File: numbers.v

package info (click to toggle)
coq-stdpp 1.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,696 kB
  • sloc: makefile: 52; sh: 35; sed: 1
file content (1645 lines) | stat: -rw-r--r-- 64,673 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
(** This file provides various tweaks and extensions to Coq's theory of numbers
(natural numbers [nat] and [N], positive numbers [positive], integers [Z], and
rationals [Qc]). In addition, this file defines a new type of positive rational
numbers [Qp], which is used extensively in Iris to represent fractional
permissions.

The organization of this file follows mostly Coq's standard library.

- We put all results in modules. For example, the module [Nat] collects the
  results for type [nat]. Since the Coq stdlib already defines a module [Nat],
  our module [Nat] exports Coq's module so that our module [Nat] contains the
  union of the results from the Coq stdlib and std++.
- We follow the naming convention of Coq's "numbers" library to prefer
  [succ]/[add]/[sub]/[mul] over [S]/[plus]/[minus]/[mult].
- One typically does not [Import] modules such as [Nat], and refers to the
  results using [Nat.lem]. As a consequence, all [Hint]s [Instance]s in the modules in
  this file are [Global] and not [Export]. Other things like [Arguments] are outside
  the modules, since for them [Global] works like [Export].

The results for [Qc] are not yet in a module. This is in part because they
still follow the old/non-module style in Coq's standard library. See also
https://gitlab.mpi-sws.org/iris/stdpp/-/issues/147. *)

From Coq Require Export EqdepFacts PArith NArith ZArith.
From Coq Require Import QArith Qcanon.
From stdpp Require Export base decidable option.
From stdpp Require Import well_founded.
From stdpp Require Import options.
Local Open Scope nat_scope.

Global Instance comparison_eq_dec : EqDecision comparison.
Proof. solve_decision. Defined.

(** * Notations and properties of [nat] *)
Global Arguments Nat.sub !_ !_ / : assert.
Global Arguments Nat.max : simpl nomatch.

(** We do not make [Nat.lt] since it is an alias for [lt], which contains the
actual definition that we want to make opaque. *)
Global Typeclasses Opaque lt.

Reserved Notation "x ≤ y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y < z" (at level 70, y at next level).
Reserved Notation "x < y < z" (at level 70, y at next level).
Reserved Notation "x < y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y ≤ z ≤ z'"
  (at level 70, y at next level, z at next level).

Infix "≤" := le : nat_scope.
(** We do *not* add notation for [≥] mapping to [ge], and we do also not use the
[>] notation from the Coq standard library. Using such notations leads to
annoying problems: if you have [x < y] in the context and need [y > x] for some
lemma, [assumption] won't work because [x < y] and [y > x] are not
definitionally equal. It is just generally frustrating to deal with this
mismatch, and much preferable to state logically equivalent things in syntactically
equal ways.

As an alternative, we could define [>] and [≥] as [parsing only] notation that
maps to [<] and [≤], respectively (similar to math-comp). This would change the
notation for [<] from the Coq standard library to something that is not
definitionally equal, so we avoid that as well.

This concern applies to all number types: [nat], [N], [Z], [positive], [Qc] and
[Qp]. *)
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z)%nat : nat_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z)%nat : nat_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z)%nat : nat_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z')%nat : nat_scope.
Notation "(≤)" := le (only parsing) : nat_scope.
Notation "(<)" := lt (only parsing) : nat_scope.

Infix "`div`" := Nat.div (at level 35) : nat_scope.
Infix "`mod`" := Nat.modulo (at level 35) : nat_scope.
Infix "`max`" := Nat.max (at level 35) : nat_scope.
Infix "`min`" := Nat.min (at level 35) : nat_scope.

(** TODO: Consider removing these notations to avoid populting the global
scope? *)
Notation lcm := Nat.lcm.
Notation divide := Nat.divide.
Notation "( x | y )" := (divide x y) : nat_scope.

Module Nat.
  Export PeanoNat.Nat.

  Global Instance add_assoc' : Assoc (=) Nat.add := Nat.add_assoc.
  Global Instance add_comm' : Comm (=) Nat.add := Nat.add_comm.
  Global Instance add_left_id : LeftId (=) 0 Nat.add := Nat.add_0_l.
  Global Instance add_right_id : RightId (=) 0 Nat.add := Nat.add_0_r.

  Global Instance sub_right_id : RightId (=) 0 Nat.sub := Nat.sub_0_r.

  Global Instance mul_assoc' : Assoc (=) Nat.mul := Nat.mul_assoc.
  Global Instance mul_comm' : Comm (=) Nat.mul := Nat.mul_comm.
  Global Instance mul_left_id : LeftId (=) 1 Nat.mul := Nat.mul_1_l.
  Global Instance mul_right_id : RightId (=) 1 Nat.mul := Nat.mul_1_r.
  Global Instance mul_left_absorb : LeftAbsorb (=) 0 Nat.mul := Nat.mul_0_l.
  Global Instance mul_right_absorb : RightAbsorb (=) 0 Nat.mul := Nat.mul_0_r.

  Global Instance div_right_id : RightId (=) 1 Nat.div := Nat.div_1_r.

  Global Instance eq_dec: EqDecision nat := eq_nat_dec.
  Global Instance le_dec: RelDecision le := le_dec.
  Global Instance lt_dec: RelDecision lt := lt_dec.
  Global Instance inhabited: Inhabited nat := populate 0.

  Global Instance succ_inj: Inj (=) (=) Nat.succ.
  Proof. by injection 1. Qed.

  Global Instance le_po: PartialOrder (≤).
  Proof. repeat split; repeat intro; auto with lia. Qed.
  Global Instance le_total: Total (≤).
  Proof. repeat intro; lia. Qed.

  Global Instance le_pi: ∀ x y : nat, ProofIrrel (x ≤ y).
  Proof.
    assert (∀ x y (p : x ≤ y) y' (q : x ≤ y'),
      y = y' → eq_dep nat (le x) y p y' q) as aux.
    { fix FIX 3. intros x ? [|y p] ? [|y' q].
      - done.
      - clear FIX. intros; exfalso; auto with lia.
      - clear FIX. intros; exfalso; auto with lia.
      - injection 1. intros Hy. by case (FIX x y p y' q Hy). }
    intros x y p q.
    by apply (Eqdep_dec.eq_dep_eq_dec (λ x y, decide (x = y))), aux.
  Qed.
  Global Instance lt_pi: ∀ x y : nat, ProofIrrel (x < y).
  Proof. unfold Peano.lt. apply _. Qed.

  (** Given a measure/size [f : B → nat], you can do induction on the size of
  [b : B] using [induction (lt_wf_0_projected f b)]. *)
  Lemma lt_wf_0_projected {B} (f : B → nat) : well_founded (λ x y, f x < f y).
  Proof. by apply (wf_projected (<) f), lt_wf_0. Qed.

  Lemma le_sum (x y : nat) : x ≤ y ↔ ∃ z, y = x + z.
  Proof. split; [exists (y - x); lia | intros [z ->]; lia]. Qed.

  (** This is similar to but slightly different than Coq's
      [add_sub : ∀ n m : nat, n + m - m = n]. *)
  Lemma add_sub' n m : n + m - n = m.
  Proof. lia. Qed.
  Lemma le_add_sub n m : n ≤ m → m = n + (m - n).
  Proof. lia. Qed.

  (** Cancellation for multiplication. Coq's stdlib has these lemmas for [Z],
  but those for [nat] are missing. We use the naming scheme of Coq's stdlib. *)
  Lemma mul_reg_l n m p : p ≠ 0 → p * n = p * m → n = m.
  Proof.
    pose proof (Z.mul_reg_l (Z.of_nat n) (Z.of_nat m) (Z.of_nat p)). lia.
  Qed.
  Lemma mul_reg_r n m p : p ≠ 0 → n * p = m * p → n = m.
  Proof. rewrite <-!(Nat.mul_comm p). apply mul_reg_l. Qed.

  Lemma lt_succ_succ n : n < S (S n).
  Proof. auto with arith. Qed.
  Lemma mul_split_l n x1 x2 y1 y2 :
    x2 < n → y2 < n → x1 * n + x2 = y1 * n + y2 → x1 = y1 ∧ x2 = y2.
  Proof.
    intros Hx2 Hy2 E. cut (x1 = y1); [intros; subst;lia |].
    revert y1 E. induction x1; simpl; intros [|?]; simpl; auto with lia.
  Qed.
  Lemma mul_split_r n x1 x2 y1 y2 :
    x1 < n → y1 < n → x1 + x2 * n = y1 + y2 * n → x1 = y1 ∧ x2 = y2.
  Proof. intros. destruct (mul_split_l n x2 x1 y2 y1); auto with lia. Qed.

  Global Instance divide_dec : RelDecision Nat.divide.
  Proof.
    refine (λ x y, cast_if (decide (lcm x y = y)));
      abstract (by rewrite Nat.divide_lcm_iff).
  Defined.
  Global Instance divide_po : PartialOrder divide.
  Proof.
    repeat split; try apply _. intros ??. apply Nat.divide_antisym; lia.
  Qed.
  Global Hint Extern 0 (_ | _) => reflexivity : core.

  Lemma divide_ne_0 x y : (x | y) → y ≠ 0 → x ≠ 0.
  Proof. intros Hxy Hy ->. by apply Hy, Nat.divide_0_l. Qed.

  Lemma iter_succ {A} n (f: A → A) x : Nat.iter (S n) f x = f (Nat.iter n f x).
  Proof. done. Qed.
  Lemma iter_succ_r {A} n (f: A → A) x : Nat.iter (S n) f x = Nat.iter n f (f x).
  Proof. induction n; by f_equal/=. Qed.
  Lemma iter_add {A} n1 n2 (f : A → A) x :
    Nat.iter (n1 + n2) f x = Nat.iter n1 f (Nat.iter n2 f x).
  Proof. induction n1; by f_equal/=. Qed.
  Lemma iter_mul {A} n1 n2 (f : A → A) x :
    Nat.iter (n1 * n2) f x = Nat.iter n1 (Nat.iter n2 f) x.
  Proof.
    intros. induction n1 as [|n1 IHn1]; [done|].
    simpl. by rewrite iter_add, IHn1.
  Qed.

  Lemma iter_ind {A} (P : A → Prop) f x k :
    P x → (∀ y, P y → P (f y)) → P (Nat.iter k f x).
  Proof. induction k; simpl; auto. Qed.

  (** FIXME: Coq 8.17 deprecated some lemmas in https://github.com/coq/coq/pull/16203.
  We cannot use the intended replacements since we support Coq 8.16. We also do
  not want to disable [deprecated-syntactic-definition] everywhere, so instead
  we provide non-deprecated duplicates of those deprecated lemmas that we need
  in std++ and Iris. *)
  Local Set Warnings "-deprecated-syntactic-definition".
  Lemma add_mod_idemp_l a b n : n ≠ 0 → (a mod n + b) mod n = (a + b) mod n.
  Proof. auto using add_mod_idemp_l. Qed.
  Lemma div_lt_upper_bound a b q : b ≠ 0 → a < b * q → a / b < q.
  Proof. auto using div_lt_upper_bound. Qed.
End Nat.

