1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
|
(** This file provides various tweaks and extensions to Coq's theory of numbers
(natural numbers [nat] and [N], positive numbers [positive], integers [Z], and
rationals [Qc]). In addition, this file defines a new type of positive rational
numbers [Qp], which is used extensively in Iris to represent fractional
permissions.
The organization of this file follows mostly Coq's standard library.
- We put all results in modules. For example, the module [Nat] collects the
results for type [nat]. Since the Coq stdlib already defines a module [Nat],
our module [Nat] exports Coq's module so that our module [Nat] contains the
union of the results from the Coq stdlib and std++.
- We follow the naming convention of Coq's "numbers" library to prefer
[succ]/[add]/[sub]/[mul] over [S]/[plus]/[minus]/[mult].
- One typically does not [Import] modules such as [Nat], and refers to the
results using [Nat.lem]. As a consequence, all [Hint]s [Instance]s in the modules in
this file are [Global] and not [Export]. Other things like [Arguments] are outside
the modules, since for them [Global] works like [Export].
The results for [Qc] are not yet in a module. This is in part because they
still follow the old/non-module style in Coq's standard library. See also
https://gitlab.mpi-sws.org/iris/stdpp/-/issues/147. *)
From Coq Require Export EqdepFacts PArith NArith ZArith.
From Coq Require Import QArith Qcanon.
From stdpp Require Export base decidable option.
From stdpp Require Import well_founded.
From stdpp Require Import options.
Local Open Scope nat_scope.
Global Instance comparison_eq_dec : EqDecision comparison.
Proof. solve_decision. Defined.
(** * Notations and properties of [nat] *)
Global Arguments Nat.sub !_ !_ / : assert.
Global Arguments Nat.max : simpl nomatch.
(** We do not make [Nat.lt] since it is an alias for [lt], which contains the
actual definition that we want to make opaque. *)
Global Typeclasses Opaque lt.
Reserved Notation "x ≤ y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y < z" (at level 70, y at next level).
Reserved Notation "x < y < z" (at level 70, y at next level).
Reserved Notation "x < y ≤ z" (at level 70, y at next level).
Reserved Notation "x ≤ y ≤ z ≤ z'"
(at level 70, y at next level, z at next level).
Infix "≤" := le : nat_scope.
(** We do *not* add notation for [≥] mapping to [ge], and we do also not use the
[>] notation from the Coq standard library. Using such notations leads to
annoying problems: if you have [x < y] in the context and need [y > x] for some
lemma, [assumption] won't work because [x < y] and [y > x] are not
definitionally equal. It is just generally frustrating to deal with this
mismatch, and much preferable to state logically equivalent things in syntactically
equal ways.
As an alternative, we could define [>] and [≥] as [parsing only] notation that
maps to [<] and [≤], respectively (similar to math-comp). This would change the
notation for [<] from the Coq standard library to something that is not
definitionally equal, so we avoid that as well.
This concern applies to all number types: [nat], [N], [Z], [positive], [Qc] and
[Qp]. *)
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z)%nat : nat_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z)%nat : nat_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z)%nat : nat_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z')%nat : nat_scope.
Notation "(≤)" := le (only parsing) : nat_scope.
Notation "(<)" := lt (only parsing) : nat_scope.
Infix "`div`" := Nat.div (at level 35) : nat_scope.
Infix "`mod`" := Nat.modulo (at level 35) : nat_scope.
Infix "`max`" := Nat.max (at level 35) : nat_scope.
Infix "`min`" := Nat.min (at level 35) : nat_scope.
(** TODO: Consider removing these notations to avoid populting the global
scope? *)
Notation lcm := Nat.lcm.
Notation divide := Nat.divide.
Notation "( x | y )" := (divide x y) : nat_scope.
Module Nat.
Export PeanoNat.Nat.
Global Instance add_assoc' : Assoc (=) Nat.add := Nat.add_assoc.
Global Instance add_comm' : Comm (=) Nat.add := Nat.add_comm.
Global Instance add_left_id : LeftId (=) 0 Nat.add := Nat.add_0_l.
Global Instance add_right_id : RightId (=) 0 Nat.add := Nat.add_0_r.
Global Instance sub_right_id : RightId (=) 0 Nat.sub := Nat.sub_0_r.
Global Instance mul_assoc' : Assoc (=) Nat.mul := Nat.mul_assoc.
Global Instance mul_comm' : Comm (=) Nat.mul := Nat.mul_comm.
Global Instance mul_left_id : LeftId (=) 1 Nat.mul := Nat.mul_1_l.
Global Instance mul_right_id : RightId (=) 1 Nat.mul := Nat.mul_1_r.
Global Instance mul_left_absorb : LeftAbsorb (=) 0 Nat.mul := Nat.mul_0_l.
Global Instance mul_right_absorb : RightAbsorb (=) 0 Nat.mul := Nat.mul_0_r.
Global Instance div_right_id : RightId (=) 1 Nat.div := Nat.div_1_r.
Global Instance eq_dec: EqDecision nat := eq_nat_dec.
Global Instance le_dec: RelDecision le := le_dec.
Global Instance lt_dec: RelDecision lt := lt_dec.
Global Instance inhabited: Inhabited nat := populate 0.
Global Instance succ_inj: Inj (=) (=) Nat.succ.
Proof. by injection 1. Qed.
Global Instance le_po: PartialOrder (≤).
Proof. repeat split; repeat intro; auto with lia. Qed.
Global Instance le_total: Total (≤).
Proof. repeat intro; lia. Qed.
Global Instance le_pi: ∀ x y : nat, ProofIrrel (x ≤ y).
Proof.
assert (∀ x y (p : x ≤ y) y' (q : x ≤ y'),
y = y' → eq_dep nat (le x) y p y' q) as aux.
{ fix FIX 3. intros x ? [|y p] ? [|y' q].
- done.
- clear FIX. intros; exfalso; auto with lia.
- clear FIX. intros; exfalso; auto with lia.
- injection 1. intros Hy. by case (FIX x y p y' q Hy). }
intros x y p q.
by apply (Eqdep_dec.eq_dep_eq_dec (λ x y, decide (x = y))), aux.
Qed.
Global Instance lt_pi: ∀ x y : nat, ProofIrrel (x < y).
Proof. unfold Peano.lt. apply _. Qed.
(** Given a measure/size [f : B → nat], you can do induction on the size of
[b : B] using [induction (lt_wf_0_projected f b)]. *)
Lemma lt_wf_0_projected {B} (f : B → nat) : well_founded (λ x y, f x < f y).
Proof. by apply (wf_projected (<) f), lt_wf_0. Qed.
Lemma le_sum (x y : nat) : x ≤ y ↔ ∃ z, y = x + z.
Proof. split; [exists (y - x); lia | intros [z ->]; lia]. Qed.
(** This is similar to but slightly different than Coq's
[add_sub : ∀ n m : nat, n + m - m = n]. *)
Lemma add_sub' n m : n + m - n = m.
Proof. lia. Qed.
Lemma le_add_sub n m : n ≤ m → m = n + (m - n).
Proof. lia. Qed.
(** Cancellation for multiplication. Coq's stdlib has these lemmas for [Z],
but those for [nat] are missing. We use the naming scheme of Coq's stdlib. *)
Lemma mul_reg_l n m p : p ≠ 0 → p * n = p * m → n = m.
Proof.
pose proof (Z.mul_reg_l (Z.of_nat n) (Z.of_nat m) (Z.of_nat p)). lia.
Qed.
Lemma mul_reg_r n m p : p ≠ 0 → n * p = m * p → n = m.
Proof. rewrite <-!(Nat.mul_comm p). apply mul_reg_l. Qed.
Lemma lt_succ_succ n : n < S (S n).
Proof. auto with arith. Qed.
Lemma mul_split_l n x1 x2 y1 y2 :
x2 < n → y2 < n → x1 * n + x2 = y1 * n + y2 → x1 = y1 ∧ x2 = y2.
Proof.
intros Hx2 Hy2 E. cut (x1 = y1); [intros; subst;lia |].
revert y1 E. induction x1; simpl; intros [|?]; simpl; auto with lia.
Qed.
Lemma mul_split_r n x1 x2 y1 y2 :
x1 < n → y1 < n → x1 + x2 * n = y1 + y2 * n → x1 = y1 ∧ x2 = y2.
Proof. intros. destruct (mul_split_l n x2 x1 y2 y1); auto with lia. Qed.
Global Instance divide_dec : RelDecision Nat.divide.
Proof.
refine (λ x y, cast_if (decide (lcm x y = y)));
abstract (by rewrite Nat.divide_lcm_iff).
Defined.
Global Instance divide_po : PartialOrder divide.
Proof.
repeat split; try apply _. intros ??. apply Nat.divide_antisym; lia.
Qed.
Global Hint Extern 0 (_ | _) => reflexivity : core.
Lemma divide_ne_0 x y : (x | y) → y ≠ 0 → x ≠ 0.
Proof. intros Hxy Hy ->. by apply Hy, Nat.divide_0_l. Qed.
Lemma iter_succ {A} n (f: A → A) x : Nat.iter (S n) f x = f (Nat.iter n f x).
Proof. done. Qed.
Lemma iter_succ_r {A} n (f: A → A) x : Nat.iter (S n) f x = Nat.iter n f (f x).
Proof. induction n; by f_equal/=. Qed.
Lemma iter_add {A} n1 n2 (f : A → A) x :
Nat.iter (n1 + n2) f x = Nat.iter n1 f (Nat.iter n2 f x).
Proof. induction n1; by f_equal/=. Qed.
Lemma iter_mul {A} n1 n2 (f : A → A) x :
Nat.iter (n1 * n2) f x = Nat.iter n1 (Nat.iter n2 f) x.
Proof.
intros. induction n1 as [|n1 IHn1]; [done|].
simpl. by rewrite iter_add, IHn1.
Qed.
Lemma iter_ind {A} (P : A → Prop) f x k :
P x → (∀ y, P y → P (f y)) → P (Nat.iter k f x).
Proof. induction k; simpl; auto. Qed.
(** FIXME: Coq 8.17 deprecated some lemmas in https://github.com/coq/coq/pull/16203.
We cannot use the intended replacements since we support Coq 8.16. We also do
not want to disable [deprecated-syntactic-definition] everywhere, so instead
we provide non-deprecated duplicates of those deprecated lemmas that we need
in std++ and Iris. *)
Local Set Warnings "-deprecated-syntactic-definition".
Lemma add_mod_idemp_l a b n : n ≠ 0 → (a mod n + b) mod n = (a + b) mod n.
Proof. auto using add_mod_idemp_l. Qed.
Lemma div_lt_upper_bound a b q : b ≠ 0 → a < b * q → a / b < q.
