File: option.v

package info (click to toggle)
coq-stdpp 1.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,696 kB
  • sloc: makefile: 52; sh: 35; sed: 1
file content (512 lines) | stat: -rw-r--r-- 23,511 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
(** This file collects general purpose definitions and theorems on the option
data type that are not in the Coq standard library. *)
From stdpp Require Export tactics.
From stdpp Require Import options.

Inductive option_reflect {A} (P : A → Prop) (Q : Prop) : option A → Type :=
  | ReflectSome x : P x → option_reflect P Q (Some x)
  | ReflectNone : Q → option_reflect P Q None.

(** * General definitions and theorems *)
(** Basic properties about equality. *)
Lemma None_ne_Some {A} (x : A) : None ≠ Some x.
Proof. congruence. Qed.
Lemma Some_ne_None {A} (x : A) : Some x ≠ None.
Proof. congruence. Qed.
Lemma eq_None_ne_Some {A} (mx : option A) : (∀ x, mx ≠ Some x) ↔ mx = None.
Proof. destruct mx; split; congruence. Qed.
Lemma eq_None_ne_Some_1 {A} (mx : option A) x : mx = None → mx ≠ Some x.
Proof. intros ?. by apply eq_None_ne_Some. Qed.
Lemma eq_None_ne_Some_2 {A} (mx : option A) : (∀ x, mx ≠ Some x) → mx = None.
Proof. intros ?. by apply eq_None_ne_Some. Qed.
Global Instance Some_inj {A} : Inj (=) (=) (@Some A).
Proof. congruence. Qed.

(** The [from_option] is the eliminator for option. *)
Definition from_option {A B} (f : A → B) (y : B) (mx : option A) : B :=
  match mx with None => y | Some x => f x end.
Global Instance: Params (@from_option) 2 := {}.
Global Arguments from_option {_ _} _ _ !_ / : assert.

(** The eliminator with the identity function. *)
Notation default := (from_option id).

(** An alternative, but equivalent, definition of equality on the option
data type. This theorem is useful to prove that two options are the same. *)
Lemma option_eq {A} (mx my: option A): mx = my ↔ ∀ x, mx = Some x ↔ my = Some x.
Proof. split; [by intros; by subst |]. destruct mx, my; naive_solver. Qed.
Lemma option_eq_1 {A} (mx my: option A) x : mx = my → mx = Some x → my = Some x.
Proof. congruence. Qed.
Lemma option_eq_1_alt {A} (mx my : option A) x :
  mx = my → my = Some x → mx = Some x.
Proof. congruence. Qed.

Definition is_Some {A} (mx : option A) := ∃ x, mx = Some x.
Global Instance: Params (@is_Some) 1 := {}.

(** We avoid calling [done] recursively as that can lead to an unresolved evar. *)
Global Hint Extern 0 (is_Some _) => eexists; fast_done : core.

Lemma is_Some_alt {A} (mx : option A) :
  is_Some mx ↔ match mx with Some _ => True | None => False end.
Proof. unfold is_Some. destruct mx; naive_solver. Qed.

Lemma mk_is_Some {A} (mx : option A) x : mx = Some x → is_Some mx.
Proof. by intros ->. Qed.
Global Hint Resolve mk_is_Some : core.
Lemma is_Some_None {A} : ¬is_Some (@None A).
Proof. by destruct 1. Qed.
Global Hint Resolve is_Some_None : core.

Lemma eq_None_not_Some {A} (mx : option A) : mx = None ↔ ¬is_Some mx.
Proof. rewrite is_Some_alt; destruct mx; naive_solver. Qed.
Lemma not_eq_None_Some {A} (mx : option A) : mx ≠ None ↔ is_Some mx.
Proof. rewrite is_Some_alt; destruct mx; naive_solver. Qed.

