File: pmap.v

package info (click to toggle)
coq-stdpp 1.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,696 kB
  • sloc: makefile: 52; sh: 35; sed: 1
file content (411 lines) | stat: -rw-r--r-- 17,332 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
(** This files implements an efficient implementation of finite maps whose keys
range over Coq's data type of positive binary naturals [positive]. The
data structure is based on the "canonical" binary tries representation by Appel
and Leroy, https://hal.inria.fr/hal-03372247. It has various good properties:

- It guarantees logarithmic-time [lookup] and [partial_alter], and linear-time
  [merge]. It has a low constant factor for computation in Coq compared to other
  versions (see the Appel and Leroy paper for benchmarks).
- It satisfies extensional equality, i.e., [(∀ i, m1 !! i = m2 !! i) → m1 = m2].
- It can be used in nested recursive definitions, e.g.,
  [Inductive test := Test : Pmap test → test]. This is possible because we do
  _not_ use a Sigma type to ensure canonical representations (a Sigma type would
  break Coq's strict positivity check). *)
From stdpp Require Export countable fin_maps fin_map_dom.
From stdpp Require Import mapset.
From stdpp Require Import options.

Local Open Scope positive_scope.

(** * The trie data structure *)
(** To obtain canonical representations, we need to make sure that the "empty"
trie is represented uniquely. That is, each node should either have a value, a
non-empty left subtrie, or a non-empty right subtrie. The [Pmap_ne] type
enumerates all ways of constructing non-empty canonical trie. *)
Inductive Pmap_ne (A : Type) :=
  | PNode001 : Pmap_ne A → Pmap_ne A
  | PNode010 : A → Pmap_ne A
  | PNode011 : A → Pmap_ne A → Pmap_ne A
  | PNode100 : Pmap_ne A → Pmap_ne A
  | PNode101 : Pmap_ne A → Pmap_ne A → Pmap_ne A
  | PNode110 : Pmap_ne A → A → Pmap_ne A
  | PNode111 : Pmap_ne A → A → Pmap_ne A → Pmap_ne A.
Global Arguments PNode001 {A} _ : assert.
Global Arguments PNode010 {A} _ : assert.
Global Arguments PNode011 {A} _ _ : assert.
Global Arguments PNode100 {A} _ : assert.
Global Arguments PNode101 {A} _ _ : assert.
Global Arguments PNode110 {A} _ _ : assert.
Global Arguments PNode111 {A} _ _ _ : assert.

(** Using [Variant] we suppress the generation of the induction scheme. We use
the induction scheme [Pmap_ind] in terms of the smart constructors to reduce the
number of cases, similar to Appel and Leroy. *)
Variant Pmap (A : Type) := PEmpty : Pmap A | PNodes : Pmap_ne A → Pmap A.
Global Arguments PEmpty {A}.
Global Arguments PNodes {A} _.

Global Instance Pmap_ne_eq_dec `{EqDecision A} : EqDecision (Pmap_ne A).
Proof. solve_decision. Defined.
Global Instance Pmap_eq_dec `{EqDecision A} : EqDecision (Pmap A).
Proof. solve_decision. Defined.

(** The smart constructor [PNode] and eliminator [Pmap_ne_case] are used to
reduce the number of cases, similar to Appel and Leroy. *)
Local Definition PNode {A} (ml : Pmap A) (mx : option A) (mr : Pmap A) : Pmap A :=
  match ml, mx, mr with
  | PEmpty, None, PEmpty => PEmpty
  | PEmpty, None, PNodes r => PNodes (PNode001 r)
  | PEmpty, Some x, PEmpty => PNodes (PNode010 x)
  | PEmpty, Some x, PNodes r => PNodes (PNode011 x r)
  | PNodes l, None, PEmpty => PNodes (PNode100 l)
  | PNodes l, None, PNodes r => PNodes (PNode101 l r)
  | PNodes l, Some x, PEmpty => PNodes (PNode110 l x)
  | PNodes l, Some x, PNodes r => PNodes (PNode111 l x r)
  end.