Proof. auto using div_lt_upper_bound. Qed.
End Nat.
(** * Notations and properties of [positive] *)
Local Open Scope positive_scope.
Global Typeclasses Opaque Pos.le.
Global Typeclasses Opaque Pos.lt.
Infix "≤" := Pos.le : positive_scope.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : positive_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : positive_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z) : positive_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z') : positive_scope.
Notation "(≤)" := Pos.le (only parsing) : positive_scope.
Notation "(<)" := Pos.lt (only parsing) : positive_scope.
Notation "(~0)" := xO (only parsing) : positive_scope.
Notation "(~1)" := xI (only parsing) : positive_scope.
Infix "`max`" := Pos.max : positive_scope.
Infix "`min`" := Pos.min : positive_scope.
Global Arguments Pos.pred : simpl never.
Global Arguments Pos.succ : simpl never.
Global Arguments Pos.of_nat : simpl never.
Global Arguments Pos.to_nat : simpl never.
Global Arguments Pos.mul : simpl never.
Global Arguments Pos.add : simpl never.
Global Arguments Pos.sub : simpl never.
Global Arguments Pos.pow : simpl never.
Global Arguments Pos.shiftl : simpl never.
Global Arguments Pos.shiftr : simpl never.
Global Arguments Pos.gcd : simpl never.
Global Arguments Pos.min : simpl never.
Global Arguments Pos.max : simpl never.
Global Arguments Pos.lor : simpl never.
Global Arguments Pos.land : simpl never.
Global Arguments Pos.lxor : simpl never.
Global Arguments Pos.square : simpl never.
Module Pos.
Export BinPos.Pos.
Global Instance add_assoc' : Assoc (=) Pos.add := Pos.add_assoc.
Global Instance add_comm' : Comm (=) Pos.add := Pos.add_comm.
Global Instance mul_assoc' : Assoc (=) Pos.mul := Pos.mul_assoc.
Global Instance mul_comm' : Comm (=) Pos.mul := Pos.mul_comm.
Global Instance mul_left_id : LeftId (=) 1 Pos.mul := Pos.mul_1_l.
Global Instance mul_right_id : RightId (=) 1 Pos.mul := Pos.mul_1_r.
Global Instance eq_dec: EqDecision positive := Pos.eq_dec.
Global Instance le_dec: RelDecision Pos.le.
Proof. refine (λ x y, decide ((x ?= y) ≠ Gt)). Defined.
Global Instance lt_dec: RelDecision Pos.lt.
Proof. refine (λ x y, decide ((x ?= y) = Lt)). Defined.
Global Instance le_total: Total Pos.le.
Proof. repeat intro; lia. Qed.
Global Instance inhabited: Inhabited positive := populate 1.
Global Instance maybe_xO : Maybe xO := λ p, match p with p~0 => Some p | _ => None end.
Global Instance maybe_xI : Maybe xI := λ p, match p with p~1 => Some p | _ => None end.
Global Instance xO_inj : Inj (=) (=) (~0).
Proof. by injection 1. Qed.
Global Instance xI_inj : Inj (=) (=) (~1).
Proof. by injection 1. Qed.
(** Since [positive] represents lists of bits, we define list operations
on it. These operations are in reverse, as positives are treated as snoc
lists instead of cons lists. *)
Fixpoint app (p1 p2 : positive) : positive :=
match p2 with
| 1 => p1
| p2~0 => (app p1 p2)~0
| p2~1 => (app p1 p2)~1
end.
Module Import app_notations.
Infix "++" := app : positive_scope.
Notation "(++)" := app (only parsing) : positive_scope.
Notation "( p ++.)" := (app p) (only parsing) : positive_scope.
Notation "(.++ q )" := (λ p, app p q) (only parsing) : positive_scope.
End app_notations.
Fixpoint reverse_go (p1 p2 : positive) : positive :=
match p2 with
| 1 => p1
| p2~0 => reverse_go (p1~0) p2
| p2~1 => reverse_go (p1~1) p2
end.
Definition reverse : positive → positive := reverse_go 1.
Global Instance app_1_l : LeftId (=) 1 (++).
Proof. intros p. by induction p; intros; f_equal/=. Qed.
Global Instance app_1_r : RightId (=) 1 (++).
Proof. done. Qed.
Global Instance app_assoc : Assoc (=) (++).
Proof. intros ?? p. by induction p; intros; f_equal/=. Qed.
Global Instance app_inj p : Inj (=) (=) (.++ p).
Proof. intros ???. induction p; simplify_eq; auto. Qed.
Lemma reverse_go_app p1 p2 p3 :
reverse_go p1 (p2 ++ p3) = reverse_go p1 p3 ++ reverse_go 1 p2.
Proof.
revert p3 p1 p2.
cut (∀ p1 p2 p3, reverse_go (p2 ++ p3) p1 = p2 ++ reverse_go p3 p1).
{ by intros go p3; induction p3; intros p1 p2; simpl; auto; rewrite <-?go. }
intros p1; induction p1 as [p1 IH|p1 IH|]; intros p2 p3; simpl; auto.
- apply (IH _ (_~1)).
- apply (IH _ (_~0)).
Qed.
Lemma reverse_app p1 p2 : reverse (p1 ++ p2) = reverse p2 ++ reverse p1.
Proof. unfold reverse. by rewrite reverse_go_app. Qed.
Lemma reverse_xO p : reverse (p~0) = (1~0) ++ reverse p.
Proof. apply (reverse_app p (1~0)). Qed.
Lemma reverse_xI p : reverse (p~1) = (1~1) ++ reverse p.
Proof. apply (reverse_app p (1~1)). Qed.
Lemma reverse_involutive p : reverse (reverse p) = p.
Proof.
induction p as [p IH|p IH|]; simpl.
- by rewrite reverse_xI, reverse_app, IH.
- by rewrite reverse_xO, reverse_app, IH.
- reflexivity.
Qed.
Global Instance reverse_inj : Inj (=) (=) reverse.
Proof.
intros p q eq.
rewrite <-(reverse_involutive p).
rewrite <-(reverse_involutive q).
by rewrite eq.
Qed.
Fixpoint length (p : positive) : nat :=
match p with 1 => 0%nat | p~0 | p~1 => S (length p) end.
Lemma length_app p1 p2 : length (p1 ++ p2) = (length p2 + length p1)%nat.
Proof. by induction p2; f_equal/=. Qed.
Lemma lt_sum (x y : positive) : x < y ↔ ∃ z, y = x + z.
Proof.
split.
- exists (y - x)%positive. symmetry. apply Pplus_minus. lia.
- intros [z ->]. lia.
Qed.
(** Duplicate the bits of a positive, i.e. 1~0~1 -> 1~0~0~1~1 and
1~1~0~0 -> 1~1~1~0~0~0~0 *)
Fixpoint dup (p : positive) : positive :=
match p with
| 1 => 1
| p'~0 => (dup p')~0~0
| p'~1 => (dup p')~1~1
end.
Lemma dup_app p q :
dup (p ++ q) = dup p ++ dup q.
Proof.
revert p.
induction q as [p IH|p IH|]; intros q; simpl.
- by rewrite IH.
- by rewrite IH.
- reflexivity.
Qed.
Lemma dup_suffix_eq p q s1 s2 :
s1~1~0 ++ dup p = s2~1~0 ++ dup q → p = q.
Proof.
revert q.
induction p as [p IH|p IH|]; intros [q|q|] eq; simplify_eq/=.
- by rewrite (IH q).
- by rewrite (IH q).
- reflexivity.
Qed.
Global Instance dup_inj : Inj (=) (=) dup.
Proof.
intros p q eq.
apply (dup_suffix_eq _ _ 1 1).
by rewrite eq.
Qed.
Lemma reverse_dup p :
reverse (dup p) = dup (reverse p).
Proof.
induction p as [p IH|p IH|]; simpl.
- rewrite 3!reverse_xI.
rewrite (assoc_L (++)).
rewrite IH.
rewrite dup_app.
reflexivity.
- rewrite 3!reverse_xO.
rewrite (assoc_L (++)).
rewrite IH.
rewrite dup_app.
reflexivity.
- reflexivity.
Qed.
End Pos.
Export Pos.app_notations.
Local Close Scope positive_scope.
(** * Notations and properties of [N] *)
Local Open Scope N_scope.
Global Typeclasses Opaque N.le.
Global Typeclasses Opaque N.lt.
Infix "≤" := N.le : N_scope.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z)%N : N_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z)%N : N_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z)%N : N_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z')%N : N_scope.
Notation "(≤)" := N.le (only parsing) : N_scope.
Notation "(<)" := N.lt (only parsing) : N_scope.
Infix "`div`" := N.div (at level 35) : N_scope.
Infix "`mod`" := N.modulo (at level 35) : N_scope.
Infix "`max`" := N.max (at level 35) : N_scope.
Infix "`min`" := N.min (at level 35) : N_scope.
Global Arguments N.pred : simpl never.
Global Arguments N.succ : simpl never.
Global Arguments N.of_nat : simpl never.
Global Arguments N.to_nat : simpl never.
Global Arguments N.mul : simpl never.
Global Arguments N.add : simpl never.
Global Arguments N.sub : simpl never.
Global Arguments N.pow : simpl never.
Global Arguments N.div : simpl never.
Global Arguments N.modulo : simpl never.
Global Arguments N.shiftl : simpl never.
Global Arguments N.shiftr : simpl never.
Global Arguments N.gcd : simpl never.
Global Arguments N.lcm : simpl never.
Global Arguments N.min : simpl never.
Global Arguments N.max : simpl never.
Global Arguments N.lor : simpl never.
Global Arguments N.land : simpl never.
Global Arguments N.lxor : simpl never.
Global Arguments N.lnot : simpl never.
Global Arguments N.square : simpl never.
Global Hint Extern 0 (_ ≤ _)%N => reflexivity : core.
Module N.
Export BinNat.N.
Global Instance add_assoc' : Assoc (=) N.add := N.add_assoc.
Global Instance add_comm' : Comm (=) N.add := N.add_comm.
Global Instance add_left_id : LeftId (=) 0 N.add := N.add_0_l.
Global Instance add_right_id : RightId (=) 0 N.add := N.add_0_r.
Global Instance sub_right_id : RightId (=) 0 N.sub := N.sub_0_r.
Global Instance mul_assoc' : Assoc (=) N.mul := N.mul_assoc.
Global Instance mul_comm' : Comm (=) N.mul := N.mul_comm.
Global Instance mul_left_id : LeftId (=) 1 N.mul := N.mul_1_l.
Global Instance mul_right_id : RightId (=) 1 N.mul := N.mul_1_r.
Global Instance mul_left_absorb : LeftAbsorb (=) 0 N.mul := N.mul_0_l.