Global Instance is_Some_pi {A} (mx : option A) : ProofIrrel (is_Some mx).
Proof.
  set (P (mx : option A) := match mx with Some _ => True | _ => False end).
  set (f mx := match mx return P mx → is_Some mx with
    Some _ => λ _, ex_intro _ _ eq_refl | None => False_rect _ end).
  set (g mx (H : is_Some mx) :=
    match H return P mx with ex_intro _ _ p => eq_rect _ _ I _ (eq_sym p) end).
  assert (∀ mx H, f mx (g mx H) = H) as f_g by (by intros ? [??]; subst).
  intros p1 p2. rewrite <-(f_g _ p1), <-(f_g _ p2). by destruct mx, p1.
Qed.

Global Instance is_Some_dec {A} (mx : option A) : Decision (is_Some mx) :=
  match mx with
  | Some x => left (ex_intro _ x eq_refl)
  | None => right is_Some_None
  end.

Definition is_Some_proj {A} {mx : option A} : is_Some mx → A :=
  match mx with Some x => λ _, x | None => False_rect _ ∘ is_Some_None end.

Definition Some_dec {A} (mx : option A) : { x | mx = Some x } + { mx = None } :=
  match mx return { x | mx = Some x } + { mx = None } with
  | Some x => inleft (x ↾ eq_refl _)
  | None => inright eq_refl
  end.

(** Lifting a relation point-wise to option *)
Inductive option_Forall2 {A B} (R: A → B → Prop) : option A → option B → Prop :=
  | Some_Forall2 x y : R x y → option_Forall2 R (Some x) (Some y)
  | None_Forall2 : option_Forall2 R None None.
Definition option_relation {A B} (R: A → B → Prop) (P: A → Prop) (Q: B → Prop)
    (mx : option A) (my : option B) : Prop :=
  match mx, my with
  | Some x, Some y => R x y
  | Some x, None => P x
  | None, Some y => Q y
  | None, None => True
  end.

Section Forall2.
  Context {A} (R : relation A).

  Global Instance option_Forall2_refl : Reflexive R → Reflexive (option_Forall2 R).
  Proof. intros ? [?|]; by constructor. Qed.
  Global Instance option_Forall2_sym : Symmetric R → Symmetric (option_Forall2 R).
  Proof. destruct 2; by constructor. Qed.
  Global Instance option_Forall2_trans : Transitive R → Transitive (option_Forall2 R).
  Proof. destruct 2; inv 1; constructor; etrans; eauto. Qed.
  Global Instance option_Forall2_equiv : Equivalence R → Equivalence (option_Forall2 R).
  Proof. destruct 1; split; apply _. Qed.

  Lemma option_eq_Forall2 (mx my : option A) :
    mx = my ↔ option_Forall2 eq mx my.
  Proof.
    split.
    - intros ->. destruct my; constructor; done.
    - intros [|]; naive_solver.
  Qed.
End Forall2.

(** Setoids *)
Global Instance option_equiv `{Equiv A} : Equiv (option A) := option_Forall2 (≡).

Section setoids.
  Context `{Equiv A}.
  Implicit Types mx my : option A.

  Lemma option_equiv_Forall2 mx my : mx ≡ my ↔ option_Forall2 (≡) mx my.
  Proof. done. Qed.

  Global Instance option_equivalence :
    Equivalence (≡@{A}) → Equivalence (≡@{option A}).
  Proof. apply _. Qed.
  Global Instance option_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (option A).
  Proof. intros x y; destruct 1; f_equal; by apply leibniz_equiv. Qed.

  Global Instance Some_proper : Proper ((≡) ==> (≡@{option A})) Some.
  Proof. by constructor. Qed.
  Global Instance Some_equiv_inj : Inj (≡) (≡@{option A}) Some.
  Proof. by inv 1. Qed.

  Lemma None_equiv_eq mx : mx ≡ None ↔ mx = None.
  Proof. split; [by inv 1|intros ->; constructor]. Qed.
  Lemma Some_equiv_eq mx y : mx ≡ Some y ↔ ∃ y', mx = Some y' ∧ y' ≡ y.
  Proof. split; [inv 1; naive_solver|naive_solver (by constructor)]. Qed.

