File: relations.v

package info (click to toggle)
coq-stdpp 1.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,696 kB
  • sloc: makefile: 52; sh: 35; sed: 1
file content (527 lines) | stat: -rw-r--r-- 20,402 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
(** This file collects definitions and theorems on abstract rewriting systems.
These are particularly useful as we define the operational semantics as a
small step semantics. *)
From stdpp Require Export sets well_founded.
From stdpp Require Import options.

(** * Definitions *)
Section definitions.
  Context `(R : relation A).

  (** An element is reducible if a step is possible. *)
  Definition red (x : A) := ∃ y, R x y.

  (** An element is in normal form if no further steps are possible. *)
  Definition nf (x : A) := ¬red x.

  (** The symmetric closure. *)
  Definition sc : relation A := λ x y, R x y ∨ R y x.

  (** The reflexive transitive closure. *)
  Inductive rtc : relation A :=
    | rtc_refl x : rtc x x
    | rtc_l x y z : R x y → rtc y z → rtc x z.

  (** The reflexive transitive closure for setoids. *)
  Inductive rtcS `{Equiv A} : relation A :=
    | rtcS_refl x y : x ≡ y → rtcS x y
    | rtcS_l x y z : R x y → rtcS y z → rtcS x z.

  (** Reductions of exactly [n] steps. *)
  Inductive nsteps : nat → relation A :=
    | nsteps_O x : nsteps 0 x x
    | nsteps_l n x y z : R x y → nsteps n y z → nsteps (S n) x z.

  (** Reductions of at most [n] steps. *)
  Inductive bsteps : nat → relation A :=
    | bsteps_refl n x : bsteps n x x
    | bsteps_l n x y z : R x y → bsteps n y z → bsteps (S n) x z.

  (** The transitive closure. *)
  Inductive tc : relation A :=
    | tc_once x y : R x y → tc x y
    | tc_l x y z : R x y → tc y z → tc x z.

  (** An element [x] is universally looping if all paths starting at [x]
  are infinite. *)
  CoInductive all_loop : A → Prop :=
    | all_loop_do_step x : red x → (∀ y, R x y → all_loop y) → all_loop x.

  (** An element [x] is existentally looping if some path starting at [x]
  is infinite. *)
  CoInductive ex_loop : A → Prop :=
    | ex_loop_do_step x y : R x y → ex_loop y → ex_loop x.
End definitions.

(** The reflexive transitive symmetric closure. *)
Definition rtsc {A} (R : relation A) := rtc (sc R).

(** Weakly and strongly normalizing elements. *)
Definition wn {A} (R : relation A) (x : A) := ∃ y, rtc R x y ∧ nf R y.

Notation sn R := (Acc (flip R)).

(** The various kinds of "confluence" properties. Any relation that has the
diamond property is confluent, and any confluent relation is locally confluent.
The naming convention are taken from "Term Rewriting and All That" by Baader and
Nipkow. *)
Definition diamond {A} (R : relation A) :=
  ∀ x y1 y2, R x y1 → R x y2 → ∃ z, R y1 z ∧ R y2 z.

Definition confluent {A} (R : relation A) :=
  diamond (rtc R).

Definition locally_confluent {A} (R : relation A) :=
  ∀ x y1 y2, R x y1 → R x y2 → ∃ z, rtc R y1 z ∧ rtc R y2 z.

Global Hint Unfold nf red : core.

(** * General theorems *)
Section general.
  Context `{R : relation A}.

  Local Hint Constructors rtc nsteps bsteps tc : core.

  (** ** Results about the reflexive-transitive closure [rtc] *)
  Lemma rtc_transitive x y z : rtc R x y → rtc R y z → rtc R x z.
  Proof. induction 1; eauto. Qed.

  (* We give this instance a lower-than-usual priority because [setoid_rewrite]
     queries for [@Reflexive Prop ?r] in the hope of [iff_reflexive] getting
     picked as the instance.  [rtc_reflexive] overlaps with that, leading to
     backtracking.  We cannot set [Hint Mode] because that query must not fail,
     but we can at least avoid picking [rtc_reflexive].

     See Coq bug https://github.com/coq/coq/issues/7916 and the test
     [tests.typeclasses.test_setoid_rewrite]. *)
  Global Instance rtc_po : PreOrder (rtc R) | 10.
  Proof. split; [exact (@rtc_refl A R) | exact rtc_transitive]. Qed.

  (* Not an instance, related to the issue described above, this sometimes makes
  [setoid_rewrite] queries loop. *)
  Lemma rtc_equivalence : Symmetric R → Equivalence (rtc R).
  Proof.
    split; try apply _.
    intros x y. induction 1 as [|x1 x2 x3]; [done|trans x2; eauto].
  Qed.