(** * Notations and properties of [positive] *)
Local Open Scope positive_scope.

Global Typeclasses Opaque Pos.le.
Global Typeclasses Opaque Pos.lt.

Infix "≤" := Pos.le : positive_scope.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : positive_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : positive_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z) : positive_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z') : positive_scope.
Notation "(≤)" := Pos.le (only parsing) : positive_scope.
Notation "(<)" := Pos.lt (only parsing) : positive_scope.
Notation "(~0)" := xO (only parsing) : positive_scope.
Notation "(~1)" := xI (only parsing) : positive_scope.
Infix "`max`" := Pos.max : positive_scope.
Infix "`min`" := Pos.min : positive_scope.

Global Arguments Pos.pred : simpl never.
Global Arguments Pos.succ : simpl never.
Global Arguments Pos.of_nat : simpl never.
Global Arguments Pos.to_nat : simpl never.
Global Arguments Pos.mul : simpl never.
Global Arguments Pos.add : simpl never.
Global Arguments Pos.sub : simpl never.
Global Arguments Pos.pow : simpl never.
Global Arguments Pos.shiftl : simpl never.
Global Arguments Pos.shiftr : simpl never.
Global Arguments Pos.gcd : simpl never.
Global Arguments Pos.min : simpl never.
Global Arguments Pos.max : simpl never.
Global Arguments Pos.lor : simpl never.
Global Arguments Pos.land : simpl never.
Global Arguments Pos.lxor : simpl never.
Global Arguments Pos.square : simpl never.

Module Pos.
  Export BinPos.Pos.

  Global Instance add_assoc' : Assoc (=) Pos.add := Pos.add_assoc.
  Global Instance add_comm' : Comm (=) Pos.add := Pos.add_comm.

  Global Instance mul_assoc' : Assoc (=) Pos.mul := Pos.mul_assoc.
  Global Instance mul_comm' : Comm (=) Pos.mul := Pos.mul_comm.
  Global Instance mul_left_id : LeftId (=) 1 Pos.mul := Pos.mul_1_l.
  Global Instance mul_right_id : RightId (=) 1 Pos.mul := Pos.mul_1_r.

  Global Instance eq_dec: EqDecision positive := Pos.eq_dec.
  Global Instance le_dec: RelDecision Pos.le.
  Proof. refine (λ x y, decide ((x ?= y) ≠ Gt)). Defined.
  Global Instance lt_dec: RelDecision Pos.lt.
  Proof. refine (λ x y, decide ((x ?= y) = Lt)). Defined.
  Global Instance le_total: Total Pos.le.
  Proof. repeat intro; lia. Qed.

  Global Instance inhabited: Inhabited positive := populate 1.

  Global Instance maybe_xO : Maybe xO := λ p, match p with p~0 => Some p | _ => None end.
  Global Instance maybe_xI : Maybe xI := λ p, match p with p~1 => Some p | _ => None end.
  Global Instance xO_inj : Inj (=) (=) (~0).
  Proof. by injection 1. Qed.
  Global Instance xI_inj : Inj (=) (=) (~1).
  Proof. by injection 1. Qed.

  (** Since [positive] represents lists of bits, we define list operations
  on it. These operations are in reverse, as positives are treated as snoc
  lists instead of cons lists. *)
  Fixpoint app (p1 p2 : positive) : positive :=
    match p2 with
    | 1 => p1
    | p2~0 => (app p1 p2)~0
    | p2~1 => (app p1 p2)~1
    end.

  Module Import app_notations.
    Infix "++" := app : positive_scope.
    Notation "(++)" := app (only parsing) : positive_scope.
    Notation "( p ++.)" := (app p) (only parsing) : positive_scope.
    Notation "(.++ q )" := (λ p, app p q) (only parsing) : positive_scope.
  End app_notations.

  Fixpoint reverse_go (p1 p2 : positive) : positive :=
    match p2 with
    | 1 => p1
    | p2~0 => reverse_go (p1~0) p2
    | p2~1 => reverse_go (p1~1) p2
    end.
  Definition reverse : positive → positive := reverse_go 1.

  Global Instance app_1_l : LeftId (=) 1 (++).
  Proof. intros p. by induction p; intros; f_equal/=. Qed.
  Global Instance app_1_r : RightId (=) 1 (++).
  Proof. done. Qed.
  Global Instance app_assoc : Assoc (=) (++).
  Proof. intros ?? p. by induction p; intros; f_equal/=. Qed.
  Global Instance app_inj p : Inj (=) (=) (.++ p).
  Proof. intros ???. induction p; simplify_eq; auto. Qed.

  Lemma reverse_go_app p1 p2 p3 :
    reverse_go p1 (p2 ++ p3) = reverse_go p1 p3 ++ reverse_go 1 p2.
  Proof.
    revert p3 p1 p2.
    cut (∀ p1 p2 p3, reverse_go (p2 ++ p3) p1 = p2 ++ reverse_go p3 p1).
    { by intros go p3; induction p3; intros p1 p2; simpl; auto; rewrite <-?go. }
    intros p1; induction p1 as [p1 IH|p1 IH|]; intros p2 p3; simpl; auto.
    - apply (IH _ (_~1)).
    - apply (IH _ (_~0)).
  Qed.
  Lemma reverse_app p1 p2 : reverse (p1 ++ p2) = reverse p2 ++ reverse p1.
  Proof. unfold reverse. by rewrite reverse_go_app. Qed.
  Lemma reverse_xO p : reverse (p~0) = (1~0) ++ reverse p.
  Proof. apply (reverse_app p (1~0)). Qed.
  Lemma reverse_xI p : reverse (p~1) = (1~1) ++ reverse p.
  Proof. apply (reverse_app p (1~1)). Qed.

  Lemma reverse_involutive p : reverse (reverse p) = p.
  Proof.
    induction p as [p IH|p IH|]; simpl.
    - by rewrite reverse_xI, reverse_app, IH.
    - by rewrite reverse_xO, reverse_app, IH.
    - reflexivity.
  Qed.

  Global Instance reverse_inj : Inj (=) (=) reverse.
  Proof.
    intros p q eq.
    rewrite <-(reverse_involutive p).
    rewrite <-(reverse_involutive q).
    by rewrite eq.
  Qed.

  Fixpoint length (p : positive) : nat :=
    match p with 1 => 0%nat | p~0 | p~1 => S (length p) end.
  Lemma length_app p1 p2 : length (p1 ++ p2) = (length p2 + length p1)%nat.
  Proof. by induction p2; f_equal/=. Qed.

  Lemma lt_sum (x y : positive) : x < y ↔ ∃ z, y = x + z.
  Proof.
    split.
    - exists (y - x)%positive. symmetry. apply Pplus_minus. lia.
    - intros [z ->]. lia.
  Qed.

  (** Duplicate the bits of a positive, i.e. 1~0~1 -> 1~0~0~1~1 and
      1~1~0~0 -> 1~1~1~0~0~0~0 *)
  Fixpoint dup (p : positive) : positive :=
    match p with
    | 1 => 1
    | p'~0 => (dup p')~0~0
    | p'~1 => (dup p')~1~1
    end.

  Lemma dup_app p q :
    dup (p ++ q) = dup p ++ dup q.
  Proof.
    revert p.
    induction q as [p IH|p IH|]; intros q; simpl.
    - by rewrite IH.
    - by rewrite IH.
    - reflexivity.
  Qed.

  Lemma dup_suffix_eq p q s1 s2 :
    s1~1~0 ++ dup p = s2~1~0 ++ dup q → p = q.
  Proof.
    revert q.
    induction p as [p IH|p IH|]; intros [q|q|] eq; simplify_eq/=.
    - by rewrite (IH q).
    - by rewrite (IH q).
    - reflexivity.
  Qed.

  Global Instance dup_inj : Inj (=) (=) dup.
  Proof.
    intros p q eq.
    apply (dup_suffix_eq _ _ 1 1).
    by rewrite eq.
  Qed.

  Lemma reverse_dup p :
    reverse (dup p) = dup (reverse p).
  Proof.
    induction p as [p IH|p IH|]; simpl.
    - rewrite 3!reverse_xI.
      rewrite (assoc_L (++)).
      rewrite IH.
      rewrite dup_app.
      reflexivity.
    - rewrite 3!reverse_xO.
      rewrite (assoc_L (++)).
      rewrite IH.
      rewrite dup_app.
      reflexivity.
    - reflexivity.
  Qed.
End Pos.

Export Pos.app_notations.

Local Close Scope positive_scope.

(** * Notations and properties of [N] *)
Local Open Scope N_scope.

Global Typeclasses Opaque N.le.
Global Typeclasses Opaque N.lt.

Infix "≤" := N.le : N_scope.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z)%N : N_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z)%N : N_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z)%N : N_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z')%N : N_scope.
Notation "(≤)" := N.le (only parsing) : N_scope.
Notation "(<)" := N.lt (only parsing) : N_scope.

Infix "`div`" := N.div (at level 35) : N_scope.
Infix "`mod`" := N.modulo (at level 35) : N_scope.
Infix "`max`" := N.max (at level 35) : N_scope.
Infix "`min`" := N.min (at level 35) : N_scope.

Global Arguments N.pred : simpl never.
Global Arguments N.succ : simpl never.
Global Arguments N.of_nat : simpl never.
Global Arguments N.to_nat : simpl never.
Global Arguments N.mul : simpl never.
Global Arguments N.add : simpl never.
Global Arguments N.sub : simpl never.
Global Arguments N.pow : simpl never.
Global Arguments N.div : simpl never.
Global Arguments N.modulo : simpl never.
Global Arguments N.shiftl : simpl never.
Global Arguments N.shiftr : simpl never.
Global Arguments N.gcd : simpl never.
Global Arguments N.lcm : simpl never.
Global Arguments N.min : simpl never.
Global Arguments N.max : simpl never.
Global Arguments N.lor : simpl never.
Global Arguments N.land : simpl never.
Global Arguments N.lxor : simpl never.
Global Arguments N.lnot : simpl never.
Global Arguments N.square : simpl never.

Global Hint Extern 0 (_ ≤ _)%N => reflexivity : core.

Module N.
  Export BinNat.N.

  Global Instance add_assoc' : Assoc (=) N.add := N.add_assoc.
  Global Instance add_comm' : Comm (=) N.add := N.add_comm.
  Global Instance add_left_id : LeftId (=) 0 N.add := N.add_0_l.
  Global Instance add_right_id : RightId (=) 0 N.add := N.add_0_r.

  Global Instance sub_right_id : RightId (=) 0 N.sub := N.sub_0_r.