Global Instance mul_right_absorb : RightAbsorb (=) 0 N.mul := N.mul_0_r.
Global Instance div_right_id : RightId (=) 1 N.div := N.div_1_r.
Global Instance pos_inj : Inj (=) (=) N.pos.
Proof. by injection 1. Qed.
Global Instance eq_dec : EqDecision N := N.eq_dec.
Global Program Instance le_dec : RelDecision N.le := λ x y,
match N.compare x y with Gt => right _ | _ => left _ end.
Solve Obligations with naive_solver.
Global Program Instance lt_dec : RelDecision N.lt := λ x y,
match N.compare x y with Lt => left _ | _ => right _ end.
Solve Obligations with naive_solver.
Global Instance inhabited : Inhabited N := populate 1%N.
Global Instance lt_pi x y : ProofIrrel (x < y)%N.
Proof. unfold N.lt. apply _. Qed.
Global Instance le_po : PartialOrder (≤)%N.
Proof.
repeat split; red; [apply N.le_refl | apply N.le_trans | apply N.le_antisymm].
Qed.
Global Instance le_total : Total (≤)%N.
Proof. repeat intro; lia. Qed.
Lemma lt_wf_0_projected {B} (f : B → N) : well_founded (λ x y, f x < f y).
Proof. by apply (wf_projected (<) f), lt_wf_0. Qed.
(** FIXME: Coq 8.17 deprecated some lemmas in https://github.com/coq/coq/pull/16203.
We cannot use the intended replacements since we support Coq 8.16. We also do
not want to disable [deprecated-syntactic-definition] everywhere, so instead
we provide non-deprecated duplicates of those deprecated lemmas that we need
in std++ and Iris. *)
Local Set Warnings "-deprecated-syntactic-definition".
Lemma add_mod_idemp_l a b n : n ≠ 0 → (a mod n + b) mod n = (a + b) mod n.
Proof. auto using add_mod_idemp_l. Qed.
Lemma div_lt_upper_bound a b q : b ≠ 0 → a < b * q → a / b < q.
Proof. auto using div_lt_upper_bound. Qed.
End N.
Local Close Scope N_scope.
(** * Notations and properties of [Z] *)
Local Open Scope Z_scope.
Global Typeclasses Opaque Z.le.
Global Typeclasses Opaque Z.lt.
Infix "≤" := Z.le : Z_scope.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : Z_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : Z_scope.
Notation "x < y < z" := (x < y ∧ y < z) : Z_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z) : Z_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z') : Z_scope.
Notation "(≤)" := Z.le (only parsing) : Z_scope.
Notation "(<)" := Z.lt (only parsing) : Z_scope.
Infix "`div`" := Z.div (at level 35) : Z_scope.
Infix "`mod`" := Z.modulo (at level 35) : Z_scope.
Infix "`quot`" := Z.quot (at level 35) : Z_scope.
Infix "`rem`" := Z.rem (at level 35) : Z_scope.
Infix "≪" := Z.shiftl (at level 35) : Z_scope.
Infix "≫" := Z.shiftr (at level 35) : Z_scope.
Infix "`max`" := Z.max (at level 35) : Z_scope.
Infix "`min`" := Z.min (at level 35) : Z_scope.
Global Arguments Z.pred : simpl never.
Global Arguments Z.succ : simpl never.
Global Arguments Z.of_nat : simpl never.
Global Arguments Z.to_nat : simpl never.
Global Arguments Z.mul : simpl never.
Global Arguments Z.add : simpl never.
Global Arguments Z.sub : simpl never.
Global Arguments Z.opp : simpl never.
Global Arguments Z.pow : simpl never.
Global Arguments Z.div : simpl never.
Global Arguments Z.modulo : simpl never.
Global Arguments Z.quot : simpl never.
Global Arguments Z.rem : simpl never.
Global Arguments Z.shiftl : simpl never.
Global Arguments Z.shiftr : simpl never.
Global Arguments Z.gcd : simpl never.
Global Arguments Z.lcm : simpl never.
Global Arguments Z.min : simpl never.
Global Arguments Z.max : simpl never.
Global Arguments Z.lor : simpl never.
Global Arguments Z.land : simpl never.
Global Arguments Z.lxor : simpl never.
Global Arguments Z.lnot : simpl never.
Global Arguments Z.square : simpl never.
Global Arguments Z.abs : simpl never.
Module Z.
Export BinInt.Z.
Global Instance add_assoc' : Assoc (=) Z.add := Z.add_assoc.
Global Instance add_comm' : Comm (=) Z.add := Z.add_comm.
Global Instance add_left_id : LeftId (=) 0 Z.add := Z.add_0_l.
Global Instance add_right_id : RightId (=) 0 Z.add := Z.add_0_r.
Global Instance sub_right_id : RightId (=) 0 Z.sub := Z.sub_0_r.
Global Instance mul_assoc' : Assoc (=) Z.mul := Z.mul_assoc.
Global Instance mul_comm' : Comm (=) Z.mul := Z.mul_comm.
Global Instance mul_left_id : LeftId (=) 1 Z.mul := Z.mul_1_l.
Global Instance mul_right_id : RightId (=) 1 Z.mul := Z.mul_1_r.
Global Instance mul_left_absorb : LeftAbsorb (=) 0 Z.mul := Z.mul_0_l.
Global Instance mul_right_absorb : RightAbsorb (=) 0 Z.mul := Z.mul_0_r.
Global Instance div_right_id : RightId (=) 1 Z.div := Z.div_1_r.
Global Instance pos_inj : Inj (=) (=) Z.pos.
Proof. by injection 1. Qed.
Global Instance neg_inj : Inj (=) (=) Z.neg.
Proof. by injection 1. Qed.
Global Instance eq_dec: EqDecision Z := Z.eq_dec.
Global Instance le_dec: RelDecision Z.le := Z_le_dec.
Global Instance lt_dec: RelDecision Z.lt := Z_lt_dec.
Global Instance ge_dec: RelDecision Z.ge := Z_ge_dec.
Global Instance gt_dec: RelDecision Z.gt := Z_gt_dec.
Global Instance inhabited: Inhabited Z := populate 1.
Global Instance lt_pi x y : ProofIrrel (x < y).
Proof. unfold Z.lt. apply _. Qed.
Global Instance le_po : PartialOrder (≤).
Proof.
repeat split; red; [apply Z.le_refl | apply Z.le_trans | apply Z.le_antisymm].
Qed.
Global Instance le_total: Total Z.le.
Proof. repeat intro; lia. Qed.
Lemma lt_wf_projected {B} (f : B → Z) z : well_founded (λ x y, z ≤ f x < f y).
Proof. by apply (wf_projected (λ x y, z ≤ x < y) f), lt_wf. Qed.
Lemma pow_pred_r n m : 0 < m → n * n ^ (Z.pred m) = n ^ m.
Proof.
intros. rewrite <-Z.pow_succ_r, Z.succ_pred; [done|]. by apply Z.lt_le_pred.
Qed.
Lemma quot_range_nonneg k x y : 0 ≤ x < k → 0 < y → 0 ≤ x `quot` y < k.
Proof.
intros [??] ?.
destruct (decide (y = 1)); subst; [rewrite Z.quot_1_r; auto |].
destruct (decide (x = 0)); subst; [rewrite Z.quot_0_l; auto with lia |].
split; [apply Z.quot_pos; lia|].
trans x; auto. apply Z.quot_lt; lia.
Qed.
Lemma mod_pos x y : 0 < y → 0 ≤ x `mod` y.
Proof. apply Z.mod_pos_bound. Qed.
Global Hint Resolve Z.lt_le_incl : zpos.
Global Hint Resolve Z.add_nonneg_pos Z.add_pos_nonneg Z.add_nonneg_nonneg : zpos.
Global Hint Resolve Z.mul_nonneg_nonneg Z.mul_pos_pos : zpos.
Global Hint Resolve Z.pow_pos_nonneg Z.pow_nonneg: zpos.
Global Hint Resolve Z.mod_pos Z.div_pos : zpos.
Global Hint Extern 1000 => lia : zpos.
Lemma succ_pred_induction y (P : Z → Prop) :
P y →
(∀ x, y ≤ x → P x → P (Z.succ x)) →
(∀ x, x ≤ y → P x → P (Z.pred x)) →
(∀ x, P x).
Proof. intros H0 HS HP. by apply (Z.order_induction' _ _ y). Qed.
Lemma mod_in_range q a c :
q * c ≤ a < (q + 1) * c →
a `mod` c = a - q * c.
Proof. intros ?. symmetry. apply Z.mod_unique_pos with q; lia. Qed.
Lemma ones_spec n m:
0 ≤ m → 0 ≤ n →
Z.testbit (Z.ones n) m = bool_decide (m < n).
Proof.
intros. case_bool_decide.
- by rewrite Z.ones_spec_low by lia.
- by rewrite Z.ones_spec_high by lia.
Qed.
Lemma bounded_iff_bits_nonneg k n :
0 ≤ k → 0 ≤ n →
n < 2^k ↔ ∀ l, k ≤ l → Z.testbit n l = false.
Proof.
intros. destruct (decide (n = 0)) as [->|].
{ naive_solver eauto using Z.bits_0, Z.pow_pos_nonneg with lia. }
split.
{ intros Hb%Z.log2_lt_pow2 l Hl; [|lia]. apply Z.bits_above_log2; lia. }
intros Hl. apply Z.nle_gt; intros ?.
assert (Z.testbit n (Z.log2 n) = false) as Hbit.
{ apply Hl, Z.log2_le_pow2; lia. }
by rewrite Z.bit_log2 in Hbit by lia.
Qed.
(* Goals of the form [0 ≤ n ≤ 2^k] appear often. So we also define the
derived version [Z_bounded_iff_bits_nonneg'] that does not require
proving [0 ≤ n] twice in that case. *)
Lemma bounded_iff_bits_nonneg' k n :
0 ≤ k → 0 ≤ n →
0 ≤ n < 2^k ↔ ∀ l, k ≤ l → Z.testbit n l = false.
Proof. intros ??. rewrite <-bounded_iff_bits_nonneg; lia. Qed.
Lemma bounded_iff_bits k n :
0 ≤ k →
-2^k ≤ n < 2^k ↔ ∀ l, k ≤ l → Z.testbit n l = bool_decide (n < 0).
Proof.
intros Hk.
case_bool_decide; [ | rewrite <-bounded_iff_bits_nonneg; lia].
assert(n = - Z.abs n)%Z as -> by lia.
split.
{ intros [? _] l Hl.
rewrite Z.bits_opp, negb_true_iff by lia.
apply bounded_iff_bits_nonneg with k; lia. }
intros Hbit. split.