  Lemma rtc_once x y : R x y → rtc R x y.
  Proof. eauto. Qed.
  Lemma rtc_r x y z : rtc R x y → R y z → rtc R x z.
  Proof. intros. etrans; eauto. Qed.
  Lemma rtc_inv x z : rtc R x z → x = z ∨ ∃ y, R x y ∧ rtc R y z.
  Proof. inv 1; eauto. Qed.
  Lemma rtc_ind_l (P : A → Prop) (z : A)
    (Prefl : P z) (Pstep : ∀ x y, R x y → rtc R y z → P y → P x) :
    ∀ x, rtc R x z → P x.
  Proof. induction 1; eauto. Qed.
  Lemma rtc_ind_r_weak (P : A → A → Prop)
    (Prefl : ∀ x, P x x) (Pstep : ∀ x y z, rtc R x y → R y z → P x y → P x z) :
    ∀ x z, rtc R x z → P x z.
  Proof.
    cut (∀ y z, rtc R y z → ∀ x, rtc R x y → P x y → P x z).
    { eauto using rtc_refl. }
    induction 1; eauto using rtc_r.
  Qed.
  Lemma rtc_ind_r (P : A → Prop) (x : A)
    (Prefl : P x) (Pstep : ∀ y z, rtc R x y → R y z → P y → P z) :
    ∀ z, rtc R x z → P z.
  Proof.
    intros z p. revert x z p Prefl Pstep. refine (rtc_ind_r_weak _ _ _); eauto.
  Qed.
  Lemma rtc_inv_r x z : rtc R x z → x = z ∨ ∃ y, rtc R x y ∧ R y z.
  Proof. revert z. apply rtc_ind_r; eauto. Qed.

  Lemma rtc_nf x y : rtc R x y → nf R x → x = y.
  Proof. destruct 1 as [x|x y1 y2]; [done|]. intros []; eauto. Qed.

  Lemma rtc_congruence {B} (f : A → B) (R' : relation B) x y :
    (∀ x y, R x y → R' (f x) (f y)) → rtc R x y → rtc R' (f x) (f y).
  Proof. induction 2; econstructor; eauto. Qed.

  (** ** Results about [nsteps] *)
  Lemma nsteps_once x y : R x y → nsteps R 1 x y.
  Proof. eauto. Qed.
  Lemma nsteps_once_inv x y : nsteps R 1 x y → R x y.
  Proof. inv 1 as [|???? Hhead Htail]; by inv Htail. Qed.
  Lemma nsteps_trans n m x y z :
    nsteps R n x y → nsteps R m y z → nsteps R (n + m) x z.
  Proof. induction 1; simpl; eauto. Qed.
  Lemma nsteps_r n x y z : nsteps R n x y → R y z → nsteps R (S n) x z.
  Proof. induction 1; eauto. Qed.

  Lemma nsteps_add_inv n m x z :
    nsteps R (n + m) x z → ∃ y, nsteps R n x y ∧ nsteps R m y z.
  Proof.
    revert x.
    induction n as [|n IH]; intros x Hx; simpl; [by eauto|].
    inv Hx; naive_solver.
  Qed.

  Lemma nsteps_inv_r n x z : nsteps R (S n) x z → ∃ y, nsteps R n x y ∧ R y z.
  Proof.
    rewrite <- PeanoNat.Nat.add_1_r.
    intros (?&?&?%nsteps_once_inv)%nsteps_add_inv; eauto.
  Qed.

  Lemma nsteps_congruence {B} (f : A → B) (R' : relation B) n x y :
    (∀ x y, R x y → R' (f x) (f y)) → nsteps R n x y → nsteps R' n (f x) (f y).
  Proof. induction 2; econstructor; eauto. Qed.