  Global Instance is_Some_proper : Proper ((≡@{option A}) ==> iff) is_Some.
  Proof. by inv 1. Qed.
  Global Instance from_option_proper {B} (R : relation B) :
    Proper (((≡@{A}) ==> R) ==> R ==> (≡) ==> R) from_option.
  Proof. destruct 3; simpl; auto. Qed.
End setoids.

Global Typeclasses Opaque option_equiv.

(** Equality on [option] is decidable. *)
Global Instance option_eq_None_dec {A} (mx : option A) : Decision (mx = None) :=
  match mx with Some _ => right (Some_ne_None _) | None => left eq_refl end.
Global Instance option_None_eq_dec {A} (mx : option A) : Decision (None = mx) :=
  match mx with Some _ => right (None_ne_Some _) | None => left eq_refl end.
Global Instance option_eq_dec `{dec : EqDecision A} : EqDecision (option A).
Proof.
 refine (λ mx my,
  match mx, my with
  | Some x, Some y => cast_if (decide (x = y))
  | None, None => left _ | _, _ => right _
  end); clear dec; abstract congruence.
Defined.

(** * Monadic operations *)
Global Instance option_ret: MRet option := @Some.
Global Instance option_bind: MBind option := λ A B f mx,
  match mx with Some x => f x | None => None end.
Global Instance option_join: MJoin option := λ A mmx,
  match mmx with Some mx => mx | None => None end.
Global Instance option_fmap: FMap option := @option_map.
Global Instance option_mfail: MFail option := λ _ _, None.

Lemma option_fmap_inj {A B} (R1 : A → A → Prop) (R2 : B → B → Prop) (f : A → B) :
  Inj R1 R2 f → Inj (option_Forall2 R1) (option_Forall2 R2) (fmap f).
Proof. intros ? [?|] [?|]; inv 1; constructor; auto. Qed.
Global Instance option_fmap_eq_inj {A B} (f : A → B) :
  Inj (=) (=) f → Inj (=@{option A}) (=@{option B}) (fmap f).
Proof.
  intros ?%option_fmap_inj ?? ?%option_eq_Forall2%(inj _).
  by apply option_eq_Forall2.
Qed.
Global Instance option_fmap_equiv_inj `{Equiv A, Equiv B} (f : A → B) :
  Inj (≡) (≡) f → Inj (≡@{option A}) (≡@{option B}) (fmap f).
Proof. apply option_fmap_inj. Qed.

Lemma fmap_is_Some {A B} (f : A → B) mx : is_Some (f <$> mx) ↔ is_Some mx.
Proof. unfold is_Some; destruct mx; naive_solver. Qed.
Lemma fmap_Some {A B} (f : A → B) mx y :
  f <$> mx = Some y ↔ ∃ x, mx = Some x ∧ y = f x.
Proof. destruct mx; naive_solver. Qed.
Lemma fmap_Some_1 {A B} (f : A → B) mx y :
  f <$> mx = Some y → ∃ x, mx = Some x ∧ y = f x.
Proof. apply fmap_Some. Qed.
Lemma fmap_Some_2 {A B} (f : A → B) mx x : mx = Some x → f <$> mx = Some (f x).
Proof. intros. apply fmap_Some; eauto. Qed.
Lemma fmap_Some_equiv {A B} `{Equiv B} `{!Equivalence (≡@{B})} (f : A → B) mx y :
  f <$> mx ≡ Some y ↔ ∃ x, mx = Some x ∧ y ≡ f x.
Proof.
  destruct mx; simpl; split.
  - intros ?%(inj Some). eauto.
  - intros (? & ->%(inj Some) & ?). constructor. done.
  - intros [=]%symmetry%None_equiv_eq.
  - intros (? & [=] & ?).
Qed.
Lemma fmap_Some_equiv_1 {A B} `{Equiv B} `{!Equivalence (≡@{B})} (f : A → B) mx y :
  f <$> mx ≡ Some y → ∃ x, mx = Some x ∧ y ≡ f x.
Proof. by rewrite fmap_Some_equiv. Qed.
Lemma fmap_None {A B} (f : A → B) mx : f <$> mx = None ↔ mx = None.
Proof. by destruct mx. Qed.
Lemma option_fmap_id {A} (mx : option A) : id <$> mx = mx.
Proof. by destruct mx. Qed.
Lemma option_fmap_compose {A B} (f : A → B) {C} (g : B → C) (mx : option A) :
  g ∘ f <$> mx = g <$> (f <$> mx).
Proof. by destruct mx. Qed.
Lemma option_fmap_ext {A B} (f g : A → B) (mx : option A) :
  (∀ x, f x = g x) → f <$> mx = g <$> mx.
Proof. intros; destruct mx; f_equal/=; auto. Qed.
Lemma option_fmap_equiv_ext {A} `{Equiv B} (f g : A → B) (mx : option A) :
  (∀ x, f x ≡ g x) → f <$> mx ≡ g <$> mx.
Proof. destruct mx; constructor; auto. Qed.