- rewrite <-Z.opp_le_mono, <-Z.lt_pred_le.
apply bounded_iff_bits_nonneg; [lia..|]. intros l Hl.
rewrite <-negb_true_iff, <-Z.bits_opp by lia.
by apply Hbit.
- etrans; [|apply Z.pow_pos_nonneg]; lia.
Qed.
Lemma add_nocarry_lor a b :
Z.land a b = 0 →
a + b = Z.lor a b.
Proof. intros ?. rewrite <-Z.lxor_lor by done. by rewrite Z.add_nocarry_lxor. Qed.
Lemma opp_lnot a : -a - 1 = Z.lnot a.
Proof. pose proof (Z.add_lnot_diag a). lia. Qed.
End Z.
Module Nat2Z.
Export Znat.Nat2Z.
Global Instance inj' : Inj (=) (=) Z.of_nat.
Proof. intros n1 n2. apply Nat2Z.inj. Qed.
Lemma divide n m : (Z.of_nat n | Z.of_nat m) ↔ (n | m)%nat.
Proof.
split.
- rewrite <-(Nat2Z.id m) at 2; intros [i ->]; exists (Z.to_nat i). lia.
- intros [i ->]. exists (Z.of_nat i). by rewrite Nat2Z.inj_mul.
Qed.
Lemma inj_div x y : Z.of_nat (x `div` y) = (Z.of_nat x) `div` (Z.of_nat y).
Proof.
destruct (decide (y = 0%nat)); [by subst; destruct x |].
apply Z.div_unique with (Z.of_nat $ x `mod` y)%nat.
{ left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
apply Nat.mod_bound_pos; lia. }
by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
Lemma inj_mod x y : Z.of_nat (x `mod` y) = (Z.of_nat x) `mod` (Z.of_nat y).
Proof.
destruct (decide (y = 0%nat)); [by subst; destruct x |].
apply Z.mod_unique with (Z.of_nat $ x `div` y)%nat.
{ left. rewrite <-(Nat2Z.inj_le 0), <-Nat2Z.inj_lt.
apply Nat.mod_bound_pos; lia. }
by rewrite <-Nat2Z.inj_mul, <-Nat2Z.inj_add, <-Nat.div_mod.
Qed.
End Nat2Z.
Module Z2Nat.
Export Znat.Z2Nat.
Lemma neq_0_pos x : Z.to_nat x ≠ 0%nat → 0 < x.
Proof. by destruct x. Qed.
Lemma neq_0_nonneg x : Z.to_nat x ≠ 0%nat → 0 ≤ x.
Proof. by destruct x. Qed.
Lemma nonpos x : x ≤ 0 → Z.to_nat x = 0%nat.
Proof. destruct x; simpl; auto using Z2Nat.inj_neg. by intros []. Qed.
Lemma inj_pow (x y : nat) : Z.of_nat (x ^ y) = (Z.of_nat x) ^ (Z.of_nat y).
Proof.
induction y as [|y IH]; [by rewrite Z.pow_0_r, Nat.pow_0_r|].
by rewrite Nat.pow_succ_r, Nat2Z.inj_succ, Z.pow_succ_r,
Nat2Z.inj_mul, IH by auto with zpos.
Qed.
Lemma divide n m :
0 ≤ n → 0 ≤ m → (Z.to_nat n | Z.to_nat m)%nat ↔ (n | m).
Proof. intros. by rewrite <-Nat2Z.divide, !Z2Nat.id by done. Qed.
Lemma inj_div x y :
0 ≤ x → 0 ≤ y →
Z.to_nat (x `div` y) = (Z.to_nat x `div` Z.to_nat y)%nat.
Proof.
intros. destruct (decide (y = Z.of_nat 0%nat)); [by subst; destruct x|].
pose proof (Z.div_pos x y).
apply (base.inj Z.of_nat). by rewrite Nat2Z.inj_div, !Z2Nat.id by lia.
Qed.
Lemma inj_mod x y :
0 ≤ x → 0 ≤ y →
Z.to_nat (x `mod` y) = (Z.to_nat x `mod` Z.to_nat y)%nat.
Proof.
intros. destruct (decide (y = Z.of_nat 0%nat)); [by subst; destruct x|].
pose proof (Z.mod_pos x y).
apply (base.inj Z.of_nat). by rewrite Nat2Z.inj_mod, !Z2Nat.id by lia.
Qed.
End Z2Nat.
(** ** [bool_to_Z] *)
Definition bool_to_Z (b : bool) : Z :=
if b then 1 else 0.
Lemma bool_to_Z_bound b : 0 ≤ bool_to_Z b < 2.
Proof. destruct b; simpl; lia. Qed.
Lemma bool_to_Z_eq_0 b : bool_to_Z b = 0 ↔ b = false.
Proof. destruct b; naive_solver. Qed.
Lemma bool_to_Z_neq_0 b : bool_to_Z b ≠ 0 ↔ b = true.
Proof. destruct b; naive_solver. Qed.
Lemma bool_to_Z_spec b n : Z.testbit (bool_to_Z b) n = bool_decide (n = 0) && b.
Proof. by destruct b, n. Qed.
Local Close Scope Z_scope.
(** * Injectivity of casts *)
Module Nat2N.
Export Nnat.Nat2N.
Global Instance inj' : Inj (=) (=) N.of_nat := Nat2N.inj.
End Nat2N.
Module N2Nat.
Export Nnat.N2Nat.
Global Instance inj' : Inj (=) (=) N.to_nat := N2Nat.inj.
End N2Nat.
Module Pos2Nat.
Export Pnat.Pos2Nat.
Global Instance inj' : Inj (=) (=) Pos.to_nat := Pos2Nat.inj.
End Pos2Nat.
Module SuccNat2Pos.
Export Pnat.SuccNat2Pos.
Global Instance inj' : Inj (=) (=) Pos.of_succ_nat := SuccNat2Pos.inj.
End SuccNat2Pos.
Module N2Z.
Export Znat.N2Z.
Global Instance inj' : Inj (=) (=) Z.of_N := N2Z.inj.
End N2Z.
(* Add others here. *)
(** * Notations and properties of [Qc] *)
Global Typeclasses Opaque Qcle.
Global Typeclasses Opaque Qclt.
Local Open Scope Qc_scope.
Delimit Scope Qc_scope with Qc.
Notation "1" := (Q2Qc 1) : Qc_scope.
Notation "2" := (1+1) : Qc_scope.
Notation "- 1" := (Qcopp 1) : Qc_scope.
Notation "- 2" := (Qcopp 2) : Qc_scope.
Infix "≤" := Qcle : Qc_scope.
Notation "x ≤ y ≤ z" := (x ≤ y ∧ y ≤ z) : Qc_scope.
Notation "x ≤ y < z" := (x ≤ y ∧ y < z) : Qc_scope.
Notation "x < y < z" := (x < y ∧ y < z) : Qc_scope.
Notation "x < y ≤ z" := (x < y ∧ y ≤ z) : Qc_scope.
Notation "x ≤ y ≤ z ≤ z'" := (x ≤ y ∧ y ≤ z ∧ z ≤ z') : Qc_scope.
Notation "(≤)" := Qcle (only parsing) : Qc_scope.
Notation "(<)" := Qclt (only parsing) : Qc_scope.
Global Hint Extern 1 (_ ≤ _) => reflexivity || discriminate : core.
Global Arguments Qred : simpl never.
Global Instance Qcplus_assoc' : Assoc (=) Qcplus := Qcplus_assoc.
Global Instance Qcplus_comm' : Comm (=) Qcplus := Qcplus_comm.
Global Instance Qcplus_left_id : LeftId (=) 0 Qcplus := Qcplus_0_l.
Global Instance Qcplus_right_id : RightId (=) 0 Qcplus := Qcplus_0_r.
Global Instance Qcminus_right_id : RightId (=) 0 Qcminus.
Proof. unfold RightId. intros. ring. Qed.
Global Instance Qcmult_assoc' : Assoc (=) Qcmult := Qcmult_assoc.
Global Instance Qcmult_comm' : Comm (=) Qcmult := Qcmult_comm.
Global Instance Qcmult_left_id : LeftId (=) 1 Qcmult := Qcmult_1_l.
Global Instance Qcmult_right_id : RightId (=) 1 Qcmult := Qcmult_1_r.
Global Instance Qcmult_left_absorb : LeftAbsorb (=) 0 Qcmult := Qcmult_0_l.
Global Instance Qcmult_right_absorb : RightAbsorb (=) 0 Qcmult := Qcmult_0_r.
Global Instance Qcdiv_right_id : RightId (=) 1 Qcdiv.
Proof. intros x. rewrite <-(Qcmult_1_l (x / 1)), Qcmult_div_r; done. Qed.
Lemma inject_Z_Qred n : Qred (inject_Z n) = inject_Z n.
Proof. apply Qred_identity; auto using Z.gcd_1_r. Qed.
Definition Qc_of_Z (n : Z) : Qc := Qcmake _ (inject_Z_Qred n).
Global Instance Qc_eq_dec: EqDecision Qc := Qc_eq_dec.
Global Program Instance Qc_le_dec: RelDecision Qcle := λ x y,
if Qclt_le_dec y x then right _ else left _.
Next Obligation. intros x y; apply Qclt_not_le. Qed.
Next Obligation. done. Qed.
Global Program Instance Qc_lt_dec: RelDecision Qclt := λ x y,
if Qclt_le_dec x y then left _ else right _.
Next Obligation. done. Qed.
Next Obligation. intros x y; apply Qcle_not_lt. Qed.
Global Instance Qc_lt_pi x y : ProofIrrel (x < y).
Proof. unfold Qclt. apply _. Qed.
Global Instance Qc_le_po: PartialOrder (≤).
Proof.
repeat split; red; [apply Qcle_refl | apply Qcle_trans | apply Qcle_antisym].
Qed.
Global Instance Qc_lt_strict: StrictOrder (<).
Proof.
split; red; [|apply Qclt_trans].
intros x Hx. by destruct (Qclt_not_eq x x).
Qed.
Global Instance Qc_le_total: Total Qcle.
Proof. intros x y. destruct (Qclt_le_dec x y); auto using Qclt_le_weak. Qed.
Lemma Qcplus_diag x : (x + x)%Qc = (2 * x)%Qc.
Proof. ring. Qed.
Lemma Qcle_ngt (x y : Qc) : x ≤ y ↔ ¬y < x.
Proof. split; auto using Qcle_not_lt, Qcnot_lt_le. Qed.
Lemma Qclt_nge (x y : Qc) : x < y ↔ ¬y ≤ x.
Proof. split; auto using Qclt_not_le, Qcnot_le_lt. Qed.
Lemma Qcplus_le_mono_l (x y z : Qc) : x ≤ y ↔ z + x ≤ z + y.
Proof.
split; intros.
