1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
(** This files implements a type [natmap A] of finite maps whose keys range
over Coq's data type of unary natural numbers [nat]. The implementation equips
a list with a proof of canonicity. *)
From stdpp Require Import fin_maps mapset.
From stdpp Require Import options.
Notation natmap_raw A := (list (option A)).
Definition natmap_wf {A} (l : natmap_raw A) :=
match last l with None => True | Some x => is_Some x end.
Global Instance natmap_wf_pi {A} (l : natmap_raw A) : ProofIrrel (natmap_wf l).
Proof. unfold natmap_wf. case_match; apply _. Qed.
Lemma natmap_wf_inv {A} (o : option A) (l : natmap_raw A) :
natmap_wf (o :: l) → natmap_wf l.
Proof. by destruct l. Qed.
Lemma natmap_wf_lookup {A} (l : natmap_raw A) :
natmap_wf l → l ≠ [] → ∃ i x, mjoin (l !! i) = Some x.
Proof.
intros Hwf Hl. induction l as [|[x|] l IH]; simpl; [done| |].
{ exists 0. simpl. eauto. }
destruct IH as (i&x&?); eauto using natmap_wf_inv; [|by exists (S i), x].
intros ->. by destruct Hwf.
Qed.
Record natmap (A : Type) : Type := NatMap {
natmap_car : natmap_raw A;
natmap_prf : natmap_wf natmap_car
}.
Add Printing Constructor natmap.
Global Arguments NatMap {_} _ _ : assert.
Global Arguments natmap_car {_} _ : assert.
Global Arguments natmap_prf {_} _ : assert.
Lemma natmap_eq {A} (m1 m2 : natmap A) :
m1 = m2 ↔ natmap_car m1 = natmap_car m2.
Proof.
split; [by intros ->|intros]; destruct m1 as [t1 ?], m2 as [t2 ?].
simplify_eq/=; f_equal; apply proof_irrel.
Qed.
Global Instance natmap_eq_dec `{EqDecision A} : EqDecision (natmap A) := λ m1 m2,
match decide (natmap_car m1 = natmap_car m2) with
| left H => left (proj2 (natmap_eq m1 m2) H)
| right H => right (H ∘ proj1 (natmap_eq m1 m2))
end.
Global Instance natmap_empty {A} : Empty (natmap A) := NatMap [] I.
Global Instance natmap_lookup {A} : Lookup nat A (natmap A) := λ i m,
let (l,_) := m in mjoin (l !! i).
Fixpoint natmap_singleton_raw {A} (i : nat) (x : A) : natmap_raw A :=
match i with 0 => [Some x]| S i => None :: natmap_singleton_raw i x end.
Lemma natmap_singleton_wf {A} (i : nat) (x : A) :
natmap_wf (natmap_singleton_raw i x).
Proof. unfold natmap_wf. induction i as [|[]]; simplify_eq/=; eauto. Qed.
Lemma natmap_lookup_singleton_raw {A} (i : nat) (x : A) :
mjoin (natmap_singleton_raw i x !! i) = Some x.
Proof. induction i; simpl; auto. Qed.
Lemma natmap_lookup_singleton_raw_ne {A} (i j : nat) (x : A) :
i ≠ j → mjoin (natmap_singleton_raw i x !! j) = None.
Proof. revert j; induction i; intros [|?]; simpl; auto with congruence. Qed.
Local Hint Rewrite @natmap_lookup_singleton_raw : natmap.
Definition natmap_cons_canon {A} (o : option A) (l : natmap_raw A) :=
match o, l with None, [] => [] | _, _ => o :: l end.
Lemma natmap_cons_canon_wf {A} (o : option A) (l : natmap_raw A) :
natmap_wf l → natmap_wf (natmap_cons_canon o l).
Proof. unfold natmap_wf, last. destruct o, l; simpl; eauto. Qed.
Lemma natmap_cons_canon_O {A} (o : option A) (l : natmap_raw A) :
mjoin (natmap_cons_canon o l !! 0) = o.
Proof. by destruct o, l. Qed.
Lemma natmap_cons_canon_S {A} (o : option A) (l : natmap_raw A) i :
natmap_cons_canon o l !! S i = l !! i.
Proof. by destruct o, l. Qed.
Local Hint Rewrite @natmap_cons_canon_O @natmap_cons_canon_S : natmap.