Local Definition Pmap_ne_case {A B} (t : Pmap_ne A)
    (f : Pmap A → option A → Pmap A → B) : B :=
  match t with
  | PNode001 r => f PEmpty None (PNodes r)
  | PNode010 x => f PEmpty (Some x) PEmpty
  | PNode011 x r => f PEmpty (Some x) (PNodes r)
  | PNode100 l => f (PNodes l) None PEmpty
  | PNode101 l r => f (PNodes l) None (PNodes r)
  | PNode110 l x => f (PNodes l) (Some x) PEmpty
  | PNode111 l x r => f (PNodes l) (Some x) (PNodes r)
  end.

(** Operations *)
Global Instance Pmap_ne_lookup {A} : Lookup positive A (Pmap_ne A) :=
  fix go i t {struct t} :=
    let _ : Lookup _ _ _ := @go in
    match t, i with
    | (PNode010 x | PNode011 x _ | PNode110 _ x | PNode111 _ x _), 1 => Some x
    | (PNode100 l | PNode110 l _ | PNode101 l _ | PNode111 l _ _), i~0 => l !! i
    | (PNode001 r | PNode011 _ r | PNode101 _ r | PNode111 _ _ r), i~1 => r !! i 
    | _, _ => None
    end.
Global Instance Pmap_lookup {A} : Lookup positive A (Pmap A) := λ i mt,
  match mt with PEmpty => None | PNodes t => t !! i end.
Local Arguments lookup _ _ _ _ _ !_ / : simpl nomatch, assert.

Global Instance Pmap_empty {A} : Empty (Pmap A) := PEmpty.

(** Block reduction, even on concrete [Pmap]s.
Marking [Pmap_empty] as [simpl never] would not be enough, because of
https://github.com/coq/coq/issues/2972 and
https://github.com/coq/coq/issues/2986.
And marking [Pmap] consumers as [simpl never] does not work either, see:
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/171#note_53216 *)
Global Opaque Pmap_empty.

Local Fixpoint Pmap_ne_singleton {A} (i : positive) (x : A) : Pmap_ne A :=
  match i with
  | 1 => PNode010 x
  | i~0 => PNode100 (Pmap_ne_singleton i x)
  | i~1 => PNode001 (Pmap_ne_singleton i x)
  end.

Local Definition Pmap_partial_alter_aux {A} (go : positive → Pmap_ne A → Pmap A)
    (f : option A → option A) (i : positive) (mt : Pmap A) : Pmap A :=
  match mt with
  | PEmpty =>
     match f None with
     | None => PEmpty | Some x => PNodes (Pmap_ne_singleton i x)
     end
  | PNodes t => go i t
  end.
Local Definition Pmap_ne_partial_alter {A} (f : option A → option A) :
    positive → Pmap_ne A → Pmap A :=
  fix go i t {struct t} :=
    Pmap_ne_case t $ λ ml mx mr,
      match i with
      | 1 => PNode ml (f mx) mr
      | i~0 => PNode (Pmap_partial_alter_aux go f i ml) mx mr
      | i~1 => PNode ml mx (Pmap_partial_alter_aux go f i mr)
      end.
Global Instance Pmap_partial_alter {A} : PartialAlter positive A (Pmap A) := λ f,
  Pmap_partial_alter_aux (Pmap_ne_partial_alter f) f.

Local Definition Pmap_ne_fmap {A B} (f : A → B) : Pmap_ne A → Pmap_ne B :=
  fix go t :=
    match t with
    | PNode001 r => PNode001 (go r)
    | PNode010 x => PNode010 (f x)
    | PNode011 x r => PNode011 (f x) (go r)
    | PNode100 l => PNode100 (go l)
    | PNode101 l r => PNode101 (go l) (go r)
    | PNode110 l x => PNode110 (go l) (f x)
    | PNode111 l x r => PNode111 (go l) (f x) (go r)
    end.
Global Instance Pmap_fmap : FMap Pmap := λ {A B} f mt,
  match mt with PEmpty => PEmpty | PNodes t => PNodes (Pmap_ne_fmap f t) end.