  Global Instance mul_assoc' : Assoc (=) N.mul := N.mul_assoc.
  Global Instance mul_comm' : Comm (=) N.mul := N.mul_comm.
  Global Instance mul_left_id : LeftId (=) 1 N.mul := N.mul_1_l.
  Global Instance mul_right_id : RightId (=) 1 N.mul := N.mul_1_r.
  Global Instance mul_left_absorb : LeftAbsorb (=) 0 N.mul := N.mul_0_l.
  Global Instance mul_right_absorb : RightAbsorb (=) 0 N.mul := N.mul_0_r.

  Global Instance div_right_id : RightId (=) 1 N.div := N.div_1_r.

  Global Instance pos_inj : Inj (=) (=) N.pos.
  Proof. by injection 1. Qed.

  Global Instance eq_dec : EqDecision N := N.eq_dec.
  Global Program Instance le_dec : RelDecision N.le := λ x y,
    match N.compare x y with Gt => right _ | _ => left _ end.
  Solve Obligations with naive_solver.
  Global Program Instance lt_dec : RelDecision N.lt := λ x y,
    match N.compare x y with Lt => left _ | _ => right _ end.
  Solve Obligations with naive_solver.
  Global Instance inhabited : Inhabited N := populate 1%N.
  Global Instance lt_pi x y : ProofIrrel (x < y)%N.
  Proof. unfold N.lt. apply _. Qed.

  Global Instance le_po : PartialOrder (≤)%N.
  Proof.
    repeat split; red; [apply N.le_refl | apply N.le_trans | apply N.le_antisymm].
  Qed.
  Global Instance le_total : Total (≤)%N.
  Proof. repeat intro; lia. Qed.

  Lemma lt_wf_0_projected {B} (f : B → N) : well_founded (λ x y, f x < f y).
  Proof. by apply (wf_projected (<) f), lt_wf_0. Qed.

  (** FIXME: Coq 8.17 deprecated some lemmas in https://github.com/coq/coq/pull/16203.
  We cannot use the intended replacements since we support Coq 8.16. We also do
  not want to disable [deprecated-syntactic-definition] everywhere, so instead
  we provide non-deprecated duplicates of those deprecated lemmas that we need
  in std++ and Iris. *)
  Local Set Warnings "-deprecated-syntactic-definition".
  Lemma add_mod_idemp_l a b n : n ≠ 0 → (a mod n + b) mod n = (a + b) mod n.
  Proof. auto using add_mod_idemp_l. Qed.
  Lemma div_lt_upper_bound a b q : b ≠ 0 → a < b * q → a / b < q.
  Proof. auto using div_lt_upper_bound. Qed.
End N.

Local Close Scope N_scope.

(** * Notations and properties of [Z] *)
Local Open Scope Z_scope.

Global Typeclasses Opaque Z.le.
Global Typeclasses Opaque Z.lt.

Infix "≤" := Z.le : Z_scope.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : Z_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : Z_scope.
Notation "x < y < z" := (x < y ∧ y < z) : Z_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z) : Z_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z') : Z_scope.
Notation "(≤)" := Z.le (only parsing) : Z_scope.
Notation "(<)" := Z.lt (only parsing) : Z_scope.

Infix "`div`" := Z.div (at level 35) : Z_scope.
Infix "`mod`" := Z.modulo (at level 35) : Z_scope.
Infix "`quot`" := Z.quot (at level 35) : Z_scope.
Infix "`rem`" := Z.rem (at level 35) : Z_scope.
Infix "≪" := Z.shiftl (at level 35) : Z_scope.
Infix "≫" := Z.shiftr (at level 35) : Z_scope.
Infix "`max`" := Z.max (at level 35) : Z_scope.
Infix "`min`" := Z.min (at level 35) : Z_scope.

Global Arguments Z.pred : simpl never.
Global Arguments Z.succ : simpl never.
Global Arguments Z.of_nat : simpl never.
Global Arguments Z.to_nat : simpl never.
Global Arguments Z.mul : simpl never.
Global Arguments Z.add : simpl never.
Global Arguments Z.sub : simpl never.
Global Arguments Z.opp : simpl never.
Global Arguments Z.pow : simpl never.
Global Arguments Z.div : simpl never.
Global Arguments Z.modulo : simpl never.
Global Arguments Z.quot : simpl never.
Global Arguments Z.rem : simpl never.
Global Arguments Z.shiftl : simpl never.
Global Arguments Z.shiftr : simpl never.
Global Arguments Z.gcd : simpl never.
Global Arguments Z.lcm : simpl never.
Global Arguments Z.min : simpl never.
Global Arguments Z.max : simpl never.
Global Arguments Z.lor : simpl never.
Global Arguments Z.land : simpl never.
Global Arguments Z.lxor : simpl never.
Global Arguments Z.lnot : simpl never.
Global Arguments Z.square : simpl never.
Global Arguments Z.abs : simpl never.

Module Z.
  Export BinInt.Z.

  Global Instance add_assoc' : Assoc (=) Z.add := Z.add_assoc.
  Global Instance add_comm' : Comm (=) Z.add := Z.add_comm.
  Global Instance add_left_id : LeftId (=) 0 Z.add := Z.add_0_l.
  Global Instance add_right_id : RightId (=) 0 Z.add := Z.add_0_r.

  Global Instance sub_right_id : RightId (=) 0 Z.sub := Z.sub_0_r.

  Global Instance mul_assoc' : Assoc (=) Z.mul := Z.mul_assoc.
  Global Instance mul_comm' : Comm (=) Z.mul := Z.mul_comm.
  Global Instance mul_left_id : LeftId (=) 1 Z.mul := Z.mul_1_l.
  Global Instance mul_right_id : RightId (=) 1 Z.mul := Z.mul_1_r.
  Global Instance mul_left_absorb : LeftAbsorb (=) 0 Z.mul := Z.mul_0_l.
  Global Instance mul_right_absorb : RightAbsorb (=) 0 Z.mul := Z.mul_0_r.

  Global Instance div_right_id : RightId (=) 1 Z.div := Z.div_1_r.

  Global Instance pos_inj : Inj (=) (=) Z.pos.
  Proof. by injection 1. Qed.
  Global Instance neg_inj : Inj (=) (=) Z.neg.
  Proof. by injection 1. Qed.

  Global Instance eq_dec: EqDecision Z := Z.eq_dec.
  Global Instance le_dec: RelDecision Z.le := Z_le_dec.
  Global Instance lt_dec: RelDecision Z.lt := Z_lt_dec.
  Global Instance ge_dec: RelDecision Z.ge := Z_ge_dec.
  Global Instance gt_dec: RelDecision Z.gt := Z_gt_dec.
  Global Instance inhabited: Inhabited Z := populate 1.
  Global Instance lt_pi x y : ProofIrrel (x < y).
  Proof. unfold Z.lt. apply _. Qed.

  Global Instance le_po : PartialOrder (≤).
  Proof.
    repeat split; red; [apply Z.le_refl | apply Z.le_trans | apply Z.le_antisymm].
  Qed.
  Global Instance le_total: Total Z.le.
  Proof. repeat intro; lia. Qed.

  Lemma lt_wf_projected {B} (f : B → Z) z : well_founded (λ x y, z ≤ f x < f y).
  Proof. by apply (wf_projected (λ x y, z ≤ x < y) f), lt_wf. Qed.

  Lemma pow_pred_r n m : 0 < m → n * n ^ (Z.pred m) = n ^ m.
  Proof.
    intros. rewrite <-Z.pow_succ_r, Z.succ_pred; [done|]. by apply Z.lt_le_pred.
  Qed.
  Lemma quot_range_nonneg k x y : 0 ≤ x < k → 0 < y → 0 ≤ x `quot` y < k.
  Proof.
    intros [??] ?.
    destruct (decide (y = 1)); subst; [rewrite Z.quot_1_r; auto |].
    destruct (decide (x = 0)); subst; [rewrite Z.quot_0_l; auto with lia |].
    split; [apply Z.quot_pos; lia|].
    trans x; auto. apply Z.quot_lt; lia.
  Qed.

  Lemma mod_pos x y : 0 < y → 0 ≤ x `mod` y.
  Proof. apply Z.mod_pos_bound. Qed.

  Global Hint Resolve Z.lt_le_incl : zpos.
  Global Hint Resolve Z.add_nonneg_pos Z.add_pos_nonneg Z.add_nonneg_nonneg : zpos.
  Global Hint Resolve Z.mul_nonneg_nonneg Z.mul_pos_pos : zpos.
  Global Hint Resolve Z.pow_pos_nonneg Z.pow_nonneg: zpos.
  Global Hint Resolve Z.mod_pos Z.div_pos : zpos.
  Global Hint Extern 1000 => lia : zpos.

  Lemma succ_pred_induction y (P : Z → Prop) :
    P y →
    (∀ x, y ≤ x → P x → P (Z.succ x)) →
    (∀ x, x ≤ y → P x → P (Z.pred x)) →
    (∀ x, P x).
  Proof. intros H0 HS HP. by apply (Z.order_induction' _ _ y). Qed.
  Lemma mod_in_range q a c :
    q * c ≤ a < (q + 1) * c →
    a `mod` c = a - q * c.
  Proof. intros ?. symmetry. apply Z.mod_unique_pos with q; lia. Qed.

  Lemma ones_spec n m:
    0 ≤ m → 0 ≤ n →
    Z.testbit (Z.ones n) m = bool_decide (m < n).
  Proof.
    intros. case_bool_decide.
    - by rewrite Z.ones_spec_low by lia.
    - by rewrite Z.ones_spec_high by lia.
  Qed.

  Lemma bounded_iff_bits_nonneg k n :
    0 ≤ k → 0 ≤ n →
    n < 2^k ↔ ∀ l, k ≤ l → Z.testbit n l = false.
  Proof.
    intros. destruct (decide (n = 0)) as [->|].
    { naive_solver eauto using Z.bits_0, Z.pow_pos_nonneg with lia. }
    split.
    { intros Hb%Z.log2_lt_pow2 l Hl; [|lia]. apply Z.bits_above_log2; lia. }
    intros Hl. apply Z.nle_gt; intros ?.
    assert (Z.testbit n (Z.log2 n) = false) as Hbit.
    { apply Hl, Z.log2_le_pow2; lia. }
    by rewrite Z.bit_log2 in Hbit by lia.
  Qed.

  (* Goals of the form [0 ≤ n ≤ 2^k] appear often. So we also define the
  derived version [Z_bounded_iff_bits_nonneg'] that does not require
  proving [0 ≤ n] twice in that case. *)
  Lemma bounded_iff_bits_nonneg' k n :
    0 ≤ k → 0 ≤ n →
    0 ≤ n < 2^k ↔ ∀ l, k ≤ l → Z.testbit n l = false.
  Proof. intros ??. rewrite <-bounded_iff_bits_nonneg; lia. Qed.