Definition natmap_partial_alter_raw {A} (f : option A → option A) :
nat → natmap_raw A → natmap_raw A :=
fix go i l {struct l} :=
match l with
| [] =>
match f None with
| Some x => natmap_singleton_raw i x | None => []
end
| o :: l =>
match i with
| 0 => natmap_cons_canon (f o) l | S i => natmap_cons_canon o (go i l)
end
end.
Lemma natmap_partial_alter_wf {A} (f : option A → option A) i l :
natmap_wf l → natmap_wf (natmap_partial_alter_raw f i l).
Proof.
revert i. induction l; [intro | intros [|?]]; simpl; repeat case_match;
eauto using natmap_singleton_wf, natmap_cons_canon_wf, natmap_wf_inv.
Qed.
Global Instance natmap_partial_alter {A} : PartialAlter nat A (natmap A) := λ f i m,
let (l,Hl) := m in NatMap _ (natmap_partial_alter_wf f i l Hl).
Lemma natmap_lookup_partial_alter_raw {A} (f : option A → option A) i l :
mjoin (natmap_partial_alter_raw f i l !! i) = f (mjoin (l !! i)).
Proof.
revert i. induction l; intros [|?]; simpl; repeat case_match; simpl;
autorewrite with natmap; auto.
Qed.
Lemma natmap_lookup_partial_alter_raw_ne {A} (f : option A → option A) i j l :
i ≠ j → mjoin (natmap_partial_alter_raw f i l !! j) = mjoin (l !! j).
Proof.
revert i j. induction l; intros [|?] [|?] ?; simpl;
repeat case_match; simpl; autorewrite with natmap; auto with congruence.
rewrite natmap_lookup_singleton_raw_ne; congruence.
Qed.
Definition natmap_fmap_raw {A B} (f : A → B) : natmap_raw A → natmap_raw B :=
fmap (fmap (M:=option) f).
Lemma natmap_fmap_wf {A B} (f : A → B) l :
natmap_wf l → natmap_wf (natmap_fmap_raw f l).
Proof.
unfold natmap_fmap_raw, natmap_wf. rewrite fmap_last.
destruct (last l); [|done]. by apply fmap_is_Some.
Qed.
Lemma natmap_lookup_fmap_raw {A B} (f : A → B) i l :
mjoin (natmap_fmap_raw f l !! i) = f <$> mjoin (l !! i).
Proof.
unfold natmap_fmap_raw. rewrite list_lookup_fmap. by destruct (l !! i).
Qed.
Global Instance natmap_fmap : FMap natmap := λ A B f m,
let (l,Hl) := m in NatMap (natmap_fmap_raw f l) (natmap_fmap_wf _ _ Hl).
Definition natmap_omap_raw {A B} (f : A → option B) :
natmap_raw A → natmap_raw B :=
fix go l :=
match l with [] => [] | o :: l => natmap_cons_canon (o ≫= f) (go l) end.
Lemma natmap_omap_raw_wf {A B} (f : A → option B) l :
natmap_wf l → natmap_wf (natmap_omap_raw f l).
Proof. induction l; simpl; eauto using natmap_cons_canon_wf, natmap_wf_inv. Qed.
Lemma natmap_lookup_omap_raw {A B} (f : A → option B) l i :
mjoin (natmap_omap_raw f l !! i) = mjoin (l !! i) ≫= f.
Proof.
revert i. induction l; intros [|?]; simpl; autorewrite with natmap; auto.
Qed.
Local Hint Rewrite @natmap_lookup_omap_raw : natmap.
Global Instance natmap_omap: OMap natmap := λ A B f m,
let (l,Hl) := m in NatMap _ (natmap_omap_raw_wf f _ Hl).
Definition natmap_merge_raw {A B C} (f : option A → option B → option C) :
natmap_raw A → natmap_raw B → natmap_raw C :=
fix go l1 l2 :=
match l1, l2 with
| [], l2 => natmap_omap_raw (f None ∘ Some) l2
| l1, [] => natmap_omap_raw (flip f None ∘ Some) l1
| o1 :: l1, o2 :: l2 => natmap_cons_canon (diag_None f o1 o2) (go l1 l2)
end.
Lemma natmap_merge_wf {A B C} (f : option A → option B → option C) l1 l2 :
natmap_wf l1 → natmap_wf l2 → natmap_wf (natmap_merge_raw f l1 l2).
Proof.
revert l2. induction l1; intros [|??]; simpl;
eauto using natmap_omap_raw_wf, natmap_cons_canon_wf, natmap_wf_inv.
Qed.