- by apply Qcplus_le_compat.
- replace x with ((0 - z) + (z + x)) by ring.
replace y with ((0 - z) + (z + y)) by ring.
by apply Qcplus_le_compat.
Qed.
Lemma Qcplus_le_mono_r (x y z : Qc) : x ≤ y ↔ x + z ≤ y + z.
Proof. rewrite !(Qcplus_comm _ z). apply Qcplus_le_mono_l. Qed.
Lemma Qcplus_lt_mono_l (x y z : Qc) : x < y ↔ z + x < z + y.
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_l. Qed.
Lemma Qcplus_lt_mono_r (x y z : Qc) : x < y ↔ x + z < y + z.
Proof. by rewrite !Qclt_nge, <-Qcplus_le_mono_r. Qed.
Global Instance Qcopp_inj : Inj (=) (=) Qcopp.
Proof.
intros x y H. by rewrite <-(Qcopp_involutive x), H, Qcopp_involutive.
Qed.
Global Instance Qcplus_inj_r z : Inj (=) (=) (Qcplus z).
Proof.
intros x y H. by apply (anti_symm (≤));rewrite (Qcplus_le_mono_l _ _ z), H.
Qed.
Global Instance Qcplus_inj_l z : Inj (=) (=) (λ x, x + z).
Proof.
intros x y H. by apply (anti_symm (≤)); rewrite (Qcplus_le_mono_r _ _ z), H.
Qed.
Lemma Qcplus_pos_nonneg (x y : Qc) : 0 < x → 0 ≤ y → 0 < x + y.
Proof.
intros. apply Qclt_le_trans with (x + 0); [by rewrite Qcplus_0_r|].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonneg_pos (x y : Qc) : 0 ≤ x → 0 < y → 0 < x + y.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_pos_nonneg. Qed.
Lemma Qcplus_pos_pos (x y : Qc) : 0 < x → 0 < y → 0 < x + y.
Proof. auto using Qcplus_pos_nonneg, Qclt_le_weak. Qed.
Lemma Qcplus_nonneg_nonneg (x y : Qc) : 0 ≤ x → 0 ≤ y → 0 ≤ x + y.
Proof.
intros. trans (x + 0); [by rewrite Qcplus_0_r|].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_neg_nonpos (x y : Qc) : x < 0 → y ≤ 0 → x + y < 0.
Proof.
intros. apply Qcle_lt_trans with (x + 0); [|by rewrite Qcplus_0_r].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcplus_nonpos_neg (x y : Qc) : x ≤ 0 → y < 0 → x + y < 0.
Proof. rewrite (Qcplus_comm x). auto using Qcplus_neg_nonpos. Qed.
Lemma Qcplus_neg_neg (x y : Qc) : x < 0 → y < 0 → x + y < 0.
Proof. auto using Qcplus_nonpos_neg, Qclt_le_weak. Qed.
Lemma Qcplus_nonpos_nonpos (x y : Qc) : x ≤ 0 → y ≤ 0 → x + y ≤ 0.
Proof.
intros. trans (x + 0); [|by rewrite Qcplus_0_r].
by apply Qcplus_le_mono_l.
Qed.
Lemma Qcmult_le_mono_nonneg_l x y z : 0 ≤ z → x ≤ y → z * x ≤ z * y.
Proof. intros. rewrite !(Qcmult_comm z). by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_nonneg_r x y z : 0 ≤ z → x ≤ y → x * z ≤ y * z.
Proof. intros. by apply Qcmult_le_compat_r. Qed.
Lemma Qcmult_le_mono_pos_l x y z : 0 < z → x ≤ y ↔ z * x ≤ z * y.
Proof.
split; auto using Qcmult_le_mono_nonneg_l, Qclt_le_weak.
rewrite !Qcle_ngt, !(Qcmult_comm z).
intuition auto using Qcmult_lt_compat_r.
Qed.
Lemma Qcmult_le_mono_pos_r x y z : 0 < z → x ≤ y ↔ x * z ≤ y * z.
Proof. rewrite !(Qcmult_comm _ z). by apply Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_l x y z : 0 < z → x < y ↔ z * x < z * y.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_l. Qed.
Lemma Qcmult_lt_mono_pos_r x y z : 0 < z → x < y ↔ x * z < y * z.
Proof. intros. by rewrite !Qclt_nge, <-Qcmult_le_mono_pos_r. Qed.
Lemma Qcmult_pos_pos x y : 0 < x → 0 < y → 0 < x * y.
Proof.
intros. apply Qcle_lt_trans with (0 * y); [by rewrite Qcmult_0_l|].
by apply Qcmult_lt_mono_pos_r.
Qed.
Lemma Qcmult_nonneg_nonneg x y : 0 ≤ x → 0 ≤ y → 0 ≤ x * y.
Proof.
intros. trans (0 * y); [by rewrite Qcmult_0_l|].
by apply Qcmult_le_mono_nonneg_r.
Qed.
Lemma Qcinv_pos x : 0 < x → 0 < /x.
Proof.
intros. assert (0 ≠ x) by (by apply Qclt_not_eq).
by rewrite (Qcmult_lt_mono_pos_r _ _ x), Qcmult_0_l, Qcmult_inv_l by done.
Qed.
Lemma Z2Qc_inj_0 : Qc_of_Z 0 = 0.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj_1 : Qc_of_Z 1 = 1.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj_2 : Qc_of_Z 2 = 2.
Proof. by apply Qc_is_canon. Qed.
Lemma Z2Qc_inj n m : Qc_of_Z n = Qc_of_Z m → n = m.
Proof. by injection 1. Qed.
Lemma Z2Qc_inj_iff n m : Qc_of_Z n = Qc_of_Z m ↔ n = m.
Proof. split; [ auto using Z2Qc_inj | by intros -> ]. Qed.
Lemma Z2Qc_inj_le n m : (n ≤ m)%Z ↔ Qc_of_Z n ≤ Qc_of_Z m.
Proof. by rewrite Zle_Qle. Qed.
Lemma Z2Qc_inj_lt n m : (n < m)%Z ↔ Qc_of_Z n < Qc_of_Z m.
Proof. by rewrite Zlt_Qlt. Qed.
Lemma Z2Qc_inj_add n m : Qc_of_Z (n + m) = Qc_of_Z n + Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_plus. Qed.
Lemma Z2Qc_inj_mul n m : Qc_of_Z (n * m) = Qc_of_Z n * Qc_of_Z m.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_mult. Qed.
Lemma Z2Qc_inj_opp n : Qc_of_Z (-n) = -Qc_of_Z n.
Proof. apply Qc_is_canon; simpl. by rewrite Qred_correct, inject_Z_opp. Qed.
Lemma Z2Qc_inj_sub n m : Qc_of_Z (n - m) = Qc_of_Z n - Qc_of_Z m.
Proof.
apply Qc_is_canon; simpl.
by rewrite !Qred_correct, <-inject_Z_opp, <-inject_Z_plus.
Qed.
Local Close Scope Qc_scope.
(** * Positive rationals *)
Declare Scope Qp_scope.
Delimit Scope Qp_scope with Qp.
Record Qp := mk_Qp { Qp_to_Qc : Qc ; Qp_prf : (0 < Qp_to_Qc)%Qc }.
Add Printing Constructor Qp.
Bind Scope Qp_scope with Qp.
Global Arguments Qp_to_Qc _%Qp : assert.
Program Definition pos_to_Qp (n : positive) : Qp := mk_Qp (Qc_of_Z $ Z.pos n) _.
Next Obligation. intros n. by rewrite <-Z2Qc_inj_0, <-Z2Qc_inj_lt. Qed.
Global Arguments pos_to_Qp : simpl never.
Local Open Scope Qp_scope.
Module Qp.
Lemma to_Qc_inj_iff p q : Qp_to_Qc p = Qp_to_Qc q ↔ p = q.
Proof.
split; [|by intros ->].
destruct p, q; intros; simplify_eq/=; f_equal; apply (proof_irrel _).
Qed.
Global Instance eq_dec : EqDecision Qp.
Proof.
refine (λ p q, cast_if (decide (Qp_to_Qc p = Qp_to_Qc q)));
abstract (by rewrite <-to_Qc_inj_iff).
Defined.
Definition add (p q : Qp) : Qp :=
let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in
mk_Qp (p + q) (Qcplus_pos_pos _ _ Hp Hq).
Global Arguments add : simpl never.
Definition sub (p q : Qp) : option Qp :=
let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in
let pq := (p - q)%Qc in
Hpq ← guard (0 < pq)%Qc; Some (mk_Qp pq Hpq).
Global Arguments sub : simpl never.
Definition mul (p q : Qp) : Qp :=
let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in
mk_Qp (p * q) (Qcmult_pos_pos _ _ Hp Hq).
Global Arguments mul : simpl never.
Definition inv (q : Qp) : Qp :=
let 'mk_Qp q Hq := q return _ in
mk_Qp (/ q)%Qc (Qcinv_pos _ Hq).
Global Arguments inv : simpl never.
Definition div (p q : Qp) : Qp := mul p (inv q).
Global Typeclasses Opaque div.
Global Arguments div : simpl never.
Definition le (p q : Qp) : Prop :=
let 'mk_Qp p _ := p in let 'mk_Qp q _ := q in (p ≤ q)%Qc.
Definition lt (p q : Qp) : Prop :=
let 'mk_Qp p _ := p in let 'mk_Qp q _ := q in (p < q)%Qc.
Lemma to_Qc_inj_add p q : Qp_to_Qc (add p q) = (Qp_to_Qc p + Qp_to_Qc q)%Qc.
Proof. by destruct p, q. Qed.
Lemma to_Qc_inj_mul p q : Qp_to_Qc (mul p q) = (Qp_to_Qc p * Qp_to_Qc q)%Qc.
Proof. by destruct p, q. Qed.
Lemma to_Qc_inj_le p q : le p q ↔ (Qp_to_Qc p ≤ Qp_to_Qc q)%Qc.
Proof. by destruct p, q. Qed.
Lemma to_Qc_inj_lt p q : lt p q ↔ (Qp_to_Qc p < Qp_to_Qc q)%Qc.
Proof. by destruct p, q. Qed.
Global Instance le_dec : RelDecision le.
Proof.
refine (λ p q, cast_if (decide (Qp_to_Qc p ≤ Qp_to_Qc q)%Qc));
abstract (by rewrite to_Qc_inj_le).
Defined.
Global Instance lt_dec : RelDecision lt.
Proof.
refine (λ p q, cast_if (decide (Qp_to_Qc p < Qp_to_Qc q)%Qc));
abstract (by rewrite to_Qc_inj_lt).
Defined.
Global Instance lt_pi p q : ProofIrrel (lt p q).
Proof. destruct p, q; apply _. Qed.