Lemma option_fmap_bind {A B C} (f : A → B) (g : B → option C) mx :
  (f <$> mx) ≫= g = mx ≫= g ∘ f.
Proof. by destruct mx. Qed.
Lemma option_bind_assoc {A B C} (f : A → option B)
  (g : B → option C) (mx : option A) : (mx ≫= f) ≫= g = mx ≫= (mbind g ∘ f).
Proof. by destruct mx; simpl. Qed.
Lemma option_bind_ext {A B} (f g : A → option B) mx my :
  (∀ x, f x = g x) → mx = my → mx ≫= f = my ≫= g.
Proof. destruct mx, my; naive_solver. Qed.
Lemma option_bind_ext_fun {A B} (f g : A → option B) mx :
  (∀ x, f x = g x) → mx ≫= f = mx ≫= g.
Proof. intros. by apply option_bind_ext. Qed.
Lemma bind_Some {A B} (f : A → option B) (mx : option A) y :
  mx ≫= f = Some y ↔ ∃ x, mx = Some x ∧ f x = Some y.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_Some_equiv {A} `{Equiv B} (f : A → option B) (mx : option A) y :
  mx ≫= f ≡ Some y ↔ ∃ x, mx = Some x ∧ f x ≡ Some y.
Proof. destruct mx; split; first [by inv 1|naive_solver]. Qed.
Lemma bind_None {A B} (f : A → option B) (mx : option A) :
  mx ≫= f = None ↔ mx = None ∨ ∃ x, mx = Some x ∧ f x = None.
Proof. destruct mx; naive_solver. Qed.
Lemma bind_with_Some {A} (mx : option A) : mx ≫= Some = mx.
Proof. by destruct mx. Qed.

Global Instance option_fmap_proper `{Equiv A, Equiv B} :
  Proper (((≡) ==> (≡)) ==> (≡@{option A}) ==> (≡@{option B})) fmap.
Proof. destruct 2; constructor; auto. Qed.
Global Instance option_bind_proper `{Equiv A, Equiv B} :
  Proper (((≡) ==> (≡)) ==> (≡@{option A}) ==> (≡@{option B})) mbind.
Proof. destruct 2; simpl; try constructor; auto. Qed.
Global Instance option_join_proper `{Equiv A} :
  Proper ((≡) ==> (≡@{option (option A)})) mjoin.
Proof. destruct 1 as [?? []|]; simpl; by constructor. Qed.

(** ** Inverses of constructors *)
(** We can do this in a fancy way using dependent types, but rewrite does
not particularly like type level reductions. *)
Class Maybe {A B : Type} (c : A → B) :=
  maybe : B → option A.
Global Arguments maybe {_ _} _ {_} !_ / : assert.
Class Maybe2 {A1 A2 B : Type} (c : A1 → A2 → B) :=
  maybe2 : B → option (A1 * A2).
Global Arguments maybe2 {_ _ _} _ {_} !_ / : assert.
Class Maybe3 {A1 A2 A3 B : Type} (c : A1 → A2 → A3 → B) :=
  maybe3 : B → option (A1 * A2 * A3).
Global Arguments maybe3 {_ _ _ _} _ {_} !_ / : assert.
Class Maybe4 {A1 A2 A3 A4 B : Type} (c : A1 → A2 → A3 → A4 → B) :=
  maybe4 : B → option (A1 * A2 * A3 * A4).
Global Arguments maybe4 {_ _ _ _ _} _ {_} !_ / : assert.