Lemma natmap_lookup_merge_raw {A B C} (f : option A → option B → option C) l1 l2 i :
mjoin (natmap_merge_raw f l1 l2 !! i) = diag_None f (mjoin (l1 !! i)) (mjoin (l2 !! i)).
Proof.
intros. revert i l2. induction l1; intros [|?] [|??]; simpl;
autorewrite with natmap; auto;
match goal with |- context [?o ≫= _] => by destruct o end.
Qed.
Global Instance natmap_merge: Merge natmap := λ A B C f m1 m2,
let (l1, Hl1) := m1 in let (l2, Hl2) := m2 in
NatMap (natmap_merge_raw f l1 l2) (natmap_merge_wf _ _ _ Hl1 Hl2).
Fixpoint natmap_fold_raw {A B} (f : nat → A → B → B)
(j : nat) (b : B) (l : natmap_raw A) : B :=
match l with
| [] => b
| mx :: l => natmap_fold_raw f (S j)
match mx with Some x => f j x b | None => b end l
end.
Lemma natmap_fold_raw_cons_canon {A B} (f : nat → A → B → B) j b mx l :
natmap_fold_raw f j b (natmap_cons_canon mx l)
= natmap_fold_raw f (S j) match mx with Some x => f j x b | None => b end l.
Proof. by destruct mx, l. Qed.
Lemma natmap_fold_raw_ind {A} (P : natmap_raw A → Prop) :
P [] →
(∀ i x l,
natmap_wf l →
mjoin (l !! i) = None →
(∀ j A' B (f : nat → A' → B → B) (g : A → A') b x',
natmap_fold_raw f j b
(natmap_partial_alter_raw (λ _, Some x') i (natmap_fmap_raw g l))
= f (i + j) x' (natmap_fold_raw f j b (natmap_fmap_raw g l))) →
P l → P (natmap_partial_alter_raw (λ _, Some x) i l)) →
∀ l, natmap_wf l → P l.
Proof.
intros Hemp Hinsert l Hl. revert P Hemp Hinsert Hl.
induction l as [|mx l IH]; intros P Hemp Hinsert Hxl; simpl in *; [done|].
assert (natmap_wf l) as Hl by (by destruct l).
replace (mx :: l) with (natmap_cons_canon mx l)
by (destruct mx, l; done || by destruct Hxl).
apply (IH (λ l, P (natmap_cons_canon mx l))); [..|done].
{ destruct mx as [x|]; [|done].
change (natmap_cons_canon (Some x) [])
with (natmap_partial_alter_raw (λ _, Some x) 0 []).
by apply (Hinsert 0). }
intros i x l' Hl' ? Hfold.
replace (natmap_cons_canon mx (natmap_partial_alter_raw (λ _, Some x) i l'))
with (natmap_partial_alter_raw (λ _, Some x) (S i) (natmap_cons_canon mx l'))
by (by destruct i, mx, l').
apply Hinsert.
- by apply natmap_cons_canon_wf.
- by destruct mx, l'.
- intros j A' B f g b x'.
replace (natmap_partial_alter_raw (λ _, Some x') (S i)
(natmap_fmap_raw g (natmap_cons_canon mx l')))
with (natmap_cons_canon (g <$> mx)
(natmap_partial_alter_raw (λ _, Some x') i (natmap_fmap_raw g l')))
by (by destruct i, mx, l').
replace (natmap_fmap_raw g (natmap_cons_canon mx l'))
with (natmap_cons_canon (g <$> mx) (natmap_fmap_raw g l'))
by (by destruct i, mx, l').
rewrite !natmap_fold_raw_cons_canon, Nat.add_succ_comm. simpl; auto.
Qed.
Global Instance natmap_fold {A} : MapFold nat A (natmap A) := λ B f d m,
let (l,_) := m in natmap_fold_raw f 0 d l.
Global Instance natmap_map : FinMap nat natmap.
Proof.
split.
- unfold lookup, natmap_lookup. intros A [l1 Hl1] [l2 Hl2] E.
apply natmap_eq. revert l2 Hl1 Hl2 E. simpl.
induction l1 as [|[x|] l1 IH]; intros [|[y|] l2] Hl1 Hl2 E; simpl in *.
+ done.
+ by specialize (E 0).
+ destruct (natmap_wf_lookup (None :: l2)) as (i&?&?); auto with congruence.
+ by specialize (E 0).
+ f_equal.
* apply (E 0).
* apply IH; eauto using natmap_wf_inv.
intros i. apply (E (S i)).
+ by specialize (E 0).