  (** ** Results about [bsteps] *)
  Lemma bsteps_once n x y : R x y → bsteps R (S n) x y.
  Proof. eauto. Qed.
  Lemma bsteps_add_r n m x y :
    bsteps R n x y → bsteps R (n + m) x y.
  Proof. induction 1; simpl; eauto. Qed.
  Lemma bsteps_weaken n m x y :
    n ≤ m → bsteps R n x y → bsteps R m x y.
  Proof.
    intros. rewrite (Nat.le_add_sub n m); auto using bsteps_add_r.
  Qed.
  Lemma bsteps_add_l n m x y :
    bsteps R n x y → bsteps R (m + n) x y.
  Proof. apply bsteps_weaken. auto with arith. Qed.
  Lemma bsteps_S n x y :  bsteps R n x y → bsteps R (S n) x y.
  Proof. apply bsteps_weaken. lia. Qed.
  Lemma bsteps_trans n m x y z :
    bsteps R n x y → bsteps R m y z → bsteps R (n + m) x z.
  Proof. induction 1; simpl; eauto using bsteps_add_l. Qed.
  Lemma bsteps_r n x y z : bsteps R n x y → R y z → bsteps R (S n) x z.
  Proof. induction 1; eauto. Qed.
  Lemma bsteps_ind_r (P : nat → A → Prop) (x : A)
    (Prefl : ∀ n, P n x)
    (Pstep : ∀ n y z, bsteps R n x y → R y z → P n y → P (S n) z) :
    ∀ n z, bsteps R n x z → P n z.
  Proof.
    cut (∀ m y z, bsteps R m y z → ∀ n,
      bsteps R n x y → (∀ m', n ≤ m' ∧ m' ≤ n + m → P m' y) → P (n + m) z).
    { intros help n. change n with (0 + n). eauto. }
    induction 1 as [|m x' y z p2 p3 IH]; [by eauto with arith|].
    intros n p1 H. rewrite <-plus_n_Sm.
    apply (IH (S n)); [by eauto using bsteps_r |].
    intros [|m'] [??]; [lia |]. apply Pstep with x'.
    - apply bsteps_weaken with n; intuition lia.
    - done.
    - apply H; intuition lia.
  Qed.

  Lemma bsteps_congruence {B} (f : A → B) (R' : relation B) n x y :
    (∀ x y, R x y → R' (f x) (f y)) → bsteps R n x y → bsteps R' n (f x) (f y).
  Proof. induction 2; econstructor; eauto. Qed.

  (** ** Results about the transitive closure [tc] *)
  Lemma tc_transitive x y z : tc R x y → tc R y z → tc R x z.
  Proof. induction 1; eauto. Qed.
  Global Instance tc_transitive' : Transitive (tc R).
  Proof. exact tc_transitive. Qed.
  Lemma tc_r x y z : tc R x y → R y z → tc R x z.
  Proof. intros. etrans; eauto. Qed.
  Lemma tc_rtc_l x y z : rtc R x y → tc R y z → tc R x z.
  Proof. induction 1; eauto. Qed.
  Lemma tc_rtc_r x y z : tc R x y → rtc R y z → tc R x z.
  Proof. intros Hxy Hyz. revert x Hxy. induction Hyz; eauto using tc_r. Qed.
  Lemma tc_rtc x y : tc R x y → rtc R x y.
  Proof. induction 1; eauto. Qed.

  Lemma red_tc x : red (tc R) x ↔ red R x.
  Proof.
    split.
    - intros [y []]; eexists; eauto.
    - intros [y HR]. exists y. by apply tc_once.
  Qed.

  Lemma tc_congruence {B} (f : A → B) (R' : relation B) x y :
    (∀ x y, R x y → R' (f x) (f y)) → tc R x y → tc R' (f x) (f y).
  Proof. induction 2; econstructor; by eauto. Qed.

  (** ** Results about the symmetric closure [sc] *)
  Global Instance sc_symmetric : Symmetric (sc R).
  Proof. unfold Symmetric, sc. naive_solver. Qed.

  Lemma sc_lr x y : R x y → sc R x y.
  Proof. by left. Qed.
  Lemma sc_rl x y : R y x → sc R x y.
  Proof. by right. Qed.

  Lemma sc_congruence {B} (f : A → B) (R' : relation B) x y :
    (∀ x y, R x y → R' (f x) (f y)) → sc R x y → sc R' (f x) (f y).
  Proof. induction 2; econstructor; by eauto. Qed.

  (** ** Equivalences between closure operators *)
  Lemma bsteps_nsteps n x y : bsteps R n x y ↔ ∃ n', n' ≤ n ∧ nsteps R n' x y.
  Proof.
    split.
    - induction 1 as [|n x1 x2 y ?? (n'&?&?)].
      + exists 0; naive_solver eauto with lia.
      + exists (S n'); naive_solver eauto with lia.
    - intros (n'&Hn'&Hsteps). apply bsteps_weaken with n'; [done|].
      clear Hn'. induction Hsteps; eauto.
  Qed.

  Lemma tc_nsteps x y : tc R x y ↔ ∃ n, 0 < n ∧ nsteps R n x y.
  Proof.
    split.
    - induction 1 as [|x1 x2 y ?? (n&?&?)].
      { exists 1. eauto using nsteps_once with lia. }
      exists (S n); eauto using nsteps_l.
    - intros (n & ? & Hstep). induction Hstep as [|n x1 x2 y ? Hstep]; [lia|].
      destruct Hstep; eauto with lia.
  Qed.