Global Instance maybe_comp `{Maybe B C c1, Maybe A B c2} : Maybe (c1 ∘ c2) := λ x,
  maybe c1 x ≫= maybe c2.
Global Arguments maybe_comp _ _ _ _ _ _ _ !_ / : assert.

Global Instance maybe_inl {A B} : Maybe (@inl A B) := λ xy,
  match xy with inl x => Some x | _ => None end.
Global Instance maybe_inr {A B} : Maybe (@inr A B) := λ xy,
  match xy with inr y => Some y | _ => None end.
Global Instance maybe_Some {A} : Maybe (@Some A) := id.
Global Arguments maybe_Some _ !_ / : assert.

(** * Union, intersection and difference *)
Global Instance option_union_with {A} : UnionWith A (option A) := λ f mx my,
  match mx, my with
  | Some x, Some y => f x y
  | Some x, None => Some x
  | None, Some y => Some y
  | None, None => None
  end.
Global Instance option_intersection_with {A} : IntersectionWith A (option A) :=
  λ f mx my, match mx, my with Some x, Some y => f x y | _, _ => None end.
Global Instance option_difference_with {A} : DifferenceWith A (option A) := λ f mx my,
  match mx, my with
  | Some x, Some y => f x y
  | Some x, None => Some x
  | None, _ => None
  end.
Global Instance option_union {A} : Union (option A) := union_with (λ x _, Some x).

Lemma union_Some {A} (mx my : option A) z :
  mx ∪ my = Some z ↔ mx = Some z ∨ (mx = None ∧ my = Some z).
Proof. destruct mx, my; naive_solver. Qed.
Lemma union_Some_l {A} x (my : option A) :
  Some x ∪ my = Some x.
Proof. destruct my; done. Qed.
Lemma union_Some_r {A} (mx : option A) y :
  mx ∪ Some y = Some (default y mx).
Proof. destruct mx; done. Qed.
Lemma union_None {A} (mx my : option A) :
  mx ∪ my = None ↔ mx = None ∧ my = None.
Proof. destruct mx, my; naive_solver. Qed.
Lemma union_is_Some {A} (mx my : option A) :
  is_Some (mx ∪ my) ↔ is_Some mx ∨ is_Some my.
Proof. destruct mx, my; naive_solver. Qed.

Global Instance option_union_left_id {A} : LeftId (=@{option A}) None union.
Proof. by intros [?|]. Qed.
Global Instance option_union_right_id {A} : RightId (=@{option A}) None union.
Proof. by intros [?|]. Qed.

Global Instance option_intersection {A} : Intersection (option A) :=
  intersection_with (λ x _, Some x).

Lemma intersection_Some {A} (mx my : option A) x :
  mx ∩ my = Some x ↔ mx = Some x ∧ is_Some my.
Proof. destruct mx, my; unfold is_Some; naive_solver. Qed.
Lemma intersection_is_Some {A} (mx my : option A) :
  is_Some (mx ∩ my) ↔ is_Some mx ∧ is_Some my.
Proof. destruct mx, my; unfold is_Some; naive_solver. Qed.
Lemma intersection_Some_r {A} (mx : option A) (y : A) :
  mx ∩ Some y = mx.
Proof. by destruct mx. Qed.
Lemma intersection_None {A} (mx my : option A) :
  mx ∩ my = None ↔ mx = None ∨ my = None.
Proof. destruct mx, my; naive_solver. Qed.
Lemma intersection_None_l {A} (my : option A) :
  None ∩ my = None.
Proof. destruct my; done. Qed.
Lemma intersection_None_r {A} (mx : option A) :
  mx ∩ None = None.
Proof. destruct mx; done. Qed.