Definition max (q p : Qp) : Qp := if decide (le q p) then p else q.
Definition min (q p : Qp) : Qp := if decide (le q p) then q else p.
Module Import notations.
Infix "+" := add : Qp_scope.
Infix "-" := sub : Qp_scope.
Infix "*" := mul : Qp_scope.
Notation "/ q" := (inv q) : Qp_scope.
Infix "/" := div : Qp_scope.
Notation "1" := (pos_to_Qp 1) : Qp_scope.
Notation "2" := (pos_to_Qp 2) : Qp_scope.
Notation "3" := (pos_to_Qp 3) : Qp_scope.
Notation "4" := (pos_to_Qp 4) : Qp_scope.
Infix "≤" := le : Qp_scope.
Infix "<" := lt : Qp_scope.
Notation "p ≤ q ≤ r" := (p ≤ q ∧ q ≤ r) : Qp_scope.
Notation "p ≤ q < r" := (p ≤ q ∧ q < r) : Qp_scope.
Notation "p < q < r" := (p < q ∧ q < r) : Qp_scope.
Notation "p < q ≤ r" := (p < q ∧ q ≤ r) : Qp_scope.
Notation "p ≤ q ≤ r ≤ r'" := (p ≤ q ∧ q ≤ r ∧ r ≤ r') : Qp_scope.
Notation "(≤)" := le (only parsing) : Qp_scope.
Notation "(<)" := lt (only parsing) : Qp_scope.
Infix "`max`" := max : Qp_scope.
Infix "`min`" := min : Qp_scope.
End notations.
Global Hint Extern 0 (_ ≤ _)%Qp => reflexivity : core.
Global Instance inhabited : Inhabited Qp := populate 1.
Global Instance add_assoc : Assoc (=) add.
Proof. intros [p ?] [q ?] [r ?]; apply to_Qc_inj_iff, Qcplus_assoc. Qed.
Global Instance add_comm : Comm (=) add.
Proof. intros [p ?] [q ?]; apply to_Qc_inj_iff, Qcplus_comm. Qed.
Global Instance add_inj_r p : Inj (=) (=) (add p).
Proof.
destruct p as [p ?].
intros [q1 ?] [q2 ?]. rewrite <-!to_Qc_inj_iff; simpl. apply (inj (Qcplus p)).
Qed.
Global Instance add_inj_l p : Inj (=) (=) (λ q, q + p).
Proof.
destruct p as [p ?].
intros [q1 ?] [q2 ?]. rewrite <-!to_Qc_inj_iff; simpl. apply (inj (λ q, q + p)%Qc).
Qed.
Global Instance mul_assoc : Assoc (=) mul.
Proof. intros [p ?] [q ?] [r ?]. apply Qp.to_Qc_inj_iff, Qcmult_assoc. Qed.
Global Instance mul_comm : Comm (=) mul.
Proof. intros [p ?] [q ?]; apply Qp.to_Qc_inj_iff, Qcmult_comm. Qed.
Global Instance mul_inj_r p : Inj (=) (=) (mul p).
Proof.
destruct p as [p ?]. intros [q1 ?] [q2 ?]. rewrite <-!Qp.to_Qc_inj_iff; simpl.
intros Hpq.
apply (anti_symm Qcle); apply (Qcmult_le_mono_pos_l _ _ p); by rewrite ?Hpq.
Qed.
Global Instance mul_inj_l p : Inj (=) (=) (λ q, q * p).
Proof.
intros q1 q2 Hpq. apply (inj (mul p)). by rewrite !(comm_L mul p).
Qed.
Lemma mul_add_distr_l p q r : p * (q + r) = p * q + p * r.
Proof. destruct p, q, r; by apply Qp.to_Qc_inj_iff, Qcmult_plus_distr_r. Qed.
Lemma mul_add_distr_r p q r : (p + q) * r = p * r + q * r.
Proof. destruct p, q, r; by apply Qp.to_Qc_inj_iff, Qcmult_plus_distr_l. Qed.
Lemma mul_1_l p : 1 * p = p.
Proof. destruct p; apply Qp.to_Qc_inj_iff, Qcmult_1_l. Qed.
Lemma mul_1_r p : p * 1 = p.
Proof. destruct p; apply Qp.to_Qc_inj_iff, Qcmult_1_r. Qed.
Global Instance mul_left_id : LeftId (=) 1 mul := mul_1_l.
Global Instance mul_right_id : RightId (=) 1 mul := mul_1_r.
Lemma add_1_1 : 1 + 1 = 2.
Proof. compute_done. Qed.
Lemma add_diag p : p + p = 2 * p.
Proof. by rewrite <-add_1_1, mul_add_distr_r, !mul_1_l. Qed.
Lemma mul_inv_l p : /p * p = 1.
Proof.
destruct p as [p ?]; apply Qp.to_Qc_inj_iff; simpl.
by rewrite Qcmult_inv_l, Z2Qc_inj_1 by (by apply not_symmetry, Qclt_not_eq).
Qed.
Lemma mul_inv_r p : p * /p = 1.
Proof. by rewrite (comm_L mul), mul_inv_l. Qed.
Lemma inv_mul_distr p q : /(p * q) = /p * /q.
Proof.
apply (inj (mul (p * q))).
rewrite mul_inv_r, (comm_L mul p), <-(assoc_L _), (assoc_L mul p).
by rewrite mul_inv_r, mul_1_l, mul_inv_r.
Qed.
Lemma inv_involutive p : / /p = p.
Proof.
rewrite <-(mul_1_l (/ /p)), <-(mul_inv_r p), <-(assoc_L _).
by rewrite mul_inv_r, mul_1_r.
Qed.
Global Instance inv_inj : Inj (=) (=) inv.
Proof.
intros p1 p2 Hp. apply (inj (mul (/p1))).
by rewrite mul_inv_l, Hp, mul_inv_l.
Qed.
Lemma inv_1 : /1 = 1.
Proof. compute_done. Qed.
Lemma inv_half_half : /2 + /2 = 1.
Proof. compute_done. Qed.
Lemma inv_quarter_quarter : /4 + /4 = /2.
Proof. compute_done. Qed.
Lemma div_diag p : p / p = 1.
Proof. apply mul_inv_r. Qed.
Lemma mul_div_l p q : (p / q) * q = p.
Proof. unfold div. by rewrite <-(assoc_L _), mul_inv_l, mul_1_r. Qed.
Lemma mul_div_r p q : q * (p / q) = p.
Proof. by rewrite (comm_L mul q), mul_div_l. Qed.
Lemma div_add_distr p q r : (p + q) / r = p / r + q / r.
Proof. apply mul_add_distr_r. Qed.
Lemma div_div p q r : (p / q) / r = p / (q * r).
Proof. unfold div. by rewrite inv_mul_distr, (assoc_L _). Qed.
Lemma div_mul_cancel_l p q r : (r * p) / (r * q) = p / q.
Proof.
rewrite <-div_div. f_equiv. unfold div.
by rewrite (comm_L mul r), <-(assoc_L _), mul_inv_r, mul_1_r.
Qed.
Lemma div_mul_cancel_r p q r : (p * r) / (q * r) = p / q.
Proof. by rewrite <-!(comm_L mul r), div_mul_cancel_l. Qed.
Lemma div_1 p : p / 1 = p.
Proof. by rewrite <-(mul_1_r (p / 1)), mul_div_l. Qed.
Lemma div_2 p : p / 2 + p / 2 = p.
Proof.
rewrite <-div_add_distr, add_diag.
rewrite <-(mul_1_r 2) at 2. by rewrite div_mul_cancel_l, div_1.
Qed.
Lemma div_2_mul p q : p / (2 * q) + p / (2 * q) = p / q.
Proof. by rewrite <-div_add_distr, add_diag, div_mul_cancel_l. Qed.
Global Instance div_right_id : RightId (=) 1 div := div_1.
Lemma half_half : 1 / 2 + 1 / 2 = 1.
Proof. compute_done. Qed.
Lemma quarter_quarter : 1 / 4 + 1 / 4 = 1 / 2.
Proof. compute_done. Qed.
Lemma quarter_three_quarter : 1 / 4 + 3 / 4 = 1.
Proof. compute_done. Qed.
Lemma three_quarter_quarter : 3 / 4 + 1 / 4 = 1.
Proof. compute_done. Qed.
Global Instance div_inj_r p : Inj (=) (=) (div p).
Proof. unfold div; apply _. Qed.
Global Instance div_inj_l p : Inj (=) (=) (λ q, q / p)%Qp.
Proof. unfold div; apply _. Qed.
Global Instance le_po : PartialOrder (≤).
Proof.
split; [split|].
- intros p. by apply to_Qc_inj_le.
- intros p q r. rewrite !to_Qc_inj_le. by etrans.
- intros p q. rewrite !to_Qc_inj_le, <-to_Qc_inj_iff. apply Qcle_antisym.
Qed.
Global Instance lt_strict : StrictOrder (<).
Proof.
split.
- intros p ?%to_Qc_inj_lt. by apply (irreflexivity (<)%Qc (Qp_to_Qc p)).
- intros p q r. rewrite !to_Qc_inj_lt. by etrans.
Qed.
Global Instance le_total: Total (≤).
Proof. intros p q. rewrite !to_Qc_inj_le. apply (total Qcle). Qed.
Lemma lt_le_incl p q : p < q → p ≤ q.
Proof. rewrite to_Qc_inj_lt, to_Qc_inj_le. apply Qclt_le_weak. Qed.
Lemma le_lteq p q : p ≤ q ↔ p < q ∨ p = q.
Proof.
rewrite to_Qc_inj_lt, to_Qc_inj_le, <-Qp.to_Qc_inj_iff. split.
- intros [?| ->]%Qcle_lt_or_eq; auto.
- intros [?| ->]; auto using Qclt_le_weak.
Qed.
Lemma lt_ge_cases p q : {p < q} + {q ≤ p}.
Proof.
refine (cast_if (Qclt_le_dec (Qp_to_Qc p) (Qp_to_Qc q)%Qc));
[by apply to_Qc_inj_lt|by apply to_Qc_inj_le].
Defined.
Lemma le_lt_trans p q r : p ≤ q → q < r → p < r.
Proof. rewrite !to_Qc_inj_lt, to_Qc_inj_le. apply Qcle_lt_trans. Qed.
Lemma lt_le_trans p q r : p < q → q ≤ r → p < r.
Proof. rewrite !to_Qc_inj_lt, to_Qc_inj_le. apply Qclt_le_trans. Qed.
Lemma le_ngt p q : p ≤ q ↔ ¬q < p.
Proof.
rewrite !to_Qc_inj_lt, to_Qc_inj_le.
split; auto using Qcle_not_lt, Qcnot_lt_le.
Qed.
