original
environment is given back as [E2]. Otherwise, the environment [E2] is extended
with a binding [i] for [x]. *)
Section quote_lookup.
Context {A : Type}.
Class QuoteLookup (E1 E2 : list A) (x : A) (i : nat) := {}.
Global Instance quote_lookup_here E x : QuoteLookup (x :: E) (x :: E) x 0 := {}.
Global Instance quote_lookup_end x : QuoteLookup [] [x] x 0 := {}.
Global Instance quote_lookup_further E1 E2 x i y :
QuoteLookup E1 E2 x i → QuoteLookup (y :: E1) (y :: E2) x (S i) | 1000 := {}.
End quote_lookup.
Section quote.
Context {A : Type}.
Class Quote (E1 E2 : env A) (l : list A) (t : rlist nat) := {}.
Global Instance quote_nil E1 : Quote E1 E1 [] rnil := {}.
Global Instance quote_node E1 E2 l i:
QuoteLookup E1 E2 l i → Quote E1 E2 l (rnode i) | 1000 := {}.
Global Instance quote_cons E1 E2 E3 x l i t :
QuoteLookup E1 E2 [x] i →
Quote E2 E3 l t → Quote E1 E3 (x :: l) (rapp (rnode i) t) := {}.
Global Instance quote_app E1 E2 E3 l1 l2 t1 t2 :
Quote E1 E2 l1 t1 → Quote E2 E3 l2 t2 → Quote E1 E3 (l1 ++ l2) (rapp t1 t2) := {}.
End quote.
Section eval.
Context {A} (E : env A).
Lemma eval_alt t : eval E t = to_list t ≫= default [] ∘ (E !!.).
Proof.
induction t; csimpl.
- done.
- by rewrite (right_id_L [] (++)).
- rewrite bind_app. by f_equal.
Qed.
Lemma eval_eq t1 t2 : to_list t1 = to_list t2 → eval E t1 = eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
Lemma eval_Permutation t1 t2 :
to_list t1 ≡ₚ to_list t2 → eval E t1 ≡ₚ eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
Lemma eval_submseteq t1 t2 :
to_list t1 ⊆+ to_list t2 → eval E t1 ⊆+ eval E t2.
Proof. intros Ht. by rewrite !eval_alt, Ht. Qed.
End eval.
End rlist.
(** * Tactics *)
Ltac quote_Permutation :=
match goal with
| |- ?l1 ≡ₚ ?l2 =>
match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 =>
match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 =>
change (rlist.eval E3 t1 ≡ₚ rlist.eval E3 t2)
end end
end.
Ltac solve_Permutation :=
quote_Permutation; apply rlist.eval_Permutation;
compute_done.
Ltac quote_submseteq :=
match goal with
| |- ?l1 ⊆+ ?l2 =>
match type of (_ : rlist.Quote [] _ l1 _) with rlist.Quote _ ?E2 _ ?t1 =>
match type of (_ : rlist.Quote E2 _ l2 _) with rlist.Quote _ ?E3 _ ?t2 =>
change (rlist.eval E3 t1 ⊆+ rlist.eval E3 t2)
end end
end.
Ltac solve_submseteq :=
quote_submseteq; apply rlist.eval_submseteq;
compute_done.
Ltac decompose_elem_of_list := repeat
match goal with
| H : ?x ∈ [] |- _ => by destruct (not_elem_of_nil x)
| H : _ ∈ _ :: _ |- _ => apply elem_of_cons in H; destruct H
| H : _ ∈ _ ++ _ |- _ => apply elem_of_app in H; destruct H
end.
Ltac solve_length :=
simplify_eq/=;
repeat (rewrite length_fmap || rewrite length_app);
repeat match goal with
| H : _ =@{list _} _ |- _ => apply (f_equal length) in H
| H : Forall2 _ _ _ |- _ => apply Forall2_length in H
| H : context[length (_ <$> _)] |- _ => rewrite length_fmap in H
end; done || congruence.