  Lemma bounded_iff_bits k n :
    0 ≤ k →
    -2^k ≤ n < 2^k ↔ ∀ l, k ≤ l → Z.testbit n l = bool_decide (n < 0).
  Proof.
    intros Hk.
    case_bool_decide; [ | rewrite <-bounded_iff_bits_nonneg; lia].
    assert(n = - Z.abs n)%Z as -> by lia.
    split.
    { intros [? _] l Hl.
      rewrite Z.bits_opp, negb_true_iff by lia.
      apply bounded_iff_bits_nonneg with k; lia. }
    intros Hbit. split.
    - rewrite <-Z.opp_le_mono, <-Z.lt_pred_le.
      apply bounded_iff_bits_nonneg; [lia..|]. intros l Hl.
      rewrite <-negb_true_iff, <-Z.bits_opp by lia.
      by apply Hbit.
    - etrans; [|apply Z.pow_pos_nonneg]; lia.
  Qed.

  Lemma add_nocarry_lor a b :
    Z.land a b = 0 →
    a + b = Z.lor a b.
  Proof. intros ?. rewrite <-Z.lxor_lor by done. by rewrite Z.add_nocarry_lxor. Qed.

  Lemma opp_lnot a : -a - 1 = Z.lnot a.
  Proof. pose proof (Z.add_lnot_diag a). lia. Qed.
End Z.

Module Nat2Z.
  Export Znat.Nat2Z.

  Global Instance inj' : Inj (=) (=) Z.of_nat.
  Proof. intros n1 n2. apply Nat2Z.inj. Qed.

  Lemma divide n m : (Z.of_nat n | Z.of_nat m) ↔ (n | m)%nat.
  Proof.
    split.
    - rewrite <-(Nat2Z.id m) at 2; intros [i ->]; exists (Z.to_nat i). lia.
    - intros [i ->]. exists (Z.of_nat i). by rewrite Nat2Z.inj_mul.
  Qed.
  Lemma inj_div x y : Z.of_nat (x `div` y) = (Z.of_nat x) `div` (Z.of_nat y).
  Proof.
    destruct (decide (y = 0%nat)); [by subst; destruct x |].
    apply Z.div_unique with (Z.of_nat $ x `mod` y)%nat.
    { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
      apply Nat.mod_bound_pos; lia. }
    by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
  Qed.
  Lemma inj_mod x y : Z.of_nat (x `mod` y) = (Z.of_nat x) `mod` (Z.of_nat y).
  Proof.
    destruct (decide (y = 0%nat)); [by subst; destruct x |].
    apply Z.mod_unique with (Z.of_nat $ x `div` y)%nat.
    { left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
      apply Nat.mod_bound_pos; lia. }
    by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
  Qed.
End Nat2Z.

Module Z2Nat.
  Export Znat.Z2Nat.

  Lemma neq_0_pos x : Z.to_nat x ≠ 0%nat → 0 < x.
  Proof. by destruct x. Qed.
  Lemma neq_0_nonneg x : Z.to_nat x ≠ 0%nat → 0 ≤ x.
  Proof. by destruct x. Qed.
  Lemma nonpos x : x ≤ 0 → Z.to_nat x = 0%nat.
  Proof. destruct x; simpl; auto using Z2Nat.inj_neg. by intros []. Qed.

  Lemma inj_pow (x y : nat) : Z.of_nat (x ^ y) = (Z.of_nat x) ^ (Z.of_nat y).
  Proof.
    induction y as [|y IH]; [by rewrite Z.pow_0_r, Nat.pow_0_r|].
    by rewrite Nat.pow_succ_r, Nat2Z.inj_succ, Z.pow_succ_r,
      Nat2Z.inj_mul, IH by auto with zpos.
  Qed.

  Lemma divide n m :
    0 ≤ n → 0 ≤ m → (Z.to_nat n | Z.to_nat m)%nat ↔ (n | m).
  Proof. intros. by rewrite <-Nat2Z.divide, !Z2Nat.id by done. Qed.

  Lemma inj_div x y :
    0 ≤ x → 0 ≤ y →
    Z.to_nat (x `div` y) = (Z.to_nat x `div` Z.to_nat y)%nat.
  Proof.
    intros. destruct (decide (y = Z.of_nat 0%nat)); [by subst; destruct x|].
    pose proof (Z.div_pos x y).
    apply (base.inj Z.of_nat). by rewrite Nat2Z.inj_div, !Z2Nat.id by lia.
  Qed.
  Lemma inj_mod x y :
    0 ≤ x → 0 ≤ y →
    Z.to_nat (x `mod` y) = (Z.to_nat x `mod` Z.to_nat y)%nat.
  Proof.
    intros. destruct (decide (y = Z.of_nat 0%nat)); [by subst; destruct x|].
    pose proof (Z.mod_pos x y).
    apply (base.inj Z.of_nat). by rewrite Nat2Z.inj_mod, !Z2Nat.id by lia.
  Qed.
End Z2Nat.

(** ** [bool_to_Z] *)
Definition bool_to_Z (b : bool) : Z :=
  if b then 1 else 0.

Lemma bool_to_Z_bound b : 0 ≤ bool_to_Z b < 2.
Proof. destruct b; simpl; lia. Qed.
Lemma bool_to_Z_eq_0 b : bool_to_Z b = 0 ↔ b = false.
Proof. destruct b; naive_solver. Qed.
Lemma bool_to_Z_neq_0 b : bool_to_Z b ≠ 0 ↔ b = true.
Proof. destruct b; naive_solver. Qed.
Lemma bool_to_Z_spec b n : Z.testbit (bool_to_Z b) n = bool_decide (n = 0) && b.
Proof. by destruct b, n. Qed.

Local Close Scope Z_scope.


(** * Injectivity of casts *)
Module Nat2N.
  Export Nnat.Nat2N.
  Global Instance inj' : Inj (=) (=) N.of_nat := Nat2N.inj.
End Nat2N.

Module N2Nat.
  Export Nnat.N2Nat.
  Global Instance inj' : Inj (=) (=) N.to_nat := N2Nat.inj.
End N2Nat.

Module Pos2Nat.
  Export Pnat.Pos2Nat.
  Global Instance inj' : Inj (=) (=) Pos.to_nat := Pos2Nat.inj.
End Pos2Nat.

Module SuccNat2Pos.
  Export Pnat.SuccNat2Pos.
  Global Instance inj' : Inj (=) (=) Pos.of_succ_nat := SuccNat2Pos.inj.
End SuccNat2Pos.

Module N2Z.
  Export Znat.N2Z.
  Global Instance inj' : Inj (=) (=) Z.of_N := N2Z.inj.
End N2Z.

(* Add others here. *)

(** * Notations and properties of [Qc] *)
Global Typeclasses Opaque Qcle.
Global Typeclasses Opaque Qclt.

Local Open Scope Qc_scope.
Delimit Scope Qc_scope with Qc.
Notation "1" := (Q2Qc 1) : Qc_scope.
Notation "2" := (1+1) : Qc_scope.
Notation "- 1" := (Qcopp 1) : Qc_scope.
Notation "- 2" := (Qcopp 2) : Qc_scope.
Infix "≤" := Qcle : Qc_scope.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : Qc_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : Qc_scope.
Notation "x < y < z" := (x < y ∧ y < z) : Qc_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z) : Qc_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z') : Qc_scope.
Notation "(≤)" := Qcle (only parsing) : Qc_scope.
Notation "(<)" := Qclt (only parsing) : Qc_scope.

Global Hint Extern 1 (_ ≤ _) => reflexivity || discriminate : core.
Global Arguments Qred : simpl never.

Global Instance Qcplus_assoc' : Assoc (=) Qcplus := Qcplus_assoc.
Global Instance Qcplus_comm' : Comm (=) Qcplus := Qcplus_comm.
Global Instance Qcplus_left_id : LeftId (=) 0 Qcplus := Qcplus_0_l.
Global Instance Qcplus_right_id : RightId (=) 0 Qcplus := Qcplus_0_r.

Global Instance Qcminus_right_id : RightId (=) 0 Qcminus.
Proof. unfold RightId. intros. ring. Qed.

Global Instance Qcmult_assoc' : Assoc (=) Qcmult := Qcmult_assoc.
Global Instance Qcmult_comm' : Comm (=) Qcmult := Qcmult_comm.
Global Instance Qcmult_left_id : LeftId (=) 1 Qcmult := Qcmult_1_l.
Global Instance Qcmult_right_id : RightId (=) 1 Qcmult := Qcmult_1_r.
Global Instance Qcmult_left_absorb : LeftAbsorb (=) 0 Qcmult := Qcmult_0_l.
Global Instance Qcmult_right_absorb : RightAbsorb (=) 0 Qcmult := Qcmult_0_r.

Global Instance Qcdiv_right_id : RightId (=) 1 Qcdiv.
Proof. intros x. rewrite <-(Qcmult_1_l (x / 1)), Qcmult_div_r; done. Qed.

Lemma inject_Z_Qred n : Qred (inject_Z n) = inject_Z n.
Proof. apply Qred_identity; auto using Z.gcd_1_r. Qed.
Definition Qc_of_Z (n : Z) : Qc := Qcmake _ (inject_Z_Qred n).

Global Instance Qc_eq_dec: EqDecision Qc := Qc_eq_dec.
Global Program Instance Qc_le_dec: RelDecision Qcle := λ x y,
  if Qclt_le_dec y x then right _ else left _.
Next Obligation. intros x y; apply Qclt_not_le. Qed.
Next Obligation. done. Qed.
Global Program Instance Qc_lt_dec: RelDecision Qclt := λ x y,
  if Qclt_le_dec x y then left _ else right _.
Next Obligation. done. Qed.
Next Obligation. intros x y; apply Qcle_not_lt. Qed.
Global Instance Qc_lt_pi x y : ProofIrrel (x < y).
Proof. unfold Qclt. apply _. Qed.

Global Instance Qc_le_po: PartialOrder (≤).
Proof.
  repeat split; red; [apply Qcle_refl | apply Qcle_trans | apply Qcle_antisym].
Qed.
Global Instance Qc_lt_strict: StrictOrder (<).
Proof.
  split; red; [|apply Qclt_trans].
  intros x Hx. by destruct (Qclt_not_eq x x).
Qed.
Global Instance Qc_le_total: Total Qcle.
Proof. intros x y. destruct (Qclt_le_dec x y); auto using Qclt_le_weak. Qed.

