File: pretty.v

package info (click to toggle)
coq-stdpp 1.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,696 kB
  • sloc: makefile: 52; sh: 35; sed: 1
file content (125 lines) | stat: -rw-r--r-- 5,262 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
From stdpp Require Export strings.
From stdpp Require Import relations numbers.
From Coq Require Import Ascii.
From stdpp Require Import options.

Class Pretty A := pretty : A → string.
Global Hint Mode Pretty ! : typeclass_instances.

Definition pretty_N_char (x : N) : ascii :=
  match x with
  | 0 => "0" | 1 => "1" | 2 => "2" | 3 => "3" | 4 => "4"
  | 5 => "5" | 6 => "6" | 7 => "7" | 8 => "8" | _ => "9"
  end%char%N.
Lemma pretty_N_char_inj x y :
  (x < 10)%N → (y < 10)%N → pretty_N_char x = pretty_N_char y → x = y.
Proof. compute; intros. by repeat (discriminate || case_match). Qed.

Fixpoint pretty_N_go_help (x : N) (acc : Acc (<)%N x) (s : string) : string :=
  match decide (0 < x)%N with
  | left H => pretty_N_go_help (x `div` 10)%N
     (Acc_inv acc (N.div_lt x 10 H eq_refl))
     (String (pretty_N_char (x `mod` 10)) s)
  | right _ => s
  end.
(** The argument [S (N.size_nat x)] of [wf_guard] makes sure that computation
works if [x] is a closed term, but that it blocks if [x] is an open term. The
latter prevents unexpected stack overflows, see [tests/pretty.v]. *)
Definition pretty_N_go (x : N) : string → string :=
  pretty_N_go_help x (wf_guard (S (N.size_nat x)) N.lt_wf_0 x).
Global Instance pretty_N : Pretty N := λ x,
  if decide (x = 0)%N then "0" else pretty_N_go x "".

Lemma pretty_N_go_0 s : pretty_N_go 0 s = s.
Proof. done. Qed.
Lemma pretty_N_go_help_irrel x acc1 acc2 s :
  pretty_N_go_help x acc1 s = pretty_N_go_help x acc2 s.
Proof.
  revert x acc1 acc2 s; fix FIX 2; intros x [acc1] [acc2] s; simpl.
  destruct (decide (0 < x)%N); auto.
Qed.
Lemma pretty_N_go_step x s :
  (0 < x)%N → pretty_N_go x s
  = pretty_N_go (x `div` 10) (String (pretty_N_char (x `mod` 10)) s).
Proof.
  unfold pretty_N_go; intros; destruct (wf_guard 32 N.lt_wf_0 x).
  destruct (wf_guard _ _). (* this makes coqchk happy. *)
  unfold pretty_N_go_help at 1; fold pretty_N_go_help.
  by destruct (decide (0 < x)%N); auto using pretty_N_go_help_irrel.
Qed.

(** Helper lemma to prove [pretty_N_inj] and [pretty_Z_inj]. *)
Lemma pretty_N_go_ne_0 x s : s ≠ "0" → pretty_N_go x s ≠ "0".
Proof.
  revert s. induction (N.lt_wf_0 x) as [x _ IH]; intros s ?.
  assert (x = 0 ∨ 0 < x < 10 ∨ 10 ≤ x)%N as [->|[[??]|?]] by lia.
  - by rewrite pretty_N_go_0.
  - rewrite pretty_N_go_step by done. apply IH.
    { by apply N.div_lt. }
    assert (x = 1 ∨ x = 2 ∨ x = 3 ∨ x = 4 ∨ x = 5 ∨ x = 6
          ∨ x = 7 ∨ x = 8 ∨ x = 9)%N by lia; naive_solver.
  - rewrite 2!pretty_N_go_step by (try apply N.div_str_pos_iff; lia).
    apply IH; [|done].
    trans (x `div` 10)%N; apply N.div_lt; auto using N.div_str_pos with lia.
Qed.
(** Helper lemma to prove [pretty_Z_inj]. *)
Lemma pretty_N_go_ne_dash x s s' : s ≠ "-" +:+ s' → pretty_N_go x s ≠ "-" +:+ s'.
Proof.
  revert s. induction (N.lt_wf_0 x) as [x _ IH]; intros s ?.
  assert (x = 0 ∨ 0 < x)%N as [->|?] by lia.
  - by rewrite pretty_N_go_0.
  - rewrite pretty_N_go_step by done. apply IH.
    { by apply N.div_lt. }
    unfold pretty_N_char. by repeat case_match.
Qed.

Global Instance pretty_N_inj : Inj (=@{N}) (=) pretty.
Proof.
  cut (∀ x y s s', pretty_N_go x s = pretty_N_go y s' →
    String.length s = String.length s' → x = y ∧ s = s').
  { intros help x y. unfold pretty, pretty_N. intros.
    repeat case_decide; simplify_eq/=; [done|..].
    - by destruct (pretty_N_go_ne_0 y "").
    - by destruct (pretty_N_go_ne_0 x "").
    - by apply (help x y "" ""). }
  assert (∀ x s, ¬String.length (pretty_N_go x s) < String.length s) as help.
  { setoid_rewrite <-Nat.le_ngt.
    intros x; induction (N.lt_wf_0 x) as [x _ IH]; intros s.
    assert (x = 0 ∨ 0 < x)%N as [->|?] by lia; [by rewrite pretty_N_go_0|].
    rewrite pretty_N_go_step by done.
    etrans; [|by eapply IH, N.div_lt]; simpl; lia. }
  intros x; induction (N.lt_wf_0 x) as [x _ IH]; intros y s s'.
  assert ((x = 0 ∨ 0 < x) ∧ (y = 0 ∨ 0 < y))%N as [[->|?] [->|?]] by lia;
    rewrite ?pretty_N_go_0, ?pretty_N_go_step, ?(pretty_N_go_step y) by done.
  { done. }
  { intros -> Hlen. edestruct help; rewrite Hlen; simpl; lia. }
  { intros <- Hlen. edestruct help; rewrite <-Hlen; simpl; lia. }
  intros Hs Hlen.
  apply IH in Hs as [? [= Hchar]];
    [|auto using N.div_lt_upper_bound with lia|simpl; lia].
  split; [|done].
  apply pretty_N_char_inj in Hchar; [|by auto using N.mod_lt..].
  rewrite (N.div_mod x 10), (N.div_mod y 10) by done. lia.
Qed.

Global Instance pretty_nat : Pretty nat := λ x, pretty (N.of_nat x).
Global Instance pretty_nat_inj : Inj (=@{nat}) (=) pretty.
Proof. apply _. Qed.

Global Instance pretty_positive : Pretty positive := λ x, pretty (Npos x).
Global Instance pretty_positive_inj : Inj (=@{positive}) (=) pretty.
Proof. apply _. Qed.

Global Instance pretty_Z : Pretty Z := λ x,
  match x with
  | Z0 => "0" | Zpos x => pretty x | Zneg x => "-" +:+ pretty x
  end.
Global Instance pretty_Z_inj : Inj (=@{Z}) (=) pretty.
Proof.
  unfold pretty, pretty_Z.
  intros [|x|x] [|y|y] Hpretty; simplify_eq/=; try done.
  - by destruct (pretty_N_go_ne_0 (N.pos y) "").
  - by destruct (pretty_N_go_ne_0 (N.pos x) "").
  - by edestruct (pretty_N_go_ne_dash (N.pos x) "").
  - by edestruct (pretty_N_go_ne_dash (N.pos y) "").
Qed.