Ltac simplify_list_eq ::= repeat
match goal with
| _ => progress simplify_eq/=
| H : [?x] !! ?i = Some ?y |- _ =>
destruct i; [change (Some x = Some y) in H | discriminate]
| H : _ <$> _ = [] |- _ => apply fmap_nil_inv in H
| H : [] = _ <$> _ |- _ => symmetry in H; apply fmap_nil_inv in H
| H : zip_with _ _ _ = [] |- _ => apply zip_with_nil_inv in H; destruct H
| H : [] = zip_with _ _ _ |- _ => symmetry in H
| |- context [(_ ++ _) ++ _] => rewrite <-(assoc_L (++))
| H : context [(_ ++ _) ++ _] |- _ => rewrite <-(assoc_L (++)) in H
| H : context [_ <$> (_ ++ _)] |- _ => rewrite fmap_app in H
| |- context [_ <$> (_ ++ _)] => rewrite fmap_app
| |- context [_ ++ []] => rewrite (right_id_L [] (++))
| H : context [_ ++ []] |- _ => rewrite (right_id_L [] (++)) in H
| |- context [take _ (_ <$> _)] => rewrite <-fmap_take
| H : context [take _ (_ <$> _)] |- _ => rewrite <-fmap_take in H
| |- context [drop _ (_ <$> _)] => rewrite <-fmap_drop
| H : context [drop _ (_ <$> _)] |- _ => rewrite <-fmap_drop in H
| H : _ ++ _ = _ ++ _ |- _ =>
repeat (rewrite <-app_comm_cons in H || rewrite <-(assoc_L (++)) in H);
apply app_inj_1 in H; [destruct H|solve_length]
| H : _ ++ _ = _ ++ _ |- _ =>
repeat (rewrite app_comm_cons in H || rewrite (assoc_L (++)) in H);
apply app_inj_2 in H; [destruct H|solve_length]
| |- context [zip_with _ (_ ++ _) (_ ++ _)] =>
rewrite zip_with_app by solve_length
| |- context [take _ (_ ++ _)] => rewrite take_app_length' by solve_length
| |- context [drop _ (_ ++ _)] => rewrite drop_app_length' by solve_length
| H : context [zip_with _ (_ ++ _) (_ ++ _)] |- _ =>
rewrite zip_with_app in H by solve_length
| H : context [take _ (_ ++ _)] |- _ =>
rewrite take_app_length' in H by solve_length
| H : context [drop _ (_ ++ _)] |- _ =>
rewrite drop_app_length' in H by solve_length
| H : ?l !! ?i = _, H2 : context [(_ <$> ?l) !! ?i] |- _ =>
rewrite list_lookup_fmap, H in H2
end.