Lemma Qcplus_diag x : (x + x)%Qc = (2 * x)%Qc.
Proof. ring. Qed.
Lemma Qcle_ngt (x y : Qc) : x ≤ y ↔ ¬y < x.
Proof. split; auto using Qcle_not_lt, Qcnot_lt_le. Qed.
Lemma Qclt_nge (x y : Qc) : x < y ↔ ¬y ≤ x.
Proof. split; auto using Qclt_not_le, Qcnot_le_lt. Qed.
Lemma Qcplus_le_mono_l (x y z : Qc) : x ≤ y ↔ z + x ≤ z + y.
Proof.
  split; intros.
  - by apply Qcplus_le_compat.
  - replace x with ((0 - z) + (z + x)) by ring.
    replace y with ((0 - z) + (z + y)) by ring.
    by apply Qcplus_le_compat.
Qed.
Lemma Qcplus_le_mono_r (x y z : Qc) : x ≤ y ↔ x + z ≤ y + z.
Proof. rewrite !(Qcplus_comm _ z). apply Qcplus_le_mono_l. Qed.
Lemma Qcplus_lt_mono_l (x y z : Qc) : x < y ↔ z + x < z + y.
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_l. Qed.
Lemma Qcplus_lt_mono_r (x y z : Qc) : x < y ↔ x + z < y + z.
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_r. Qed.
Global Instance Qcopp_inj : Inj (=) (=) Qcopp.
Proof.
  intros x y H. by rewrite <-(Qcopp_involutive x), H, Qcopp_involutive.
Qed.
Global Instance Qcplus_inj_r z : Inj (=) (=) (Qcplus z).
Proof.
  intros x y H. by apply (anti_symm (≤));rewrite (Qcplus_le_mono_l _ _ z), H.
Qed.
Global Instance Qcplus_inj_l z : Inj (=) (=) (λ x, x + z).
Proof.
  intros x y H. by apply (anti_symm (≤)); rewrite (Qcplus_le_mono_r _ _ z), H.
Qed.
Lemma Qcplus_pos_nonneg (x y : Qc) : 0 < x → 0 ≤ y → 0 < x + y.
Proof.
  intros. apply Qclt_le_trans with (x + 0); [by rewrite Qcplus_0_r|].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonneg_pos (x y : Qc) : 0 ≤ x → 0 < y → 0 < x + y.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_pos_nonneg. Qed.
Lemma Qcplus_pos_pos (x y : Qc) : 0 < x → 0 < y → 0 < x + y.
Proof. auto using Qcplus_pos_nonneg, Qclt_le_weak. Qed.
Lemma Qcplus_nonneg_nonneg (x y : Qc) : 0 ≤ x → 0 ≤ y → 0 ≤ x + y.
Proof.
  intros. trans (x + 0); [by rewrite Qcplus_0_r|].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_neg_nonpos (x y : Qc) : x < 0 → y ≤ 0 → x + y < 0.
Proof.
  intros. apply Qcle_lt_trans with (x + 0); [|by rewrite Qcplus_0_r].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonpos_neg (x y : Qc) : x ≤ 0 → y < 0 → x + y < 0.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_neg_nonpos. Qed.
Lemma Qcplus_neg_neg (x y : Qc) : x < 0 → y < 0 → x + y < 0.
Proof. auto using Qcplus_nonpos_neg, Qclt_le_weak. Qed.
Lemma Qcplus_nonpos_nonpos (x y : Qc) : x ≤ 0 → y ≤ 0 → x + y ≤ 0.
Proof.
  intros. trans (x + 0); [|by rewrite Qcplus_0_r].
  by apply Qcplus_le_mono_l.
Qed.
Lemma Qcmult_le_mono_nonneg_l x y z : 0 ≤ z → x ≤ y → z * x ≤ z * y.
Proof. intros. rewrite !(Qcmult_comm z). by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_nonneg_r x y z : 0 ≤ z → x ≤ y → x * z ≤ y * z.
Proof. intros. by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_pos_l x y z : 0 < z → x ≤ y ↔ z * x ≤ z * y.
Proof.
  split; auto using Qcmult_le_mono_nonneg_l, Qclt_le_weak.
  rewrite !Qcle_ngt, !(Qcmult_comm z).
  intuition auto using Qcmult_lt_compat_r.
Qed.
Lemma Qcmult_le_mono_pos_r x y z : 0 < z → x ≤ y ↔ x * z ≤ y * z.
Proof. rewrite !(Qcmult_comm _ z). by apply Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_l x y z : 0 < z → x < y ↔ z * x < z * y.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_r x y z : 0 < z → x < y ↔ x * z < y * z.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_r. Qed.
Lemma Qcmult_pos_pos x y : 0 < x → 0 < y → 0 < x * y.
Proof.
  intros. apply Qcle_lt_trans with (0 * y); [by rewrite Qcmult_0_l|].
  by apply Qcmult_lt_mono_pos_r.
Qed.
Lemma Qcmult_nonneg_nonneg x y : 0 ≤ x → 0 ≤ y → 0 ≤ x * y.
Proof.
  intros. trans (0 * y); [by rewrite Qcmult_0_l|].
  by apply Qcmult_le_mono_nonneg_r.
Qed.

Lemma Qcinv_pos x : 0 < x → 0 < /x.
Proof.
  intros. assert (0 ≠ x) by (by apply Qclt_not_eq).
  by rewrite (Qcmult_lt_mono_pos_r _ _ x), Qcmult_0_l, Qcmult_inv_l by done.
Qed.

Lemma Z2Qc_inj_0 : Qc_of_Z 0 = 0.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj_1 : Qc_of_Z 1 = 1.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj_2 : Qc_of_Z 2 = 2.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj n m : Qc_of_Z n = Qc_of_Z m → n = m.
Proof. by injection 1. Qed.
Lemma Z2Qc_inj_iff n m : Qc_of_Z n = Qc_of_Z m ↔ n = m.
Proof. split; [ auto using Z2Qc_inj | by intros -> ]. Qed.
Lemma Z2Qc_inj_le n m : (n ≤ m)%Z ↔ Qc_of_Z n ≤ Qc_of_Z m.
Proof. by rewrite Zle_Qle. Qed.
Lemma Z2Qc_inj_lt n m : (n < m)%Z ↔ Qc_of_Z n < Qc_of_Z m.
Proof. by rewrite Zlt_Qlt. Qed.
Lemma Z2Qc_inj_add n m : Qc_of_Z (n + m) = Qc_of_Z n + Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_plus. Qed.
Lemma Z2Qc_inj_mul n m : Qc_of_Z (n * m) = Qc_of_Z n * Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_mult. Qed.
Lemma Z2Qc_inj_opp n : Qc_of_Z (-n) = -Qc_of_Z n.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_opp. Qed.
Lemma Z2Qc_inj_sub n m : Qc_of_Z (n - m) = Qc_of_Z n - Qc_of_Z m.
Proof.
  apply Qc_is_canon; simpl.
  by rewrite !Qred_correct, <-inject_Z_opp, <-inject_Z_plus.
Qed.
Local Close Scope Qc_scope.

(** * Positive rationals *)
Declare Scope Qp_scope.
Delimit Scope Qp_scope with Qp.

Record Qp := mk_Qp { Qp_to_Qc : Qc ; Qp_prf : (0 < Qp_to_Qc)%Qc }.
Add Printing Constructor Qp.
Bind Scope Qp_scope with Qp.
Global Arguments Qp_to_Qc _%Qp : assert.

Program Definition pos_to_Qp (n : positive) : Qp := mk_Qp (Qc_of_Z $ Z.pos n) _.
Next Obligation. intros n. by rewrite <-Z2Qc_inj_0, <-Z2Qc_inj_lt. Qed.
Global Arguments pos_to_Qp : simpl never.

Local Open Scope Qp_scope.

Module Qp.
  Lemma to_Qc_inj_iff p q : Qp_to_Qc p = Qp_to_Qc q ↔ p = q.
  Proof.
    split; [|by intros ->].
    destruct p, q; intros; simplify_eq/=; f_equal; apply (proof_irrel _).
  Qed.
  Global Instance eq_dec : EqDecision Qp.
  Proof.
    refine (λ p q, cast_if (decide (Qp_to_Qc p = Qp_to_Qc q)));
      abstract (by rewrite <-to_Qc_inj_iff).
  Defined.

  Definition add (p q : Qp) : Qp :=
    let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in
    mk_Qp (p + q) (Qcplus_pos_pos _ _ Hp Hq).
  Global Arguments add : simpl never.

  Definition sub (p q : Qp) : option Qp :=
    let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in
    let pq := (p - q)%Qc in
    Hpq ← guard (0 < pq)%Qc; Some (mk_Qp pq Hpq).
  Global Arguments sub : simpl never.

  Definition mul (p q : Qp) : Qp :=
    let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in
    mk_Qp (p * q) (Qcmult_pos_pos _ _ Hp Hq).
  Global Arguments mul : simpl never.

  Definition inv (q : Qp) : Qp :=
    let 'mk_Qp q Hq := q return _ in
    mk_Qp (/ q)%Qc (Qcinv_pos _ Hq).
  Global Arguments inv : simpl never.

  Definition div (p q : Qp) : Qp := mul p (inv q).
  Global Typeclasses Opaque div.
  Global Arguments div : simpl never.

  Definition le (p q : Qp) : Prop :=
    let 'mk_Qp p _ := p in let 'mk_Qp q _ := q in (p ≤ q)%Qc.
  Definition lt (p q : Qp) : Prop :=
    let 'mk_Qp p _ := p in let 'mk_Qp q _ := q in (p < q)%Qc.

  Lemma to_Qc_inj_add p q : Qp_to_Qc (add p q) = (Qp_to_Qc p + Qp_to_Qc q)%Qc.
  Proof. by destruct p, q. Qed.
  Lemma to_Qc_inj_mul p q : Qp_to_Qc (mul p q) = (Qp_to_Qc p * Qp_to_Qc q)%Qc.
  Proof. by destruct p, q. Qed.
  Lemma to_Qc_inj_le p q : le p q ↔ (Qp_to_Qc p ≤ Qp_to_Qc q)%Qc.
  Proof. by destruct p, q. Qed.
  Lemma to_Qc_inj_lt p q : lt p q ↔ (Qp_to_Qc p < Qp_to_Qc q)%Qc.
  Proof. by destruct p, q. Qed.

  Global Instance le_dec : RelDecision le.
  Proof.
    refine (λ p q, cast_if (decide (Qp_to_Qc p ≤ Qp_to_Qc q)%Qc));
      abstract (by rewrite to_Qc_inj_le).
  Defined.
  Global Instance lt_dec : RelDecision lt.
  Proof.
    refine (λ p q, cast_if (decide (Qp_to_Qc p < Qp_to_Qc q)%Qc));
      abstract (by rewrite to_Qc_inj_lt).
  Defined.
  Global Instance lt_pi p q : ProofIrrel (lt p q).
  Proof. destruct p, q; apply _. Qed.

  Definition max (q p : Qp) : Qp := if decide (le q p) then p else q.
  Definition min (q p : Qp) : Qp := if decide (le q p) then q else p.

  Module Import notations.
    Infix "+" := add : Qp_scope.
    Infix "-" := sub : Qp_scope.
    Infix "*" := mul : Qp_scope.
    Notation "/ q" := (inv q) : Qp_scope.
    Infix "/" := div : Qp_scope.