Local Definition Pmap_omap_aux {A B} (go : Pmap_ne A → Pmap B) (tm : Pmap A) : Pmap B :=
  match tm with PEmpty => PEmpty | PNodes t' => go t' end.
Local Definition Pmap_ne_omap {A B} (f : A → option B) : Pmap_ne A → Pmap B :=
  fix go t :=
    Pmap_ne_case t $ λ ml mx mr,
      PNode (Pmap_omap_aux go ml) (mx ≫= f) (Pmap_omap_aux go mr).
Global Instance Pmap_omap : OMap Pmap := λ {A B} f,
  Pmap_omap_aux (Pmap_ne_omap f).

Local Definition Pmap_merge_aux {A B C} (go : Pmap_ne A → Pmap_ne B → Pmap C)
    (f : option A → option B → option C) (mt1 : Pmap A) (mt2 : Pmap B) : Pmap C :=
  match mt1, mt2 with
  | PEmpty, PEmpty => PEmpty
  | PNodes t1', PEmpty => Pmap_ne_omap (λ x, f (Some x) None) t1'
  | PEmpty, PNodes t2' => Pmap_ne_omap (λ x, f None (Some x)) t2'
  | PNodes t1', PNodes t2' => go t1' t2'
  end.
Local Definition Pmap_ne_merge {A B C} (f : option A → option B → option C) :
    Pmap_ne A → Pmap_ne B → Pmap C :=
  fix go t1 t2 {struct t1} :=
    Pmap_ne_case t1 $ λ ml1 mx1 mr1,
      Pmap_ne_case t2 $ λ ml2 mx2 mr2,
        PNode (Pmap_merge_aux go f ml1 ml2) (diag_None f mx1 mx2)
              (Pmap_merge_aux go f mr1 mr2).
Global Instance Pmap_merge : Merge Pmap := λ {A B C} f,
  Pmap_merge_aux (Pmap_ne_merge f) f.

Local Definition Pmap_fold_aux {A B} (go : positive → B → Pmap_ne A → B)
    (i : positive) (y : B) (mt : Pmap A) : B :=
  match mt with PEmpty => y | PNodes t => go i y t end.
Local Definition Pmap_ne_fold {A B} (f : positive → A → B → B) :
    positive → B → Pmap_ne A → B :=
  fix go i y t :=
    Pmap_ne_case t $ λ ml mx mr,
      Pmap_fold_aux go i~1
        (Pmap_fold_aux go i~0
          match mx with None => y | Some x => f (Pos.reverse i) x y end ml) mr.
Global Instance Pmap_fold {A} : MapFold positive A (Pmap A) := λ {B} f,
  Pmap_fold_aux (Pmap_ne_fold f) 1.

(** Proofs *)
Local Definition PNode_valid {A} (ml : Pmap A) (mx : option A) (mr : Pmap A) :=
  match ml, mx, mr with PEmpty, None, PEmpty => False | _, _, _ => True end.
Local Lemma Pmap_ind {A} (P : Pmap A → Prop) :
  P PEmpty →
  (∀ ml mx mr, PNode_valid ml mx mr → P ml → P mr → P (PNode ml mx mr)) →
  ∀ mt, P mt.
Proof.
  intros Hemp Hnode [|t]; [done|]. induction t.
  - by apply (Hnode PEmpty None (PNodes _)).
  - by apply (Hnode PEmpty (Some _) PEmpty).
  - by apply (Hnode PEmpty (Some _) (PNodes _)).
  - by apply (Hnode (PNodes _) None PEmpty).
  - by apply (Hnode (PNodes _) None (PNodes _)).
  - by apply (Hnode (PNodes _) (Some _) PEmpty).
  - by apply (Hnode (PNodes _) (Some _) (PNodes _)).
Qed.

