1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
(** This files extends the implementation of finite over [positive] to finite
maps whose keys range over Coq's data type of binary naturals [N]. *)
From stdpp Require Import pmap mapset.
From stdpp Require Export prelude fin_maps.
From stdpp Require Import options.
Local Open Scope N_scope.
Record Nmap (A : Type) : Type := NMap { Nmap_0 : option A; Nmap_pos : Pmap A }.
Add Printing Constructor Nmap.
Global Arguments Nmap_0 {_} _ : assert.
Global Arguments Nmap_pos {_} _ : assert.
Global Arguments NMap {_} _ _ : assert.
Global Instance Nmap_eq_dec `{EqDecision A} : EqDecision (Nmap A).
Proof.
refine (λ t1 t2,
match t1, t2 with
| NMap x t1, NMap y t2 => cast_if_and (decide (x = y)) (decide (t1 = t2))
end); abstract congruence.
Defined.
Global Instance Nmap_empty {A} : Empty (Nmap A) := NMap None ∅.
Global Opaque Nmap_empty.
Global Instance Nmap_lookup {A} : Lookup N A (Nmap A) := λ i t,
match i with
| 0 => Nmap_0 t
| N.pos p => Nmap_pos t !! p
end.
Global Instance Nmap_partial_alter {A} : PartialAlter N A (Nmap A) := λ f i t,
match i, t with
| 0, NMap o t => NMap (f o) t
| N.pos p, NMap o t => NMap o (partial_alter f p t)
end.
Global Instance Nmap_fmap: FMap Nmap := λ A B f t,
match t with NMap o t => NMap (f <$> o) (f <$> t) end.
Global Instance Nmap_omap: OMap Nmap := λ A B f t,
match t with NMap o t => NMap (o ≫= f) (omap f t) end.
Global Instance Nmap_merge: Merge Nmap := λ A B C f t1 t2,
match t1, t2 with
| NMap o1 t1, NMap o2 t2 => NMap (diag_None f o1 o2) (merge f t1 t2)
end.
Global Instance Nmap_fold {A} : MapFold N A (Nmap A) := λ B f d t,
match t with
| NMap mx t =>
map_fold (f ∘ N.pos) match mx with Some x => f 0 x d | None => d end t
end.
Global Instance Nmap_map: FinMap N Nmap.
Proof.
split.
- intros ? [??] [??] H. f_equal; [apply (H 0)|].
apply map_eq. intros i. apply (H (N.pos i)).
- by intros ? [|?].
- intros ? f [? t] [|i]; simpl; [done |]. apply lookup_partial_alter.
- intros ? f [? t] [|i] [|j]; simpl; try intuition congruence.
intros. apply lookup_partial_alter_ne. congruence.
- intros ??? [??] []; simpl; [done|]. apply lookup_fmap.
- intros ?? f [??] [|?]; simpl; [done|]; apply (lookup_omap f).
- intros ??? f [??] [??] [|?]; simpl; [done|]; apply (lookup_merge f).
- done.
- intros A P Hemp Hins [mx t].
induction t as [|i x t ? Hfold IH] using map_fold_fmap_ind.
{ destruct mx as [x|]; [|done].
replace (NMap (Some x) ∅) with (<[0:=x]> ∅ : Nmap _) by done.
by apply Hins. }
apply (Hins (N.pos i) x (NMap mx t)); [done| |done].
intros A' B f g b. apply Hfold.
Qed.
(** * Finite sets *)
(** We construct sets of [N]s satisfying extensional equality. *)
Notation Nset := (mapset Nmap).
Global Instance Nmap_dom {A} : Dom (Nmap A) Nset := mapset_dom.
Global Instance: FinMapDom N Nmap Nset := mapset_dom_spec.
|