    Notation "1" := (pos_to_Qp 1) : Qp_scope.
    Notation "2" := (pos_to_Qp 2) : Qp_scope.
    Notation "3" := (pos_to_Qp 3) : Qp_scope.
    Notation "4" := (pos_to_Qp 4) : Qp_scope.

    Infix "≤" := le : Qp_scope.
    Infix "<" := lt : Qp_scope.
    Notation "p ≤ q ≤ r" := (p ≤ q ∧ q ≤ r) : Qp_scope.
    Notation "p ≤ q < r" := (p ≤ q ∧ q < r) : Qp_scope.
    Notation "p < q < r" := (p < q ∧ q < r) : Qp_scope.
    Notation "p < q ≤ r" := (p < q ∧ q ≤ r) : Qp_scope.
    Notation "p ≤ q ≤ r ≤ r'" := (p ≤ q ∧ q ≤ r ∧ r ≤ r') : Qp_scope.
    Notation "(≤)" := le (only parsing) : Qp_scope.
    Notation "(<)" := lt (only parsing) : Qp_scope.

    Infix "`max`" := max : Qp_scope.
    Infix "`min`" := min : Qp_scope.
  End notations.

  Global Hint Extern 0 (_ ≤ _)%Qp => reflexivity : core.

  Global Instance inhabited : Inhabited Qp := populate 1.

  Global Instance add_assoc : Assoc (=) add.
  Proof. intros [p ?] [q ?] [r ?]; apply to_Qc_inj_iff, Qcplus_assoc. Qed.
  Global Instance add_comm : Comm (=) add.
  Proof. intros [p ?] [q ?]; apply to_Qc_inj_iff, Qcplus_comm. Qed.
  Global Instance add_inj_r p : Inj (=) (=) (add p).
  Proof.
    destruct p as [p ?].
    intros [q1 ?] [q2 ?]. rewrite <-!to_Qc_inj_iff; simpl. apply (inj (Qcplus p)).
  Qed.
  Global Instance add_inj_l p : Inj (=) (=) (λ q, q + p).
  Proof.
    destruct p as [p ?].
    intros [q1 ?] [q2 ?]. rewrite <-!to_Qc_inj_iff; simpl. apply (inj (λ q, q + p)%Qc).
  Qed.

  Global Instance mul_assoc : Assoc (=) mul.
  Proof. intros [p ?] [q ?] [r ?]. apply Qp.to_Qc_inj_iff, Qcmult_assoc. Qed.
  Global Instance mul_comm : Comm (=) mul.
  Proof. intros [p ?] [q ?]; apply Qp.to_Qc_inj_iff, Qcmult_comm. Qed.
  Global Instance mul_inj_r p : Inj (=) (=) (mul p).
  Proof.
    destruct p as [p ?]. intros [q1 ?] [q2 ?]. rewrite <-!Qp.to_Qc_inj_iff; simpl.
    intros Hpq.
    apply (anti_symm Qcle); apply (Qcmult_le_mono_pos_l _ _ p); by rewrite ?Hpq.
  Qed.
  Global Instance mul_inj_l p : Inj (=) (=) (λ q, q * p).
  Proof.
    intros q1 q2 Hpq. apply (inj (mul p)). by rewrite !(comm_L mul p).
  Qed.

  Lemma mul_add_distr_l p q r : p * (q + r) = p * q + p * r.
  Proof. destruct p, q, r; by apply Qp.to_Qc_inj_iff, Qcmult_plus_distr_r. Qed.
  Lemma mul_add_distr_r p q r : (p + q) * r = p * r + q * r.
  Proof. destruct p, q, r; by apply Qp.to_Qc_inj_iff, Qcmult_plus_distr_l. Qed.
  Lemma mul_1_l p : 1 * p = p.
  Proof. destruct p; apply Qp.to_Qc_inj_iff, Qcmult_1_l. Qed.
  Lemma mul_1_r p : p * 1 = p.
  Proof. destruct p; apply Qp.to_Qc_inj_iff, Qcmult_1_r. Qed.
  Global Instance mul_left_id : LeftId (=) 1 mul := mul_1_l.
  Global Instance mul_right_id : RightId (=) 1 mul := mul_1_r.

  Lemma add_1_1 : 1 + 1 = 2.
  Proof. compute_done. Qed.
  Lemma add_diag p : p + p = 2 * p.
  Proof. by rewrite <-add_1_1, mul_add_distr_r, !mul_1_l. Qed.

  Lemma mul_inv_l p : /p * p = 1.
  Proof.
    destruct p as [p ?]; apply Qp.to_Qc_inj_iff; simpl.
    by rewrite Qcmult_inv_l, Z2Qc_inj_1 by (by apply not_symmetry, Qclt_not_eq).
  Qed.
  Lemma mul_inv_r p : p * /p = 1.
  Proof. by rewrite (comm_L mul), mul_inv_l. Qed.
  Lemma inv_mul_distr p q : /(p * q) = /p * /q.
  Proof.
    apply (inj (mul (p * q))).
    rewrite mul_inv_r, (comm_L mul p), <-(assoc_L _), (assoc_L mul p).
    by rewrite mul_inv_r, mul_1_l, mul_inv_r.
  Qed.
  Lemma inv_involutive p : / /p = p.
  Proof.
    rewrite <-(mul_1_l (/ /p)), <-(mul_inv_r p), <-(assoc_L _).
    by rewrite mul_inv_r, mul_1_r.
  Qed.
  Global Instance inv_inj : Inj (=) (=) inv.
  Proof.
    intros p1 p2 Hp. apply (inj (mul (/p1))).
    by rewrite mul_inv_l, Hp, mul_inv_l.
  Qed.
  Lemma inv_1 : /1 = 1.
  Proof. compute_done. Qed.
  Lemma inv_half_half : /2 + /2 = 1.
  Proof. compute_done. Qed.
  Lemma inv_quarter_quarter : /4 + /4 = /2.
  Proof. compute_done. Qed.

  Lemma div_diag p : p / p = 1.
  Proof. apply mul_inv_r. Qed.
  Lemma mul_div_l p q : (p / q) * q = p.
  Proof. unfold div. by rewrite <-(assoc_L _), mul_inv_l, mul_1_r. Qed.
  Lemma mul_div_r p q : q * (p / q) = p.
  Proof. by rewrite (comm_L mul q), mul_div_l. Qed.
  Lemma div_add_distr p q r : (p + q) / r = p / r + q / r.
  Proof. apply mul_add_distr_r. Qed.
  Lemma div_div p q r : (p / q) / r = p / (q * r).
  Proof. unfold div. by rewrite inv_mul_distr, (assoc_L _). Qed.
  Lemma div_mul_cancel_l p q r : (r * p) / (r * q) = p / q.
  Proof.
    rewrite <-div_div. f_equiv. unfold div.
    by rewrite (comm_L mul r), <-(assoc_L _), mul_inv_r, mul_1_r.
  Qed.
  Lemma div_mul_cancel_r p q r : (p * r) / (q * r) = p / q.
  Proof. by rewrite <-!(comm_L mul r), div_mul_cancel_l. Qed.
  Lemma div_1 p : p / 1 = p.
  Proof. by rewrite <-(mul_1_r (p / 1)), mul_div_l. Qed.
  Lemma div_2 p : p / 2 + p / 2 = p.
  Proof.
    rewrite <-div_add_distr, add_diag.
    rewrite <-(mul_1_r 2) at 2. by rewrite div_mul_cancel_l, div_1.
  Qed.
  Lemma div_2_mul p q : p / (2 * q) + p / (2 * q) = p / q.
  Proof. by rewrite <-div_add_distr, add_diag, div_mul_cancel_l. Qed.
  Global Instance div_right_id : RightId (=) 1 div := div_1.

  Lemma half_half : 1 / 2 + 1 / 2 = 1.
  Proof. compute_done. Qed.
  Lemma quarter_quarter : 1 / 4 + 1 / 4 = 1 / 2.
  Proof. compute_done. Qed.
  Lemma quarter_three_quarter : 1 / 4 + 3 / 4 = 1.
  Proof. compute_done. Qed.
  Lemma three_quarter_quarter : 3 / 4 + 1 / 4 = 1.
  Proof. compute_done. Qed.

  Global Instance div_inj_r p : Inj (=) (=) (div p).
  Proof. unfold div; apply _. Qed.
  Global Instance div_inj_l p : Inj (=) (=) (λ q, q / p)%Qp.
  Proof. unfold div; apply _. Qed.

  Global Instance le_po : PartialOrder (≤).
  Proof.
    split; [split|].
    - intros p. by apply to_Qc_inj_le.
    - intros p q r. rewrite !to_Qc_inj_le. by etrans.
    - intros p q. rewrite !to_Qc_inj_le, <-to_Qc_inj_iff. apply Qcle_antisym.
  Qed.
  Global Instance lt_strict : StrictOrder (<).
  Proof.
    split.
    - intros p ?%to_Qc_inj_lt. by apply (irreflexivity (<)%Qc (Qp_to_Qc p)).
    - intros p q r. rewrite !to_Qc_inj_lt. by etrans.
  Qed.
  Global Instance le_total: Total (≤).
  Proof. intros p q. rewrite !to_Qc_inj_le. apply (total Qcle). Qed.

  Lemma lt_le_incl p q : p < q → p ≤ q.
  Proof. rewrite to_Qc_inj_lt, to_Qc_inj_le. apply Qclt_le_weak. Qed.
  Lemma le_lteq p q : p ≤ q ↔ p < q ∨ p = q.
  Proof.
    rewrite to_Qc_inj_lt, to_Qc_inj_le, <-Qp.to_Qc_inj_iff. split.
    - intros [?| ->]%Qcle_lt_or_eq; auto.
    - intros [?| ->]; auto using Qclt_le_weak.
  Qed.
  Lemma lt_ge_cases p q : {p < q} + {q ≤ p}.
  Proof.
    refine (cast_if (Qclt_le_dec (Qp_to_Qc p) (Qp_to_Qc q)%Qc));
      [by apply to_Qc_inj_lt|by apply to_Qc_inj_le].
  Defined.
  Lemma le_lt_trans p q r : p ≤ q → q < r → p < r.
  Proof. rewrite !to_Qc_inj_lt, to_Qc_inj_le. apply Qcle_lt_trans. Qed.
  Lemma lt_le_trans p q r : p < q → q ≤ r → p < r.
  Proof. rewrite !to_Qc_inj_lt, to_Qc_inj_le. apply Qclt_le_trans. Qed.

  Lemma le_ngt p q : p ≤ q ↔ ¬q < p.
  Proof.
    rewrite !to_Qc_inj_lt, to_Qc_inj_le.
    split; auto using Qcle_not_lt, Qcnot_lt_le.
  Qed.
  Lemma lt_nge p q : p < q ↔ ¬q ≤ p.
  Proof.
    rewrite !to_Qc_inj_lt, to_Qc_inj_le.
    split; auto using Qclt_not_le, Qcnot_le_lt.
  Qed.