Global Instance option_intersection_right_absorb {A} :
  RightAbsorb (=@{option A}) None intersection.
Proof. by intros [?|]. Qed.

Global Instance option_intersection_left_absorb {A} :
  LeftAbsorb (=@{option A}) None intersection.
Proof. by intros [?|]. Qed.

Section union_intersection_difference.
  Context {A} (f : A → A → option A).

  Global Instance union_with_left_id : LeftId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
  Global Instance union_with_right_id : RightId (=) None (union_with f).
  Proof. by intros [?|]. Qed.
  Global Instance union_with_comm :
    Comm (=) f → Comm (=@{option A}) (union_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
  (** These are duplicates of the above [LeftId]/[RightId] instances, but easier to
  find with [SearchAbout]. *)
  Lemma union_with_None_l my : union_with f None my = my.
  Proof. destruct my; done. Qed.
  Lemma union_with_None_r mx : union_with f mx None = mx.
  Proof. destruct mx; done. Qed.

  Global Instance intersection_with_left_ab : LeftAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
  Global Instance intersection_with_right_ab : RightAbsorb (=) None (intersection_with f).
  Proof. by intros [?|]. Qed.
  Global Instance intersection_with_comm :
    Comm (=) f → Comm (=@{option A}) (intersection_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
  (** These are duplicates of the above [LeftAbsorb]/[RightAbsorb] instances, but
  easier to find with [SearchAbout]. *)
  Lemma intersection_with_None_l my : intersection_with f None my = None.
  Proof. destruct my; done. Qed.
  Lemma intersection_with_None_r mx : intersection_with f mx None = None.
  Proof. destruct mx; done. Qed.

  Global Instance difference_with_comm :
    Comm (=) f → Comm (=@{option A}) (intersection_with f).
  Proof. by intros ? [?|] [?|]; compute; rewrite 1?(comm f). Qed.
  Global Instance difference_with_right_id : RightId (=) None (difference_with f).
  Proof. by intros [?|]. Qed.

  Global Instance union_with_proper `{Equiv A} :
    Proper (((≡) ==> (≡) ==> (≡)) ==> (≡@{option A}) ==> (≡) ==> (≡)) union_with.
  Proof. intros ?? Hf; do 2 destruct 1; try constructor; by try apply Hf. Qed.
  Global Instance intersection_with_proper `{Equiv A} :
    Proper (((≡) ==> (≡) ==> (≡)) ==> (≡@{option A}) ==> (≡) ==> (≡)) intersection_with.
  Proof. intros ?? Hf; do 2 destruct 1; try constructor; by try apply Hf. Qed.
  Global Instance difference_with_proper `{Equiv A} :
    Proper (((≡) ==> (≡) ==> (≡)) ==> (≡@{option A}) ==> (≡) ==> (≡)) difference_with.
  Proof. intros ?? Hf; do 2 destruct 1; try constructor; by try apply Hf. Qed.
  Global Instance union_proper `{Equiv A} :
    Proper ((≡@{option A}) ==> (≡) ==> (≡)) union.
  Proof. apply union_with_proper. by constructor. Qed.
End union_intersection_difference.

(** This lemma includes a bind, to avoid equalities of proofs. We cannot have
[guard P = Some p ↔ P] unless [P] is proof irrelant. The best (but less usable)
self-contained alternative would be [guard P = Some p ↔ decide P = left p]. *)
Lemma option_guard_True {A} P `{Decision P} (mx : option A) :
  P → (guard P;; mx) = mx.
Proof. intros. by case_guard. Qed.
Lemma option_guard_True_pi P `{Decision P, ProofIrrel P} (HP : P) :
  guard P = Some HP.
Proof. case_guard; [|done]. f_equal; apply proof_irrel. Qed.
Lemma option_guard_False P `{Decision P} :
  ¬P → guard P = None.
Proof. intros. by case_guard. Qed.
Lemma option_guard_iff {A} P Q `{Decision P, Decision Q} (mx : option A) :
  (P ↔ Q) → (guard P;; mx) = (guard Q;; mx).
Proof. intros [??]. repeat case_guard; intuition. Qed.
Lemma option_guard_decide {A} P `{Decision P} (mx : option A) :
  (guard P;; mx) = if decide P then mx else None.
Proof. by case_guard. Qed.
Lemma option_guard_bool_decide {A} P `{Decision P} (mx : option A) :
  (guard P;; mx) = if bool_decide P then mx else None.
Proof. by rewrite option_guard_decide, decide_bool_decide. Qed.