Lemma lt_nge p q : p < q ↔ ¬q ≤ p.
Proof.
rewrite !to_Qc_inj_lt, to_Qc_inj_le.
split; auto using Qclt_not_le, Qcnot_le_lt.
Qed.
Lemma add_le_mono_l p q r : p ≤ q ↔ r + p ≤ r + q.
Proof. rewrite !to_Qc_inj_le. destruct p, q, r; apply Qcplus_le_mono_l. Qed.
Lemma add_le_mono_r p q r : p ≤ q ↔ p + r ≤ q + r.
Proof. rewrite !(comm_L add _ r). apply add_le_mono_l. Qed.
Lemma add_le_mono q p n m : q ≤ n → p ≤ m → q + p ≤ n + m.
Proof. intros. etrans; [by apply add_le_mono_l|by apply add_le_mono_r]. Qed.
Lemma add_lt_mono_l p q r : p < q ↔ r + p < r + q.
Proof. by rewrite !lt_nge, <-add_le_mono_l. Qed.
Lemma add_lt_mono_r p q r : p < q ↔ p + r < q + r.
Proof. by rewrite !lt_nge, <-add_le_mono_r. Qed.
Lemma add_lt_mono q p n m : q < n → p < m → q + p < n + m.
Proof. intros. etrans; [by apply add_lt_mono_l|by apply add_lt_mono_r]. Qed.
Lemma mul_le_mono_l p q r : p ≤ q ↔ r * p ≤ r * q.
Proof.
rewrite !to_Qc_inj_le. destruct p, q, r; by apply Qcmult_le_mono_pos_l.
Qed.
Lemma mul_le_mono_r p q r : p ≤ q ↔ p * r ≤ q * r.
Proof. rewrite !(comm_L mul _ r). apply mul_le_mono_l. Qed.
Lemma mul_le_mono q p n m : q ≤ n → p ≤ m → q * p ≤ n * m.
Proof. intros. etrans; [by apply mul_le_mono_l|by apply mul_le_mono_r]. Qed.
Lemma mul_lt_mono_l p q r : p < q ↔ r * p < r * q.
Proof.
rewrite !to_Qc_inj_lt. destruct p, q, r; by apply Qcmult_lt_mono_pos_l.
Qed.
Lemma mul_lt_mono_r p q r : p < q ↔ p * r < q * r.
Proof. rewrite !(comm_L mul _ r). apply mul_lt_mono_l. Qed.
Lemma mul_lt_mono q p n m : q < n → p < m → q * p < n * m.
Proof. intros. etrans; [by apply mul_lt_mono_l|by apply mul_lt_mono_r]. Qed.
Lemma lt_add_l p q : p < p + q.
Proof.
destruct p as [p ?], q as [q ?]. apply to_Qc_inj_lt; simpl.
rewrite <- (Qcplus_0_r p) at 1. by rewrite <-Qcplus_lt_mono_l.
Qed.
Lemma lt_add_r p q : q < p + q.
Proof. rewrite (comm_L add). apply lt_add_l. Qed.
Lemma not_add_le_l p q : ¬(p + q ≤ p).
Proof. apply lt_nge, lt_add_l. Qed.
Lemma not_add_le_r p q : ¬(p + q ≤ q).
Proof. apply lt_nge, lt_add_r. Qed.
Lemma add_id_free q p : q + p ≠ q.
Proof. intro Heq. apply (not_add_le_l q p). by rewrite Heq. Qed.
Lemma le_add_l p q : p ≤ p + q.
Proof. apply lt_le_incl, lt_add_l. Qed.
Lemma le_add_r p q : q ≤ p + q.
Proof. apply lt_le_incl, lt_add_r. Qed.
Lemma sub_Some p q r : p - q = Some r ↔ p = q + r.
Proof.
destruct p as [p Hp], q as [q Hq], r as [r Hr].
unfold sub, add; simpl; rewrite <-Qp.to_Qc_inj_iff; simpl. split.
- intros; simplify_option_eq. unfold Qcminus.
by rewrite (Qcplus_comm p), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l.
- intros ->. unfold Qcminus.
rewrite <-Qcplus_assoc, (Qcplus_comm r), Qcplus_assoc.
rewrite Qcplus_opp_r, Qcplus_0_l. simplify_option_eq; [|done].
f_equal. by apply Qp.to_Qc_inj_iff.
Qed.
Lemma lt_sum p q : p < q ↔ ∃ r, q = p + r.
Proof.
destruct p as [p Hp], q as [q Hq]. rewrite to_Qc_inj_lt; simpl.
split.
- intros Hlt%Qclt_minus_iff. exists (mk_Qp (q - p) Hlt).
apply Qp.to_Qc_inj_iff; simpl. unfold Qcminus.
by rewrite (Qcplus_comm q), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l.
- intros [[r ?] ?%Qp.to_Qc_inj_iff]; simplify_eq/=.
rewrite <-(Qcplus_0_r p) at 1. by apply Qcplus_lt_mono_l.
Qed.
Lemma sub_None p q : p - q = None ↔ p ≤ q.
Proof.
rewrite le_ngt, lt_sum, eq_None_not_Some.
by setoid_rewrite <-sub_Some.
Qed.
Lemma sub_diag p : p - p = None.
Proof. by apply sub_None. Qed.
Lemma add_sub p q : (p + q) - q = Some p.
Proof. apply sub_Some. by rewrite (comm_L add). Qed.
Lemma inv_lt_mono p q : p < q ↔ /q < /p.
Proof.
revert p q. cut (∀ p q, p < q → / q < / p).
{ intros help p q. split; [apply help|]. intros.
rewrite <-(inv_involutive p), <-(inv_involutive q). by apply help. }
intros p q Hpq. apply (mul_lt_mono_l _ _ q). rewrite mul_inv_r.
apply (mul_lt_mono_r _ _ p). rewrite <-(assoc_L _), mul_inv_l.
by rewrite mul_1_l, mul_1_r.
Qed.
Lemma inv_le_mono p q : p ≤ q ↔ /q ≤ /p.
Proof. by rewrite !le_ngt, inv_lt_mono. Qed.
Lemma div_le_mono_l p q r : q ≤ p ↔ r / p ≤ r / q.
Proof. unfold div. by rewrite <-mul_le_mono_l, inv_le_mono. Qed.
Lemma div_le_mono_r p q r : p ≤ q ↔ p / r ≤ q / r.
Proof. apply mul_le_mono_r. Qed.
Lemma div_lt_mono_l p q r : q < p ↔ r / p < r / q.
Proof. unfold div. by rewrite <-mul_lt_mono_l, inv_lt_mono. Qed.
Lemma div_lt_mono_r p q r : p < q ↔ p / r < q / r.
Proof. apply mul_lt_mono_r. Qed.
Lemma div_lt p q : 1 < q → p / q < p.
Proof. by rewrite (div_lt_mono_l _ _ p), div_1. Qed.
Lemma div_le p q : 1 ≤ q → p / q ≤ p.
Proof. by rewrite (div_le_mono_l _ _ p), div_1. Qed.
Lemma lower_bound q1 q2 : ∃ q q1' q2', q1 = q + q1' ∧ q2 = q + q2'.
Proof.
revert q1 q2. cut (∀ q1 q2 : Qp, q1 ≤ q2 →
∃ q q1' q2', q1 = q + q1' ∧ q2 = q + q2').
{ intros help q1 q2.
destruct (lt_ge_cases q2 q1) as [Hlt|Hle]; eauto.
destruct (help q2 q1) as (q&q1'&q2'&?&?); eauto using lt_le_incl. }
intros q1 q2 Hq. exists (q1 / 2)%Qp, (q1 / 2)%Qp.
assert (q1 / 2 < q2) as [q2' ->]%lt_sum.
{ eapply lt_le_trans, Hq. by apply div_lt. }
eexists; split; [|done]. by rewrite div_2.
Qed.
Lemma lower_bound_lt q1 q2 : ∃ q : Qp, q < q1 ∧ q < q2.
Proof.
destruct (lower_bound q1 q2) as (qmin & q1' & q2' & [-> ->]).
exists qmin. split; eapply lt_sum; eauto.
Qed.
Lemma cross_split a b c d :
a + b = c + d →
∃ ac ad bc bd, ac + ad = a ∧ bc + bd = b ∧ ac + bc = c ∧ ad + bd = d.
Proof.
intros H. revert a b c d H. cut (∀ a b c d : Qp,
a < c → a + b = c + d →
∃ ac ad bc bd, ac + ad = a ∧ bc + bd = b ∧ ac + bc = c ∧ ad + bd = d)%Qp.
{ intros help a b c d Habcd.
destruct (lt_ge_cases a c) as [?|[?| ->]%le_lteq].
- auto.
- destruct (help c d a b); [done..|]. naive_solver.
- apply (inj (add a)) in Habcd as ->.
destruct (lower_bound a d) as (q&a'&d'&->&->).
exists a', q, q, d'. repeat split; done || by rewrite (comm_L add). }
intros a b c d [e ->]%lt_sum. rewrite <-(assoc_L _). intros ->%(inj (add a)).
destruct (lower_bound a d) as (q&a'&d'&->&->).
eexists a', q, (q + e)%Qp, d'; split_and?; [by rewrite (comm_L add)|..|done].
- by rewrite (assoc_L _), (comm_L add e).
- by rewrite (assoc_L _), (comm_L add a').
Qed.
Lemma bounded_split p r : ∃ q1 q2 : Qp, q1 ≤ r ∧ p = q1 + q2.
Proof.
destruct (lt_ge_cases r p) as [[q ->]%lt_sum|?].
{ by exists r, q. }
exists (p / 2)%Qp, (p / 2)%Qp; split.
+ trans p; [|done]. by apply div_le.
+ by rewrite div_2.
Qed.
Lemma max_spec q p : (q < p ∧ q `max` p = p) ∨ (p ≤ q ∧ q `max` p = q).
Proof.
unfold max.
destruct (decide (q ≤ p)) as [[?| ->]%le_lteq|?]; [by auto..|].
right. split; [|done]. by apply lt_le_incl, lt_nge.
Qed.
Lemma max_spec_le q p : (q ≤ p ∧ q `max` p = p) ∨ (p ≤ q ∧ q `max` p = q).
Proof. destruct (max_spec q p) as [[?%lt_le_incl?]|]; [left|right]; done. Qed.
Global Instance max_assoc : Assoc (=) max.
Proof.
intros q p o. unfold max. destruct (decide (q ≤ p)), (decide (p ≤ o));
try by rewrite ?decide_True by (by etrans).
rewrite decide_False by done.
by rewrite decide_False by (apply lt_nge; etrans; by apply lt_nge).
Qed.
Global Instance max_comm : Comm (=) max.