+ destruct (natmap_wf_lookup (None :: l1)) as (i&?&?); auto with congruence.
+ by specialize (E 0).
+ f_equal. apply IH; eauto using natmap_wf_inv. intros i. apply (E (S i)).
- done.
- intros ?? [??] ?. apply natmap_lookup_partial_alter_raw.
- intros ?? [??] ??. apply natmap_lookup_partial_alter_raw_ne.
- intros ??? [??] ?. apply natmap_lookup_fmap_raw.
- intros ??? [??] ?. by apply natmap_lookup_omap_raw.
- intros ???? [??] [??] ?. apply natmap_lookup_merge_raw.
- done.
- intros A P Hemp Hins [l Hl]. refine (natmap_fold_raw_ind
(λ l, ∀ Hl, P (NatMap l Hl)) _ _ l Hl Hl); clear l Hl.
{ intros Hl.
by replace (NatMap _ Hl) with (∅ : natmap A) by (by apply natmap_eq). }
intros i x l Hl ? Hfold H Hxl.
replace (NatMap _ Hxl) with (<[i:=x]> (NatMap _ Hl)) by (by apply natmap_eq).
apply Hins; [done| |done].
intros A' B f g b x'. rewrite <-(Nat.add_0_r i) at 2. apply (Hfold 0).
Qed.
Fixpoint strip_Nones {A} (l : list (option A)) : list (option A) :=
match l with None :: l => strip_Nones l | _ => l end.
Lemma list_to_natmap_wf {A} (l : list (option A)) :
natmap_wf (reverse (strip_Nones (reverse l))).
Proof.
unfold natmap_wf. rewrite last_reverse.
induction (reverse l) as [|[]]; simpl; eauto.
Qed.
Definition list_to_natmap {A} (l : list (option A)) : natmap A :=
NatMap (reverse (strip_Nones (reverse l))) (list_to_natmap_wf l).
Lemma list_to_natmap_spec {A} (l : list (option A)) i :
list_to_natmap l !! i = mjoin (l !! i).
Proof.
unfold lookup at 1, natmap_lookup, list_to_natmap; simpl.
rewrite <-(reverse_involutive l) at 2. revert i.
induction (reverse l) as [|[x|] l' IH]; intros i; simpl; auto.
rewrite reverse_cons, IH. clear IH. revert i.
induction (reverse l'); intros [|?]; simpl; auto.
Qed.
(** Finally, we can construct sets of [nat]s satisfying extensional equality. *)
Notation natset := (mapset natmap).
Global Instance natmap_dom {A} : Dom (natmap A) natset := mapset_dom.
Global Instance: FinMapDom nat natmap natset := mapset_dom_spec.
(* Fixpoint avoids this definition from being unfolded *)
Definition bools_to_natset (βs : list bool) : natset :=
let f (β : bool) := if β then Some () else None in
Mapset $ list_to_natmap $ f <$> βs.
Definition natset_to_bools (sz : nat) (X : natset) : list bool :=
let f (mu : option ()) := match mu with Some _ => true | None => false end in
resize sz false $ f <$> natmap_car (mapset_car X).
Lemma bools_to_natset_unfold βs :
let f (β : bool) := if β then Some () else None in
bools_to_natset βs = Mapset $ list_to_natmap $ f <$> βs.
Proof. by destruct βs. Qed.
Lemma elem_of_bools_to_natset βs i : i ∈ bools_to_natset βs ↔ βs !! i = Some true.
Proof.
rewrite bools_to_natset_unfold; unfold elem_of, mapset_elem_of; simpl.
rewrite list_to_natmap_spec, list_lookup_fmap.
destruct (βs !! i) as [[]|]; compute; intuition congruence.
Qed.
Lemma bools_to_natset_union βs1 βs2 :
length βs1 = length βs2 →
bools_to_natset (βs1 ||* βs2) = bools_to_natset βs1 ∪ bools_to_natset βs2.
Proof.
rewrite <-Forall2_same_length; intros Hβs.
apply set_eq. intros i. rewrite elem_of_union, !elem_of_bools_to_natset.
revert i. induction Hβs as [|[] []]; intros [|?]; naive_solver.
Qed.
Lemma length_natset_to_bools (X : natset) sz : length (natset_to_bools sz X) = sz.
Proof. apply length_resize. Qed.
Lemma lookup_natset_to_bools_ge sz X i : sz ≤ i → natset_to_bools sz X !! i = None.
Proof. by apply lookup_resize_old. Qed.