Tactic Notation "simpl_option" "by" tactic3(tac) :=
  let assert_Some_None A mx H := first
    [ let x := mk_evar A in
      assert (mx = Some x) as H by tac
    | assert (mx = None) as H by tac ]
  in repeat match goal with
  | H : context [@mret _ _ ?A] |- _ =>
     change (@mret _ _ A) with (@Some A) in H
  | |- context [@mret _ _ ?A] => change (@mret _ _ A) with (@Some A)
  | H : context [mbind (M:=option) (A:=?A) ?f ?mx] |- _ =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [fmap (M:=option) (A:=?A) ?f ?mx] |- _ =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [from_option (A:=?A) _ _ ?mx] |- _ =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
  | H : context [ match ?mx with _ => _ end ] |- _ =>
    match type of mx with
    | option ?A =>
      let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx in H; clear Hx
    end
  | |- context [mbind (M:=option) (A:=?A) ?f ?mx] =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [fmap (M:=option) (A:=?A) ?f ?mx] =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [from_option (A:=?A) _ _ ?mx] =>
    let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
  | |- context [ match ?mx with _ => _ end ] =>
    match type of mx with
    | option ?A =>
      let Hx := fresh in assert_Some_None A mx Hx; rewrite Hx; clear Hx
    end
  | H : context [decide _] |- _ => rewrite decide_True in H by tac
  | H : context [decide _] |- _ => rewrite decide_False in H by tac
  | H : context [guard _] |- _ => rewrite option_guard_False in H by tac
  | H : context [guard _] |- _ => rewrite option_guard_True in H by tac
  | _ => rewrite decide_True by tac
  | _ => rewrite decide_False by tac
  | _ => rewrite option_guard_True by tac
  | _ => rewrite option_guard_False by tac
  | H : context [None ∪ _] |- _ => rewrite (left_id_L None (∪)) in H
  | H : context [_ ∪ None] |- _ => rewrite (right_id_L None (∪)) in H
  | |- context [None ∪ _] => rewrite (left_id_L None (∪))
  | |- context [_ ∪ None] => rewrite (right_id_L None (∪))
  end.
Tactic Notation "simplify_option_eq" "by" tactic3(tac) :=
  repeat match goal with
  | _ => progress simplify_eq/=
  | _ => progress simpl_option by tac
  | _ : maybe _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe2 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe3 _ ?x = Some _ |- _ => is_var x; destruct x
  | _ : maybe4 _ ?x = Some _ |- _ => is_var x; destruct x
  | H : _ ∪ _ = Some _ |- _ => apply union_Some in H; destruct H
  | H : mbind (M:=option) ?f ?mx = ?my |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (f x = my) in H|change (None = my) in H]
  | H : ?my = mbind (M:=option) ?f ?mx |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (my = f x) in H|change (my = None) in H]
  | H : fmap (M:=option) ?f ?mx = ?my |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (Some (f x) = my) in H|change (None = my) in H]
  | H : ?my = fmap (M:=option) ?f ?mx |- _ =>
    match mx with Some _ => fail 1 | None => fail 1 | _ => idtac end;
    match my with Some _ => idtac | None => idtac | _ => fail 1 end;
    let x := fresh in destruct mx as [x|] eqn:?;
      [change (my = Some (f x)) in H|change (my = None) in H]
  | _ => progress case_decide
  | _ => progress case_guard
  end.
Tactic Notation "simplify_option_eq" := simplify_option_eq by eauto.