  Lemma add_le_mono_l p q r : p ≤ q ↔ r + p ≤ r + q.
  Proof. rewrite !to_Qc_inj_le. destruct p, q, r; apply Qcplus_le_mono_l. Qed.
  Lemma add_le_mono_r p q r : p ≤ q ↔ p + r ≤ q + r.
  Proof. rewrite !(comm_L add _ r). apply add_le_mono_l. Qed.
  Lemma add_le_mono q p n m : q ≤ n → p ≤ m → q + p ≤ n + m.
  Proof. intros. etrans; [by apply add_le_mono_l|by apply add_le_mono_r]. Qed.

  Lemma add_lt_mono_l p q r : p < q ↔ r + p < r + q.
  Proof. by rewrite !lt_nge, <-add_le_mono_l. Qed.
  Lemma add_lt_mono_r p q r : p < q ↔ p + r < q + r.
  Proof. by rewrite !lt_nge, <-add_le_mono_r. Qed.
  Lemma add_lt_mono q p n m : q < n → p < m → q + p < n + m.
  Proof. intros. etrans; [by apply add_lt_mono_l|by apply add_lt_mono_r]. Qed.

  Lemma mul_le_mono_l p q r : p ≤ q ↔ r * p ≤ r * q.
  Proof.
    rewrite !to_Qc_inj_le. destruct p, q, r; by apply Qcmult_le_mono_pos_l.
  Qed.
  Lemma mul_le_mono_r p q r : p ≤ q ↔ p * r ≤ q * r.
  Proof. rewrite !(comm_L mul _ r). apply mul_le_mono_l. Qed.
  Lemma mul_le_mono q p n m : q ≤ n → p ≤ m → q * p ≤ n * m.
  Proof. intros. etrans; [by apply mul_le_mono_l|by apply mul_le_mono_r]. Qed.

  Lemma mul_lt_mono_l p q r : p < q ↔ r * p < r * q.
  Proof.
    rewrite !to_Qc_inj_lt. destruct p, q, r; by apply Qcmult_lt_mono_pos_l.
  Qed.
  Lemma mul_lt_mono_r p q r : p < q ↔ p * r < q * r.
  Proof. rewrite !(comm_L mul _ r). apply mul_lt_mono_l. Qed.
  Lemma mul_lt_mono q p n m : q < n → p < m → q * p < n * m.
  Proof. intros. etrans; [by apply mul_lt_mono_l|by apply mul_lt_mono_r]. Qed.

  Lemma lt_add_l p q : p < p + q.
  Proof.
    destruct p as [p ?], q as [q ?]. apply to_Qc_inj_lt; simpl.
    rewrite <- (Qcplus_0_r p) at 1. by rewrite <-Qcplus_lt_mono_l.
  Qed.
  Lemma lt_add_r p q : q < p + q.
  Proof. rewrite (comm_L add). apply lt_add_l. Qed.

  Lemma not_add_le_l p q : ¬(p + q ≤ p).
  Proof. apply lt_nge, lt_add_l. Qed.
  Lemma not_add_le_r p q : ¬(p + q ≤ q).
  Proof. apply lt_nge, lt_add_r. Qed.

  Lemma add_id_free q p : q + p ≠ q.
  Proof. intro Heq. apply (not_add_le_l q p). by rewrite Heq. Qed.

  Lemma le_add_l p q : p ≤ p + q.
  Proof. apply lt_le_incl, lt_add_l. Qed.
  Lemma le_add_r p q : q ≤ p + q.
  Proof. apply lt_le_incl, lt_add_r. Qed.

  Lemma sub_Some p q r : p - q = Some r ↔ p = q + r.
  Proof.
    destruct p as [p Hp], q as [q Hq], r as [r Hr].
    unfold sub, add; simpl; rewrite <-Qp.to_Qc_inj_iff; simpl. split.
    - intros; simplify_option_eq. unfold Qcminus.
      by rewrite (Qcplus_comm p), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l.
    - intros ->. unfold Qcminus.
      rewrite <-Qcplus_assoc, (Qcplus_comm r), Qcplus_assoc.
      rewrite Qcplus_opp_r, Qcplus_0_l. simplify_option_eq; [|done].
      f_equal. by apply Qp.to_Qc_inj_iff.
  Qed.
  Lemma lt_sum p q : p < q ↔ ∃ r, q = p + r.
  Proof.
    destruct p as [p Hp], q as [q Hq]. rewrite to_Qc_inj_lt; simpl.
    split.
    - intros Hlt%Qclt_minus_iff. exists (mk_Qp (q - p) Hlt).
      apply Qp.to_Qc_inj_iff; simpl. unfold Qcminus.
      by rewrite (Qcplus_comm q), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l.
    - intros [[r ?] ?%Qp.to_Qc_inj_iff]; simplify_eq/=.
      rewrite <-(Qcplus_0_r p) at 1. by apply Qcplus_lt_mono_l.
  Qed.

  Lemma sub_None p q : p - q = None ↔ p ≤ q.
  Proof.
    rewrite le_ngt, lt_sum, eq_None_not_Some.
    by setoid_rewrite <-sub_Some.
  Qed.
  Lemma sub_diag p : p - p = None.
  Proof. by apply sub_None. Qed.
  Lemma add_sub p q : (p + q) - q = Some p.
  Proof. apply sub_Some. by rewrite (comm_L add). Qed.

  Lemma inv_lt_mono p q : p < q ↔ /q < /p.
  Proof.
    revert p q. cut (∀ p q, p < q → / q < / p).
    { intros help p q. split; [apply help|]. intros.
      rewrite <-(inv_involutive p), <-(inv_involutive q). by apply help. }
    intros p q Hpq. apply (mul_lt_mono_l _ _ q). rewrite mul_inv_r.
    apply (mul_lt_mono_r _ _ p). rewrite <-(assoc_L _), mul_inv_l.
    by rewrite mul_1_l, mul_1_r.
  Qed.
  Lemma inv_le_mono p q : p ≤ q ↔ /q ≤ /p.
  Proof. by rewrite !le_ngt, inv_lt_mono. Qed.

  Lemma div_le_mono_l p q r : q ≤ p ↔ r / p ≤ r / q.
  Proof. unfold div. by rewrite <-mul_le_mono_l, inv_le_mono. Qed.
  Lemma div_le_mono_r p q r : p ≤ q ↔ p / r ≤ q / r.
  Proof. apply mul_le_mono_r. Qed.
  Lemma div_lt_mono_l p q r : q < p ↔ r / p < r / q.
  Proof. unfold div. by rewrite <-mul_lt_mono_l, inv_lt_mono. Qed.
  Lemma div_lt_mono_r p q r : p < q ↔ p / r < q / r.
  Proof. apply mul_lt_mono_r. Qed.

  Lemma div_lt p q : 1 < q → p / q < p.
  Proof. by rewrite (div_lt_mono_l _ _ p), div_1. Qed.
  Lemma div_le p q : 1 ≤ q → p / q ≤ p.
  Proof. by rewrite (div_le_mono_l _ _ p), div_1. Qed.

  Lemma lower_bound q1 q2 : ∃ q q1' q2', q1 = q + q1' ∧ q2 = q + q2'.
  Proof.
    revert q1 q2. cut (∀ q1 q2 : Qp, q1 ≤ q2 →
      ∃ q q1' q2', q1 = q + q1' ∧ q2 = q + q2').
    { intros help q1 q2.
      destruct (lt_ge_cases q2 q1) as [Hlt|Hle]; eauto.
      destruct (help q2 q1) as (q&q1'&q2'&?&?); eauto using lt_le_incl. }
    intros q1 q2 Hq. exists (q1 / 2)%Qp, (q1 / 2)%Qp.
    assert (q1 / 2 < q2) as [q2' ->]%lt_sum.
    { eapply lt_le_trans, Hq. by apply div_lt. }
    eexists; split; [|done]. by rewrite div_2.
  Qed.

  Lemma lower_bound_lt q1 q2 : ∃ q : Qp, q < q1 ∧ q < q2.
  Proof.
    destruct (lower_bound q1 q2) as (qmin & q1' & q2' & [-> ->]).
    exists qmin. split; eapply lt_sum; eauto.
  Qed.

  Lemma cross_split a b c d :
    a + b = c + d →
    ∃ ac ad bc bd, ac + ad = a ∧ bc + bd = b ∧ ac + bc = c ∧ ad + bd = d.
  Proof.
    intros H. revert a b c d H. cut (∀ a b c d : Qp,
      a < c → a + b = c + d →
      ∃ ac ad bc bd, ac + ad = a ∧ bc + bd = b ∧ ac + bc = c ∧ ad + bd = d)%Qp.
    { intros help a b c d Habcd.
      destruct (lt_ge_cases a c) as [?|[?| ->]%le_lteq].
      - auto.
      - destruct (help c d a b); [done..|]. naive_solver.
      - apply (inj (add a)) in Habcd as ->.
        destruct (lower_bound a d) as (q&a'&d'&->&->).
        exists a', q, q, d'. repeat split; done || by rewrite (comm_L add). }
    intros a b c d [e ->]%lt_sum. rewrite <-(assoc_L _). intros ->%(inj (add a)).
    destruct (lower_bound a d) as (q&a'&d'&->&->).
    eexists a', q, (q + e)%Qp, d'; split_and?; [by rewrite (comm_L add)|..|done].
    - by rewrite (assoc_L _), (comm_L add e).
    - by rewrite (assoc_L _), (comm_L add a').
  Qed.

  Lemma bounded_split p r : ∃ q1 q2 : Qp, q1 ≤ r ∧ p = q1 + q2.
  Proof.
    destruct (lt_ge_cases r p) as [[q ->]%lt_sum|?].
    { by exists r, q. }
    exists (p / 2)%Qp, (p / 2)%Qp; split.
    + trans p; [|done]. by apply div_le.
    + by rewrite div_2.
  Qed.

  Lemma max_spec q p : (q < p ∧ q `max` p = p) ∨ (p ≤ q ∧ q `max` p = q).
  Proof.
    unfold max.
    destruct (decide (q ≤ p)) as [[?| ->]%le_lteq|?]; [by auto..|].
    right. split; [|done]. by apply lt_le_incl, lt_nge.
  Qed.

  Lemma max_spec_le q p : (q ≤ p ∧ q `max` p = p) ∨ (p ≤ q ∧ q `max` p = q).
  Proof. destruct (max_spec q p) as [[?%lt_le_incl?]|]; [left|right]; done. Qed.

  Global Instance max_assoc : Assoc (=) max.
  Proof.
    intros q p o. unfold max. destruct (decide (q ≤ p)), (decide (p ≤ o));
      try by rewrite ?decide_True by (by etrans).
    rewrite decide_False by done.
    by rewrite decide_False by (apply lt_nge; etrans; by apply lt_nge).
  Qed.
  Global Instance max_comm : Comm (=) max.
  Proof.
    intros q p.
    destruct (max_spec_le q p) as [[?->]|[?->]],
      (max_spec_le p q) as [[?->]|[?->]]; done || by apply (anti_symm (≤)).
  Qed.