Local Lemma Pmap_lookup_PNode {A} (ml mr : Pmap A) mx i :
  PNode ml mx mr !! i = match i with 1 => mx | i~0 => ml !! i | i~1 => mr !! i end.
Proof. by destruct ml, mx, mr, i. Qed.

Local Lemma Pmap_ne_lookup_not_None {A} (t : Pmap_ne A) : ∃ i, t !! i ≠ None.
Proof.
  induction t; repeat select (∃ _, _) (fun H => destruct H);
    try first [by eexists 1|by eexists _~0|by eexists _~1].
Qed.
Local Lemma Pmap_eq_empty {A} (mt : Pmap A) : (∀ i, mt !! i = None) → mt = ∅.
Proof.
  intros Hlookup. destruct mt as [|t]; [done|].
  destruct (Pmap_ne_lookup_not_None t); naive_solver.
Qed.
Local Lemma Pmap_eq {A} (mt1 mt2 : Pmap A) : (∀ i, mt1 !! i = mt2 !! i) → mt1 = mt2.
Proof.
  revert mt2. induction mt1 as [|ml1 mx1 mr1 _ IHl IHr] using Pmap_ind;
    intros mt2 Hlookup; destruct mt2 as [|ml2 mx2 mr2 _ _ _] using Pmap_ind.
  - done.
  - symmetry. apply Pmap_eq_empty. naive_solver.
  - apply Pmap_eq_empty. naive_solver.
  - f_equal.
    + apply IHl. intros i. generalize (Hlookup (i~0)).
      by rewrite !Pmap_lookup_PNode.
    + generalize (Hlookup 1). by rewrite !Pmap_lookup_PNode.
    + apply IHr. intros i. generalize (Hlookup (i~1)).
      by rewrite !Pmap_lookup_PNode.
Qed.

Local Lemma Pmap_ne_lookup_singleton {A} i (x : A) :
  Pmap_ne_singleton i x !! i = Some x.
Proof. by induction i. Qed.
Local Lemma Pmap_ne_lookup_singleton_ne {A} i j (x : A) :
  i ≠ j → Pmap_ne_singleton i x !! j = None.
Proof. revert j. induction i; intros [?|?|]; naive_solver. Qed.

Local Lemma Pmap_partial_alter_PNode {A} (f : option A → option A) i ml mx mr :
  PNode_valid ml mx mr →
  partial_alter f i (PNode ml mx mr) =
    match i with
    | 1 => PNode ml (f mx) mr
    | i~0 => PNode (partial_alter f i ml) mx mr
    | i~1 => PNode ml mx (partial_alter f i mr)
    end.
Proof. by destruct ml, mx, mr. Qed.
Local Lemma Pmap_lookup_partial_alter {A} (f : option A → option A)
    (mt : Pmap A) i :
  partial_alter f i mt !! i = f (mt !! i).
Proof.
  revert i. induction mt using Pmap_ind.
  { intros i. unfold partial_alter; simpl. destruct (f None); simpl; [|done].
    by rewrite Pmap_ne_lookup_singleton. }
  intros []; by rewrite Pmap_partial_alter_PNode, !Pmap_lookup_PNode by done.
Qed.
Local Lemma Pmap_lookup_partial_alter_ne {A} (f : option A → option A)
    (mt : Pmap A) i j :
  i ≠ j → partial_alter f i mt !! j = mt !! j.
Proof.
  revert i j; induction mt using Pmap_ind.
  { intros i j ?; unfold partial_alter; simpl. destruct (f None); simpl; [|done].
    by rewrite Pmap_ne_lookup_singleton_ne. }
  intros [] [] ?;
    rewrite Pmap_partial_alter_PNode, !Pmap_lookup_PNode by done; auto with lia.
Qed.