Ltac decompose_Forall_hyps :=
repeat match goal with
| H : Forall _ [] |- _ => clear H
| H : Forall _ (_ :: _) |- _ => rewrite Forall_cons in H; destruct H
| H : Forall _ (_ ++ _) |- _ => rewrite Forall_app in H; destruct H
| H : Forall2 _ [] [] |- _ => clear H
| H : Forall2 _ (_ :: _) [] |- _ => destruct (Forall2_cons_nil_inv _ _ _ H)
| H : Forall2 _ [] (_ :: _) |- _ => destruct (Forall2_nil_cons_inv _ _ _ H)
| H : Forall2 _ [] ?k |- _ => apply Forall2_nil_inv_l in H
| H : Forall2 _ ?l [] |- _ => apply Forall2_nil_inv_r in H
| H : Forall2 _ (_ :: _) (_ :: _) |- _ =>
apply Forall2_cons_1 in H; destruct H
| H : Forall2 _ (_ :: _) ?k |- _ =>
let k_hd := fresh k "_hd" in let k_tl := fresh k "_tl" in
apply Forall2_cons_inv_l in H; destruct H as (k_hd&k_tl&?&?&->);
rename k_tl into k
| H : Forall2 _ ?l (_ :: _) |- _ =>
let l_hd := fresh l "_hd" in let l_tl := fresh l "_tl" in
apply Forall2_cons_inv_r in H; destruct H as (l_hd&l_tl&?&?&->);
rename l_tl into l
| H : Forall2 _ (_ ++ _) ?k |- _ =>
let k1 := fresh k "_1" in let k2 := fresh k "_2" in
apply Forall2_app_inv_l in H; destruct H as (k1&k2&?&?&->)
| H : Forall2 _ ?l (_ ++ _) |- _ =>
let l1 := fresh l "_1" in let l2 := fresh l "_2" in
apply Forall2_app_inv_r in H; destruct H as (l1&l2&?&?&->)
| _ => progress simplify_eq/=
| H : Forall3 _ _ (_ :: _) _ |- _ =>
apply Forall3_cons_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
| H : Forall2 _ (_ :: _) ?k |- _ =>
apply Forall2_cons_inv_l in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ ?l (_ :: _) |- _ =>
apply Forall2_cons_inv_r in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ (_ ++ _) (_ ++ _) |- _ =>
apply Forall2_app_inv in H; [destruct H|solve_length]
| H : Forall2 _ ?l (_ ++ _) |- _ =>
apply Forall2_app_inv_r in H; destruct H as (?&?&?&?&?)
| H : Forall2 _ (_ ++ _) ?k |- _ =>
apply Forall2_app_inv_l in H; destruct H as (?&?&?&?&?)
| H : Forall3 _ _ (_ ++ _) _ |- _ =>
apply Forall3_app_inv_m in H; destruct H as (?&?&?&?&?&?&?&?)
| H : Forall ?P ?l, H1 : ?l !! _ = Some ?x |- _ =>
(* to avoid some stupid loops, not fool proof *)
unless (P x) by auto using Forall_app_2, Forall_nil_2;
let E := fresh in
assert (P x) as E by (apply (Forall_lookup_1 P _ _ _ H H1)); lazy beta in E
| H : Forall2 ?P ?l ?k |- _ =>
match goal with
| H1 : l !! ?i = Some ?x, H2 : k !! ?i = Some ?y |- _ =>
unless (P x y) by done; let E := fresh in
assert (P x y) as E by (by apply (Forall2_lookup_lr P l k i x y));
lazy beta in E
| H1 : l !! ?i = Some ?x |- _ =>
try (match goal with _ : k !! i = Some _ |- _ => fail 2 end);
destruct (Forall2_lookup_l P _ _ _ _ H H1) as (?&?&?)
| H2 : k !! ?i = Some ?y |- _ =>
try (match goal with _ : l !! i = Some _ |- _ => fail 2 end);
destruct (Forall2_lookup_r P _ _ _ _ H H2) as (?&?&?)
end
| H : Forall3 ?P ?l ?l' ?k |- _ =>
lazymatch goal with
| H1:l !! ?i = Some ?x, H2:l' !! ?i = Some ?y, H3:k !! ?i = Some ?z |- _ =>
unless (P x y z) by done; let E := fresh in
assert (P x y z) as E by (by apply (Forall3_lookup_lmr P l l' k i x y z));
lazy beta in E
| H1 : l !! _ = Some ?x |- _ =>
destruct (Forall3_lookup_l P _ _ _ _ _ H H1) as (?&?&?&?&?)
| H2 : l' !! _ = Some ?y |- _ =>
destruct (Forall3_lookup_m P _ _ _ _ _ H H2) as (?&?&?&?&?)
| H3 : k !! _ = Some ?z |- _ =>
destruct (Forall3_lookup_r P _ _ _ _ _ H H3) as (?&?&?&?&?)
end
end.