  Lemma max_id q : q `max` q = q.
  Proof. by destruct (max_spec q q) as [[_->]|[_->]]. Qed.

  Lemma le_max_l q p : q ≤ q `max` p.
  Proof. unfold max. by destruct (decide (q ≤ p)). Qed.
  Lemma le_max_r q p : p ≤ q `max` p.
  Proof. rewrite (comm_L max q). apply le_max_l. Qed.

  Lemma max_add q p : q `max` p ≤ q + p.
  Proof.
    unfold max.
    destruct (decide (q ≤ p)); [apply le_add_r|apply le_add_l].
  Qed.

  Lemma max_lub_l q p o : q `max` p ≤ o → q ≤ o.
  Proof. unfold max. destruct (decide (q ≤ p)); [by etrans|done]. Qed.
  Lemma max_lub_r q p o : q `max` p ≤ o → p ≤ o.
  Proof. rewrite (comm _ q). apply max_lub_l. Qed.

  Lemma min_spec q p : (q < p ∧ q `min` p = q) ∨ (p ≤ q ∧ q `min` p = p).
  Proof.
    unfold min.
    destruct (decide (q ≤ p)) as [[?| ->]%le_lteq|?]; [by auto..|].
    right. split; [|done]. by apply lt_le_incl, lt_nge.
  Qed.

  Lemma min_spec_le q p : (q ≤ p ∧ q `min` p = q) ∨ (p ≤ q ∧ q `min` p = p).
  Proof. destruct (min_spec q p) as [[?%lt_le_incl ?]|]; [left|right]; done. Qed.

  Global Instance min_assoc : Assoc (=) min.
  Proof.
    intros q p o. unfold min.
    destruct (decide (q ≤ p)), (decide (p ≤ o)); eauto using decide_False.
    - by rewrite !decide_True by (by etrans).
    - by rewrite decide_False by (apply lt_nge; etrans; by apply lt_nge).
  Qed.
  Global Instance min_comm : Comm (=) min.
  Proof.
    intros q p.
    destruct (min_spec_le q p) as [[?->]|[?->]],
      (min_spec_le p q) as [[? ->]|[? ->]]; done || by apply (anti_symm (≤)).
  Qed.

  Lemma min_id q : q `min` q = q.
  Proof. by destruct (min_spec q q) as [[_->]|[_->]]. Qed.
  Lemma le_min_r q p : q `min` p ≤ p.
  Proof. by destruct (min_spec_le q p) as [[?->]|[?->]]. Qed.

  Lemma le_min_l p q : p `min` q ≤ p.
  Proof. rewrite (comm_L min p). apply le_min_r. Qed.

  Lemma min_l_iff q p : q `min` p = q ↔ q ≤ p.
  Proof.
    destruct (min_spec_le q p) as [[?->]|[?->]]; [done|].
    split; [by intros ->|]. intros. by apply (anti_symm (≤)).
  Qed.
  Lemma min_r_iff q p : q `min` p = p ↔ p ≤ q.
  Proof. rewrite (comm_L min q). apply min_l_iff. Qed.
End Qp.

Export Qp.notations.

Lemma pos_to_Qp_1 : pos_to_Qp 1 = 1.
Proof. compute_done. Qed.
Lemma pos_to_Qp_inj n m : pos_to_Qp n = pos_to_Qp m → n = m.
Proof. by injection 1. Qed.
Lemma pos_to_Qp_inj_iff n m : pos_to_Qp n = pos_to_Qp m ↔ n = m.
Proof. split; [apply pos_to_Qp_inj|by intros ->]. Qed.
Lemma pos_to_Qp_inj_le n m : (n ≤ m)%positive ↔ pos_to_Qp n ≤ pos_to_Qp m.
Proof. rewrite Qp.to_Qc_inj_le; simpl. by rewrite <-Z2Qc_inj_le. Qed.
Lemma pos_to_Qp_inj_lt n m : (n < m)%positive ↔ pos_to_Qp n < pos_to_Qp m.
Proof. by rewrite Pos.lt_nle, Qp.lt_nge, <-pos_to_Qp_inj_le. Qed.
Lemma pos_to_Qp_add x y : pos_to_Qp x + pos_to_Qp y = pos_to_Qp (x + y).
Proof. apply Qp.to_Qc_inj_iff; simpl. by rewrite Pos2Z.inj_add, Z2Qc_inj_add. Qed.
Lemma pos_to_Qp_mul x y : pos_to_Qp x * pos_to_Qp y = pos_to_Qp (x * y).
Proof. apply Qp.to_Qc_inj_iff; simpl. by rewrite Pos2Z.inj_mul, Z2Qc_inj_mul. Qed.

Local Close Scope Qp_scope.

(** * Helper for working with accessing lists with wrap-around
    See also [rotate] and [rotate_take] in [list.v] *)
(** [rotate_nat_add base offset len] computes [(base + offset) `mod`
len]. This is useful in combination with the [rotate] function on
lists, since the index [i] of [rotate n l] corresponds to the index
[rotate_nat_add n i (length i)] of the original list. The definition
uses [Z] for consistency with [rotate_nat_sub]. **)
Definition rotate_nat_add (base offset len : nat) : nat :=
  Z.to_nat ((Z.of_nat base + Z.of_nat offset) `mod` Z.of_nat len)%Z.
(** [rotate_nat_sub base offset len] is the inverse of [rotate_nat_add
base offset len]. The definition needs to use modulo on [Z] instead of
on nat since otherwise we need the sidecondition [base < len] on
[rotate_nat_sub_add]. **)
Definition rotate_nat_sub (base offset len : nat) : nat :=
  Z.to_nat ((Z.of_nat len + Z.of_nat offset - Z.of_nat base) `mod` Z.of_nat len)%Z.

Lemma rotate_nat_add_add_mod base offset len:
  rotate_nat_add base offset len =
  rotate_nat_add (base `mod` len) offset len.
Proof. unfold rotate_nat_add. by rewrite Nat2Z.inj_mod, Zplus_mod_idemp_l. Qed.

Lemma rotate_nat_add_alt base offset len:
  base < len → offset < len →
  rotate_nat_add base offset len =
  if decide (base + offset < len) then base + offset else base + offset - len.
Proof.
  unfold rotate_nat_add. intros ??. case_decide.
  - rewrite Z.mod_small by lia. by rewrite <-Nat2Z.inj_add, Nat2Z.id.
  - rewrite (Z.mod_in_range 1) by lia.
    by rewrite Z.mul_1_l, <-Nat2Z.inj_add, <-Nat2Z.inj_sub,Nat2Z.id by lia.
Qed.
Lemma rotate_nat_sub_alt base offset len:
  base < len → offset < len →
  rotate_nat_sub base offset len =
  if decide (offset < base) then len + offset - base else offset - base.
Proof.
  unfold rotate_nat_sub. intros ??. case_decide.
  - rewrite Z.mod_small by lia.
    by rewrite <-Nat2Z.inj_add, <-Nat2Z.inj_sub, Nat2Z.id by lia.
  - rewrite (Z.mod_in_range 1) by lia.
    rewrite Z.mul_1_l, <-Nat2Z.inj_add, <-!Nat2Z.inj_sub,Nat2Z.id; lia.
Qed.

Lemma rotate_nat_add_0 base len :
  base < len → rotate_nat_add base 0 len = base.
Proof.
  intros ?. unfold rotate_nat_add.
  rewrite Z.mod_small by lia. by rewrite Z.add_0_r, Nat2Z.id.
Qed.
Lemma rotate_nat_sub_0 base len :
  base < len → rotate_nat_sub base base len = 0.
Proof. intros ?. rewrite rotate_nat_sub_alt by done. case_decide; lia. Qed.

Lemma rotate_nat_add_lt base offset len :
  0 < len → rotate_nat_add base offset len < len.
Proof.
  unfold rotate_nat_add. intros ?.
  pose proof (Nat.mod_upper_bound (base + offset) len).
  rewrite Z2Nat.inj_mod, Z2Nat.inj_add, !Nat2Z.id; lia.
Qed.
Lemma rotate_nat_sub_lt base offset len :
  0 < len → rotate_nat_sub base offset len < len.
Proof.
  unfold rotate_nat_sub. intros ?.
  pose proof (Z_mod_lt (Z.of_nat len + Z.of_nat offset - Z.of_nat base) (Z.of_nat len)).
  apply Nat2Z.inj_lt. rewrite Z2Nat.id; lia.
Qed.

Lemma rotate_nat_add_sub base len offset:
  offset < len →
  rotate_nat_add base (rotate_nat_sub base offset len) len = offset.
Proof.
  intros ?. unfold rotate_nat_add, rotate_nat_sub.
  rewrite Z2Nat.id by (apply Z.mod_pos; lia). rewrite Zplus_mod_idemp_r.
  replace (Z.of_nat base + (Z.of_nat len + Z.of_nat offset - Z.of_nat base))%Z
    with (Z.of_nat len + Z.of_nat offset)%Z by lia.
  rewrite (Z.mod_in_range 1) by lia.
  rewrite Z.mul_1_l, <-Nat2Z.inj_add, <-!Nat2Z.inj_sub,Nat2Z.id; lia.
Qed.

Lemma rotate_nat_sub_add base len offset:
  offset < len →
  rotate_nat_sub base (rotate_nat_add base offset len) len = offset.
Proof.
  intros ?. unfold rotate_nat_add, rotate_nat_sub.
  rewrite Z2Nat.id by (apply Z.mod_pos; lia).
  assert (∀ n, (Z.of_nat len + n - Z.of_nat base) = ((Z.of_nat len - Z.of_nat base) + n))%Z
    as -> by naive_solver lia.
  rewrite Zplus_mod_idemp_r.
  replace (Z.of_nat len - Z.of_nat base + (Z.of_nat base + Z.of_nat offset))%Z with
    (Z.of_nat len + Z.of_nat offset)%Z by lia.
  rewrite (Z.mod_in_range 1) by lia.
  rewrite Z.mul_1_l, <-Nat2Z.inj_add, <-!Nat2Z.inj_sub,Nat2Z.id; lia.
Qed.

Lemma rotate_nat_add_add base offset len n:
  0 < len →
  rotate_nat_add base (offset + n) len =
  (rotate_nat_add base offset len + n) `mod` len.
Proof.
  intros ?. unfold rotate_nat_add.
  rewrite !Z2Nat.inj_mod, !Z2Nat.inj_add, !Nat2Z.id by lia.
  by rewrite Nat.add_assoc, Nat.add_mod_idemp_l by lia.
Qed.

Lemma rotate_nat_add_S base offset len:
  0 < len →
  rotate_nat_add base (S offset) len =
  S (rotate_nat_add base offset len) `mod` len.
Proof. intros ?. by rewrite <-Nat.add_1_r, rotate_nat_add_add, Nat.add_1_r. Qed.