Local Lemma Pmap_lookup_fmap {A B} (f : A → B) (mt : Pmap A) i :
  (f <$> mt) !! i = f <$> mt !! i.
Proof.
  destruct mt as [|t]; simpl; [done|].
  revert i. induction t; intros []; by simpl.
Qed.

Local Lemma Pmap_omap_PNode {A B} (f : A → option B) ml mx mr :
  PNode_valid ml mx mr →
  omap f (PNode ml mx mr) = PNode (omap f ml) (mx ≫= f) (omap f mr).
Proof. by destruct ml, mx, mr. Qed.
Local Lemma Pmap_lookup_omap {A B} (f : A → option B) (mt : Pmap A) i :
  omap f mt !! i = mt !! i ≫= f.
Proof.
  revert i. induction mt using Pmap_ind; [done|].
  intros []; by rewrite Pmap_omap_PNode, !Pmap_lookup_PNode by done.
Qed.

Section Pmap_merge.
  Context {A B C} (f : option A → option B → option C).

  Local Lemma Pmap_merge_PNode_PEmpty ml mx mr :
    PNode_valid ml mx mr →
    merge f (PNode ml mx mr) ∅ =
      PNode (omap (λ x, f (Some x) None) ml) (diag_None f mx None)
            (omap (λ x, f (Some x) None) mr).
  Proof. by destruct ml, mx, mr. Qed.
  Local Lemma Pmap_merge_PEmpty_PNode ml mx mr :
    PNode_valid ml mx mr →
    merge f ∅ (PNode ml mx mr) =
      PNode (omap (λ x, f None (Some x)) ml) (diag_None f None mx)
            (omap (λ x, f None (Some x)) mr).
  Proof. by destruct ml, mx, mr. Qed.
  Local Lemma Pmap_merge_PNode_PNode ml1 ml2 mx1 mx2 mr1 mr2 :
    PNode_valid ml1 mx1 mr1 → PNode_valid ml2 mx2 mr2 →
    merge f (PNode ml1 mx1 mr1) (PNode ml2 mx2 mr2) =
      PNode (merge f ml1 ml2) (diag_None f mx1 mx2) (merge f mr1 mr2).
  Proof. by destruct ml1, mx1, mr1, ml2, mx2, mr2. Qed.

  Local Lemma Pmap_lookup_merge (mt1 : Pmap A) (mt2 : Pmap B) i :
    merge f mt1 mt2 !! i = diag_None f (mt1 !! i) (mt2 !! i).
  Proof.
    revert mt2 i; induction mt1 using Pmap_ind; intros mt2 i.
    { induction mt2 using Pmap_ind; [done|].
      rewrite Pmap_merge_PEmpty_PNode, Pmap_lookup_PNode by done.
      destruct i; rewrite ?Pmap_lookup_omap, Pmap_lookup_PNode; simpl;
        by repeat destruct (_ !! _). }
    destruct mt2 using Pmap_ind.
    { rewrite Pmap_merge_PNode_PEmpty, Pmap_lookup_PNode by done.
      destruct i; rewrite ?Pmap_lookup_omap, Pmap_lookup_PNode; simpl;
        by repeat destruct (_ !! _). }
    rewrite Pmap_merge_PNode_PNode by done.
    destruct i; by rewrite ?Pmap_lookup_PNode.
  Qed.
End Pmap_merge.

Section Pmap_fold.
  Local Notation Pmap_fold f := (Pmap_fold_aux (Pmap_ne_fold f)).

  Local Lemma Pmap_fold_PNode {A B} (f : positive → A → B → B) i y ml mx mr :
    Pmap_fold f i y (PNode ml mx mr) = Pmap_fold f i~1
      (Pmap_fold f i~0
        match mx with None => y | Some x => f (Pos.reverse i) x y end ml) mr.
  Proof. by destruct ml, mx, mr. Qed.