  Lemma rtc_tc x y : rtc R x y ↔ x = y ∨ tc R x y.
  Proof.
    split; [|naive_solver eauto using tc_rtc].
    induction 1; naive_solver.
  Qed.

  Lemma rtc_nsteps x y : rtc R x y ↔ ∃ n, nsteps R n x y.
  Proof.
    split.
    - induction 1; naive_solver.
    - intros [n Hsteps]. induction Hsteps; naive_solver.
  Qed.
  Lemma rtc_nsteps_1 x y : rtc R x y → ∃ n, nsteps R n x y.
  Proof. rewrite rtc_nsteps. naive_solver. Qed.
  Lemma rtc_nsteps_2 n x y : nsteps R n x y → rtc R x y.
  Proof. rewrite rtc_nsteps. naive_solver. Qed.

  Lemma rtc_bsteps x y : rtc R x y ↔ ∃ n, bsteps R n x y.
  Proof. rewrite rtc_nsteps. setoid_rewrite bsteps_nsteps. naive_solver. Qed.
  Lemma rtc_bsteps_1 x y : rtc R x y → ∃ n, bsteps R n x y.
  Proof. rewrite rtc_bsteps. naive_solver. Qed.
  Lemma rtc_bsteps_2 n x y : bsteps R n x y → rtc R x y.
  Proof. rewrite rtc_bsteps. naive_solver. Qed.

  Lemma nsteps_list n x y :
    nsteps R n x y ↔ ∃ l,
      length l = S n ∧
      head l = Some x ∧
      last l = Some y ∧
      ∀ i a b, l !! i = Some a → l !! S i = Some b → R a b.
  Proof.
    setoid_rewrite head_lookup. split.
    - induction 1 as [x|n' x x' y ?? IH].
      { exists [x]; naive_solver. }
      destruct IH as (l & Hlen & Hfirst & Hlast & Hcons).
      exists (x :: l). simpl. rewrite Hlen, last_cons, Hlast.
      split_and!; [done..|]. intros [|i]; naive_solver.
    - intros ([|x' l]&?&Hfirst&Hlast&Hcons); simplify_eq/=.
      revert x Hlast Hcons.
      induction l as [|x1 l IH]; intros x2 Hlast Hcons; simplify_eq/=; [constructor|].
      econstructor; [by apply (Hcons 0)|].
      apply IH; [done|]. intros i. apply (Hcons (S i)).
  Qed.

  Lemma bsteps_list n x y :
    bsteps R n x y ↔ ∃ l,
      length l ≤ S n ∧
      head l = Some x ∧
      last l = Some y ∧
      ∀ i a b, l !! i = Some a → l !! S i = Some b → R a b.
  Proof.
    rewrite bsteps_nsteps. split.
    - intros (n'&?&(l&?&?&?&?)%nsteps_list). exists l; eauto with lia.
    - intros (l&?&?&?&?). exists (pred (length l)). split; [lia|].
      apply nsteps_list. exists l. split; [|by eauto]. by destruct l.
  Qed.

  Lemma rtc_list x y :
    rtc R x y ↔ ∃ l,
      head l = Some x ∧
      last l = Some y ∧
      ∀ i a b, l !! i = Some a → l !! S i = Some b → R a b.
  Proof.
    rewrite rtc_bsteps. split.
    - intros (n'&(l&?&?&?&?)%bsteps_list). exists l; eauto with lia.
    - intros (l&?&?&?). exists (pred (length l)).
      apply bsteps_list. exists l. eauto with lia.
  Qed.

  Lemma tc_list x y :
    tc R x y ↔ ∃ l,
      1 < length l ∧
      head l = Some x ∧
      last l = Some y ∧
      ∀ i a b, l !! i = Some a → l !! S i = Some b → R a b.
  Proof.
    rewrite tc_nsteps. split.
    - intros (n'&?&(l&?&?&?&?)%nsteps_list). exists l; eauto with lia.
    - intros (l&?&?&?&?). exists (pred (length l)).
      split; [lia|]. apply nsteps_list. exists l. eauto with lia.
  Qed.

  Lemma ex_loop_inv x :
    ex_loop R x →
    ∃ x', R x x' ∧ ex_loop R x'.
  Proof. inv 1; eauto. Qed.

End general.

Section more_general.
  Context `{R : relation A}.