Proof.
intros q p.
destruct (max_spec_le q p) as [[?->]|[?->]],
(max_spec_le p q) as [[?->]|[?->]]; done || by apply (anti_symm (≤)).
Qed.
Lemma max_id q : q `max` q = q.
Proof. by destruct (max_spec q q) as [[_->]|[_->]]. Qed.
Lemma le_max_l q p : q ≤ q `max` p.
Proof. unfold max. by destruct (decide (q ≤ p)). Qed.
Lemma le_max_r q p : p ≤ q `max` p.
Proof. rewrite (comm_L max q). apply le_max_l. Qed.
Lemma max_add q p : q `max` p ≤ q + p.
Proof.
unfold max.
destruct (decide (q ≤ p)); [apply le_add_r|apply le_add_l].
Qed.
Lemma max_lub_l q p o : q `max` p ≤ o → q ≤ o.
Proof. unfold max. destruct (decide (q ≤ p)); [by etrans|done]. Qed.
Lemma max_lub_r q p o : q `max` p ≤ o → p ≤ o.
Proof. rewrite (comm _ q). apply max_lub_l. Qed.
Lemma min_spec q p : (q < p ∧ q `min` p = q) ∨ (p ≤ q ∧ q `min` p = p).
Proof.
unfold min.
destruct (decide (q ≤ p)) as [[?| ->]%le_lteq|?]; [by auto..|].
right. split; [|done]. by apply lt_le_incl, lt_nge.
Qed.
Lemma min_spec_le q p : (q ≤ p ∧ q `min` p = q) ∨ (p ≤ q ∧ q `min` p = p).
Proof. destruct (min_spec q p) as [[?%lt_le_incl ?]|]; [left|right]; done. Qed.
Global Instance min_assoc : Assoc (=) min.
Proof.
intros q p o. unfold min.
destruct (decide (q ≤ p)), (decide (p ≤ o)); eauto using decide_False.
- by rewrite !decide_True by (by etrans).
- by rewrite decide_False by (apply lt_nge; etrans; by apply lt_nge).
Qed.
Global Instance min_comm : Comm (=) min.
Proof.
intros q p.
destruct (min_spec_le q p) as [[?->]|[?->]],
(min_spec_le p q) as [[? ->]|[? ->]]; done || by apply (anti_symm (≤)).
Qed.
Lemma min_id q : q `min` q = q.
Proof. by destruct (min_spec q q) as [[_->]|[_->]]. Qed.
Lemma le_min_r q p : q `min` p ≤ p.
Proof. by destruct (min_spec_le q p) as [[?->]|[?->]]. Qed.
Lemma le_min_l p q : p `min` q ≤ p.
Proof. rewrite (comm_L min p). apply le_min_r. Qed.
Lemma min_l_iff q p : q `min` p = q ↔ q ≤ p.
Proof.
destruct (min_spec_le q p) as [[?->]|[?->]]; [done|].
split; [by intros ->|]. intros. by apply (anti_symm (≤)).
Qed.
Lemma min_r_iff q p : q `min` p = p ↔ p ≤ q.
Proof. rewrite (comm_L min q). apply min_l_iff. Qed.
End Qp.
Export Qp.notations.
Lemma pos_to_Qp_1 : pos_to_Qp 1 = 1.
Proof. compute_done. Qed.
Lemma pos_to_Qp_inj n m : pos_to_Qp n = pos_to_Qp m → n = m.
Proof. by injection 1. Qed.
Lemma pos_to_Qp_inj_iff n m : pos_to_Qp n = pos_to_Qp m ↔ n = m.
Proof. split; [apply pos_to_Qp_inj|by intros ->]. Qed.
Lemma pos_to_Qp_inj_le n m : (n ≤ m)%positive ↔ pos_to_Qp n ≤ pos_to_Qp m.
Proof. rewrite Qp.to_Qc_inj_le; simpl. by rewrite <-Z2Qc_inj_le. Qed.
Lemma pos_to_Qp_inj_lt n m : (n < m)%positive ↔ pos_to_Qp n < pos_to_Qp m.
Proof. by rewrite Pos.lt_nle, Qp.lt_nge, <-pos_to_Qp_inj_le. Qed.
Lemma pos_to_Qp_add x y : pos_to_Qp x + pos_to_Qp y = pos_to_Qp (x + y).
Proof. apply Qp.to_Qc_inj_iff; simpl. by rewrite Pos2Z.inj_add, Z2Qc_inj_add. Qed.
Lemma pos_to_Qp_mul x y : pos_to_Qp x * pos_to_Qp y = pos_to_Qp (x * y).
Proof. apply Qp.to_Qc_inj_iff; simpl. by rewrite Pos2Z.inj_mul, Z2Qc_inj_mul. Qed.
Local Close Scope Qp_scope.
(** * Helper for working with accessing lists with wrap-around
See also [rotate] and [rotate_take] in [list.v] *)
(** [rotate_nat_add base offset len] computes [(base + offset) `mod`
len]. This is useful in combination with the [rotate] function on
lists, since the index [i] of [rotate n l] corresponds to the index
[rotate_nat_add n i (length i)] of the original list. The definition
uses [Z] for consistency with [rotate_nat_sub]. **)
Definition rotate_nat_add (base offset len : nat) : nat :=
Z.to_nat ((Z.of_nat base + Z.of_nat offset) `mod` Z.of_nat len)%Z.
(** [rotate_nat_sub base offset len] is the inverse of [rotate_nat_add
base offset len]. The definition needs to use modulo on [Z] instead of
on nat since otherwise we need the sidecondition [base < len] on
[rotate_nat_sub_add]. **)
Definition rotate_nat_sub (base offset len : nat) : nat :=
Z.to_nat ((Z.of_nat len + Z.of_nat offset - Z.of_nat base) `mod` Z.of_nat len)%Z.
Lemma rotate_nat_add_add_mod base offset len:
rotate_nat_add base offset len =
rotate_nat_add (base `mod` len) offset len.
Proof. unfold rotate_nat_add. by rewrite Nat2Z.inj_mod, Zplus_mod_idemp_l. Qed.
Lemma rotate_nat_add_alt base offset len:
base < len → offset < len →
rotate_nat_add base offset len =
if decide (base + offset < len) then base + offset else base + offset - len.
Proof.
unfold rotate_nat_add. intros ??. case_decide.
- rewrite Z.mod_small by lia. by rewrite <-Nat2Z.inj_add, Nat2Z.id.
- rewrite (Z.mod_in_range 1) by lia.
by rewrite Z.mul_1_l, <-Nat2Z.inj_add, <-Nat2Z.inj_sub,Nat2Z.id by lia.
Qed.
Lemma rotate_nat_sub_alt base offset len:
base < len → offset < len →
rotate_nat_sub base offset len =
if decide (offset < base) then len + offset - base else offset - base.
Proof.
unfold rotate_nat_sub. intros ??. case_decide.
- rewrite Z.mod_small by lia.
by rewrite <-Nat2Z.inj_add, <-Nat2Z.inj_sub, Nat2Z.id by lia.
- rewrite (Z.mod_in_range 1) by lia.
rewrite Z.mul_1_l, <-Nat2Z.inj_add, <-!Nat2Z.inj_sub,Nat2Z.id; lia.
Qed.
Lemma rotate_nat_add_0 base len :
base < len → rotate_nat_add base 0 len = base.
Proof.
intros ?. unfold rotate_nat_add.
rewrite Z.mod_small by lia. by rewrite Z.add_0_r, Nat2Z.id.
Qed.
Lemma rotate_nat_sub_0 base len :
base < len → rotate_nat_sub base base len = 0.
Proof. intros ?. rewrite rotate_nat_sub_alt by done. case_decide; lia. Qed.
Lemma rotate_nat_add_lt base offset len :
0 < len → rotate_nat_add base offset len < len.
Proof.
unfold rotate_nat_add. intros ?.
pose proof (Nat.mod_upper_bound (base + offset) len).
rewrite Z2Nat.inj_mod, Z2Nat.inj_add, !Nat2Z.id; lia.
Qed.
Lemma rotate_nat_sub_lt base offset len :
0 < len → rotate_nat_sub base offset len < len.
Proof.
unfold rotate_nat_sub. intros ?.
pose proof (Z_mod_lt (Z.of_nat len + Z.of_nat offset - Z.of_nat base) (Z.of_nat len)).
apply Nat2Z.inj_lt. rewrite Z2Nat.id; lia.
Qed.
Lemma rotate_nat_add_sub base len offset:
offset < len →
rotate_nat_add base (rotate_nat_sub base offset len) len = offset.
Proof.
intros ?. unfold rotate_nat_add, rotate_nat_sub.
rewrite Z2Nat.id by (apply Z.mod_pos; lia). rewrite Zplus_mod_idemp_r.
replace (Z.of_nat base + (Z.of_nat len + Z.of_nat offset - Z.of_nat base))%Z
with (Z.of_nat len + Z.of_nat offset)%Z by lia.
rewrite (Z.mod_in_range 1) by lia.
rewrite Z.mul_1_l, <-Nat2Z.inj_add, <-!Nat2Z.inj_sub,Nat2Z.id; lia.
Qed.
Lemma rotate_nat_sub_add base len offset:
offset < len →
rotate_nat_sub base (rotate_nat_add base offset len) len = offset.
Proof.
intros ?. unfold rotate_nat_add, rotate_nat_sub.
rewrite Z2Nat.id by (apply Z.mod_pos; lia).
assert (∀ n, (Z.of_nat len + n - Z.of_nat base) = ((Z.of_nat len - Z.of_nat base) + n))%Z
as -> by naive_solver lia.
rewrite Zplus_mod_idemp_r.
replace (Z.of_nat len - Z.of_nat base + (Z.of_nat base + Z.of_nat offset))%Z with
(Z.of_nat len + Z.of_nat offset)%Z by lia.
rewrite (Z.mod_in_range 1) by lia.
rewrite Z.mul_1_l, <-Nat2Z.inj_add, <-!Nat2Z.inj_sub,Nat2Z.id; lia.
Qed.
Lemma rotate_nat_add_add base offset len n:
0 < len →
rotate_nat_add base (offset + n) len =
(rotate_nat_add base offset len + n) `mod` len.
Proof.
intros ?. unfold rotate_nat_add.
rewrite !Z2Nat.inj_mod, !Z2Nat.inj_add, !Nat2Z.id by lia.
by rewrite Nat.add_assoc, Nat.add_mod_idemp_l by lia.
Qed.
Lemma rotate_nat_add_S base offset len:
0 < len →
rotate_nat_add base (S offset) len =
S (rotate_nat_add base offset len) `mod` len.
Proof. intros ?. by rewrite <-Nat.add_1_r, rotate_nat_add_add, Nat.add_1_r. Qed.
|