Lemma lookup_natset_to_bools sz X i β :
i < sz → natset_to_bools sz X !! i = Some β ↔ (i ∈ X ↔ β = true).
Proof.
unfold natset_to_bools, elem_of, mapset_elem_of, lookup at 2, natmap_lookup; simpl.
intros. destruct (mapset_car X) as [l ?]; simpl.
destruct (l !! i) as [mu|] eqn:Hmu; simpl.
{ rewrite lookup_resize, list_lookup_fmap, Hmu
by (rewrite ?length_fmap; eauto using lookup_lt_Some).
destruct mu as [[]|], β; simpl; intuition congruence. }
rewrite lookup_resize_new by (rewrite ?length_fmap;
eauto using lookup_ge_None_1); destruct β; intuition congruence.
Qed.
Lemma lookup_natset_to_bools_true sz X i :
i < sz → natset_to_bools sz X !! i = Some true ↔ i ∈ X.
Proof. intros. rewrite lookup_natset_to_bools by done. intuition. Qed.
Lemma lookup_natset_to_bools_false sz X i :
i < sz → natset_to_bools sz X !! i = Some false ↔ i ∉ X.
Proof. intros. rewrite lookup_natset_to_bools by done. naive_solver. Qed.
Lemma natset_to_bools_union sz X1 X2 :
natset_to_bools sz (X1 ∪ X2) = natset_to_bools sz X1 ||* natset_to_bools sz X2.
Proof.
apply list_eq; intros i; rewrite lookup_zip_with.
destruct (decide (i < sz)); [|by rewrite !lookup_natset_to_bools_ge by lia].
apply option_eq; intros β.
rewrite lookup_natset_to_bools, elem_of_union by done; intros.
destruct (decide (i ∈ X1)), (decide (i ∈ X2)); repeat first
[ rewrite (λ X H, proj2 (lookup_natset_to_bools_true sz X i H)) by done
| rewrite (λ X H, proj2 (lookup_natset_to_bools_false sz X i H)) by done];
destruct β; naive_solver.
Qed.
Lemma natset_to_bools_to_natset βs sz :
natset_to_bools sz (bools_to_natset βs) = resize sz false βs.
Proof.
apply list_eq; intros i. destruct (decide (i < sz));
[|by rewrite lookup_natset_to_bools_ge, lookup_resize_old by lia].
apply option_eq; intros β.
rewrite lookup_natset_to_bools, elem_of_bools_to_natset by done.
destruct (decide (i < length βs)).
{ rewrite lookup_resize by done.
destruct (lookup_lt_is_Some_2 βs i) as [[]]; destruct β; naive_solver. }
rewrite lookup_resize_new, lookup_ge_None_2 by lia. destruct β; naive_solver.
Qed.
(** A [natmap A] forms a stack with elements of type [A] and possible holes *)
Definition natmap_push {A} (o : option A) (m : natmap A) : natmap A :=
let (l,Hl) := m in NatMap _ (natmap_cons_canon_wf o l Hl).
Definition natmap_pop_raw {A} (l : natmap_raw A) : natmap_raw A := tail l.
Lemma natmap_pop_wf {A} (l : natmap_raw A) :
natmap_wf l → natmap_wf (natmap_pop_raw l).
Proof. destruct l; simpl; eauto using natmap_wf_inv. Qed.
Definition natmap_pop {A} (m : natmap A) : natmap A :=
let (l,Hl) := m in NatMap _ (natmap_pop_wf _ Hl).
Lemma lookup_natmap_push_O {A} o (m : natmap A) : natmap_push o m !! 0 = o.
Proof. by destruct o, m as [[|??]]. Qed.
Lemma lookup_natmap_push_S {A} o (m : natmap A) i :
natmap_push o m !! S i = m !! i.
Proof. by destruct o, m as [[|??]]. Qed.
Lemma lookup_natmap_pop {A} (m : natmap A) i : natmap_pop m !! i = m !! S i.
Proof. by destruct m as [[|??]]. Qed.
Lemma natmap_push_pop {A} (m : natmap A) :
natmap_push (m !! 0) (natmap_pop m) = m.
Proof.
apply map_eq. intros i. destruct i.
- by rewrite lookup_natmap_push_O.
- by rewrite lookup_natmap_push_S, lookup_natmap_pop.
Qed.
Lemma natmap_pop_push {A} o (m : natmap A) : natmap_pop (natmap_push o m) = m.
Proof. apply natmap_eq. by destruct o, m as [[|??]]. Qed.
|