  Local Lemma Pmap_fold_ind {A} (P : Pmap A → Prop) :
    P PEmpty →
    (∀ i x mt,
      mt !! i = None →
      (∀ j A' B (f : positive → A' → B → B) (g : A → A') b x',
        Pmap_fold f j b (<[i:=x']> (g <$> mt))
        = f (Pos.reverse_go i j) x' (Pmap_fold f j b (g <$> mt))) →
      P mt → P (<[i:=x]> mt)) →
    ∀ mt, P mt.
  Proof.
    intros Hemp Hinsert mt. revert P Hemp Hinsert.
    induction mt as [|ml mx mr ? IHl IHr] using Pmap_ind;
      intros P Hemp Hinsert; [done|].
    apply (IHr (λ mt, P (PNode ml mx mt))).
    { apply (IHl (λ mt, P (PNode mt mx PEmpty))).
      { destruct mx as [x|]; [|done].
        replace (PNode PEmpty (Some x) PEmpty)
          with (<[1:=x]> PEmpty : Pmap A) by done.
        by apply Hinsert. }
      intros i x mt ? Hfold ?.
      replace (PNode (<[i:=x]> mt) mx PEmpty)
        with (<[i~0:=x]> (PNode mt mx PEmpty)) by (by destruct mt, mx).
      apply Hinsert.
      - by rewrite Pmap_lookup_PNode.
      - intros j A' B f g b x'.
        replace (<[i~0:=x']> (g <$> PNode mt mx PEmpty))
          with (PNode (<[i:=x']> (g <$> mt)) (g <$> mx) PEmpty)
          by (by destruct mt, mx).
        replace (g <$> PNode mt mx PEmpty)
          with (PNode (g <$> mt) (g <$> mx) PEmpty) by (by destruct mt, mx).
        rewrite !Pmap_fold_PNode; simpl; auto.
      - done. }
    intros i x mt r ? Hfold.
    replace (PNode ml mx (<[i:=x]> mt))
      with (<[i~1:=x]> (PNode ml mx mt)) by (by destruct ml, mx, mt).
    apply Hinsert.
    - by rewrite Pmap_lookup_PNode.
    - intros j A' B f g b x'.
      replace (<[i~1:=x']> (g <$> PNode ml mx mt))
        with (PNode (g <$> ml) (g <$> mx) (<[i:=x']> (g <$> mt)))
        by (by destruct ml, mx, mt).
      replace (g <$> PNode ml mx mt)
        with (PNode (g <$> ml) (g <$> mx) (g <$> mt)) by (by destruct ml, mx, mt).
      rewrite !Pmap_fold_PNode; simpl; auto.
    - done.
  Qed.
End Pmap_fold.

(** Instance of the finite map type class *)
Global Instance Pmap_finmap : FinMap positive Pmap.
Proof.
  split.
  - intros. by apply Pmap_eq.
  - done.
  - intros. apply Pmap_lookup_partial_alter.
  - intros. by apply Pmap_lookup_partial_alter_ne.
  - intros. apply Pmap_lookup_fmap.
  - intros. apply Pmap_lookup_omap.
  - intros. apply Pmap_lookup_merge.
  - done.
  - intros A P Hemp Hinsert. apply Pmap_fold_ind; [done|].
    intros i x mt ? Hfold. apply Hinsert; [done|]. apply (Hfold 1).
Qed.

(** Type annotation [list (positive * A)] seems needed in Coq 8.14, not in more
recent versions. *)
Global Program Instance Pmap_countable `{Countable A} : Countable (Pmap A) := {
  encode m := encode (map_to_list m : list (positive * A));
  decode p := list_to_map <$> decode p
}.
Next Obligation.
  intros A ?? m; simpl. rewrite decode_encode; simpl. by rewrite list_to_map_to_list.
Qed.

(** * Finite sets *)
(** We construct sets of [positives]s satisfying extensional equality. *)
Notation Pset := (mapset Pmap).
Global Instance Pmap_dom {A} : Dom (Pmap A) Pset := mapset_dom.
Global Instance Pmap_dom_spec : FinMapDom positive Pmap Pset := mapset_dom_spec.