Ltac list_simplifier :=
simplify_eq/=;
repeat match goal with
| _ => progress decompose_Forall_hyps
| _ => progress simplify_list_eq
| H : _ <$> _ = _ :: _ |- _ =>
apply fmap_cons_inv in H; destruct H as (?&?&?&?&?)
| H : _ :: _ = _ <$> _ |- _ => symmetry in H
| H : _ <$> _ = _ ++ _ |- _ =>
apply fmap_app_inv in H; destruct H as (?&?&?&?&?)
| H : _ ++ _ = _ <$> _ |- _ => symmetry in H
| H : zip_with _ _ _ = _ :: _ |- _ =>
apply zip_with_cons_inv in H; destruct H as (?&?&?&?&?&?&?&?)
| H : _ :: _ = zip_with _ _ _ |- _ => symmetry in H
| H : zip_with _ _ _ = _ ++ _ |- _ =>
apply zip_with_app_inv in H; destruct H as (?&?&?&?&?&?&?&?&?)
| H : _ ++ _ = zip_with _ _ _ |- _ => symmetry in H
end.
Ltac decompose_Forall := repeat
match goal with
| |- Forall _ _ => by apply Forall_true
| |- Forall _ [] => constructor
| |- Forall _ (_ :: _) => constructor
| |- Forall _ (_ ++ _) => apply Forall_app_2
| |- Forall _ (_ <$> _) => apply Forall_fmap
| |- Forall _ (_ ≫= _) => apply Forall_bind
| |- Forall2 _ _ _ => apply Forall_Forall2_diag
| |- Forall2 _ [] [] => constructor
| |- Forall2 _ (_ :: _) (_ :: _) => constructor
| |- Forall2 _ (_ ++ _) (_ ++ _) => first
[ apply Forall2_app; [by decompose_Forall |]
| apply Forall2_app; [| by decompose_Forall]]
| |- Forall2 _ (_ <$> _) _ => apply Forall2_fmap_l
| |- Forall2 _ _ (_ <$> _) => apply Forall2_fmap_r
| _ => progress decompose_Forall_hyps
| H : Forall _ (_ <$> _) |- _ => rewrite Forall_fmap in H
| H : Forall _ (_ ≫= _) |- _ => rewrite Forall_bind in H
| |- Forall _ _ =>
apply Forall_lookup_2; intros ???; progress decompose_Forall_hyps
| |- Forall2 _ _ _ =>
apply Forall2_same_length_lookup_2; [solve_length|];
intros ?????; progress decompose_Forall_hyps
end.
(** The [simplify_suffix] tactic removes [suffix] hypotheses that are
tautologies, and simplifies [suffix] hypotheses involving [(::)] and
[(++)]. *)
Ltac simplify_suffix := repeat
match goal with
| H : suffix (_ :: _) _ |- _ => destruct (suffix_cons_not _ _ H)
| H : suffix (_ :: _) [] |- _ => apply suffix_nil_inv in H
| H : suffix (_ ++ _) (_ ++ _) |- _ => apply suffix_app_inv in H
| H : suffix (_ :: _) (_ :: _) |- _ =>
destruct (suffix_cons_inv _ _ _ _ H); clear H
| H : suffix ?x ?x |- _ => clear H
| H : suffix ?x (_ :: ?x) |- _ => clear H
| H : suffix ?x (_ ++ ?x) |- _ => clear H
| _ => progress simplify_eq/=
end.
(** The [solve_suffix] tactic tries to solve goals involving [suffix]. It
uses [simplify_suffix] to simplify hypotheses and tries to solve [suffix]
conclusions. This tactic either fails or proves the goal. *)
Ltac solve_suffix := by intuition (repeat
match goal with
| _ => done
| _ => progress simplify_suffix
| |- suffix [] _ => apply suffix_nil
| |- suffix _ _ => reflexivity
| |- suffix _ (_ :: _) => apply suffix_cons_r
| |- suffix _ (_ ++ _) => apply suffix_app_r
| H : suffix _ _ → False |- _ => destruct H
end).
|