  (** ** Results about the reflexive-transitive-symmetric closure [rtsc] *)
  Global Instance rtsc_equivalence : Equivalence (rtsc R) | 10.
  Proof. apply rtc_equivalence, _. Qed.

  Lemma rtsc_lr x y : R x y → rtsc R x y.
  Proof. unfold rtsc. eauto using sc_lr, rtc_once. Qed.
  Lemma rtsc_rl x y : R y x → rtsc R x y.
  Proof. unfold rtsc. eauto using sc_rl, rtc_once. Qed.
  Lemma rtc_rtsc_rl x y : rtc R x y → rtsc R x y.
  Proof. induction 1; econstructor; eauto using sc_lr. Qed.
  Lemma rtc_rtsc_lr x y : rtc R y x → rtsc R x y.
  Proof. intros. symmetry. eauto using rtc_rtsc_rl. Qed.

  Lemma rtsc_congruence {B} (f : A → B) (R' : relation B) x y :
    (∀ x y, R x y → R' (f x) (f y)) → rtsc R x y → rtsc R' (f x) (f y).
  Proof. unfold rtsc; eauto using rtc_congruence, sc_congruence. Qed.

  Lemma ex_loop_tc x :
    ex_loop (tc R) x ↔ ex_loop R x.
  Proof.
    split.
    - revert x; cofix IH.
      intros x (y & Hstep & Hloop')%ex_loop_inv.
      destruct Hstep as [x y Hstep|x y z Hstep Hsteps].
      + econstructor; eauto.
      + econstructor; [by eauto|].
        eapply IH. econstructor; eauto.
    - revert x; cofix IH.
      intros x (y & Hstep & Hloop')%ex_loop_inv.
      econstructor; eauto using tc_once.
  Qed.

End more_general.

Section properties.
  Context `{R : relation A}.

  Local Hint Constructors rtc nsteps bsteps tc : core.

  Lemma nf_wn x : nf R x → wn R x.
  Proof. intros. exists x; eauto. Qed.
  Lemma wn_step x y : wn R y → R x y → wn R x.
  Proof. intros (z & ? & ?) ?. exists z; eauto. Qed.
  Lemma wn_step_rtc x y : wn R y → rtc R x y → wn R x.
  Proof. induction 2; eauto using wn_step. Qed.

  Lemma nf_sn x : nf R x → sn R x.
  Proof. intros Hnf. constructor; intros y Hxy. destruct Hnf; eauto. Qed.
  Lemma sn_step x y : sn R x → R x y → sn R y.
  Proof. induction 1; eauto. Qed.
  Lemma sn_step_rtc x y : sn R x → rtc R x y → sn R y.
  Proof. induction 2; eauto using sn_step. Qed.

  (** An acyclic relation that can only take finitely many steps (sometimes
  called "globally finite") is strongly normalizing *)
  Lemma tc_finite_sn x : Irreflexive (tc R) → pred_finite (tc R x) → sn R x.
  Proof.
    intros Hirr [xs Hfin]. remember (length xs) as n eqn:Hn.
    revert x xs Hn Hfin.
    induction (lt_wf n) as [n _ IH]; intros x xs -> Hfin.
    constructor; simpl; intros x' Hxx'.
    assert (x' ∈ xs) as (xs1&xs2&->)%elem_of_list_split by eauto using tc_once.
    refine (IH (length xs1 + length xs2) _ _ (xs1 ++ xs2) _ _);
      [rewrite length_app; simpl; lia..|].
    intros x'' Hx'x''. opose proof* (Hfin x'') as Hx''; [by econstructor|].
    cut (x' ≠ x''); [set_solver|].
    intros ->. by apply (Hirr x'').
  Qed.

  (** The following theorem requires that [red R] is decidable. The intuition
  for this requirement is that [wn R] is a very "positive" statement as it
  points out a particular trace. In contrast, [sn R] just says "this also holds
  for all successors", there is no "data"/"trace" there. *)
  Lemma sn_wn `{!∀ y, Decision (red R y)} x : sn R x → wn R x.
  Proof.
    induction 1 as [x _ IH]. destruct (decide (red R x)) as [[x' ?]|?].
    - destruct (IH x') as (y&?&?); eauto using wn_step.
    - by apply nf_wn.
  Qed.

  Lemma all_loop_red x : all_loop R x → red R x.
  Proof. destruct 1; auto. Qed.
  Lemma all_loop_step x y : all_loop R x → R x y → all_loop R y.
  Proof. destruct 1; auto. Qed.
  Lemma all_loop_rtc x y : all_loop R x → rtc R x y → all_loop R y.
  Proof. induction 2; eauto using all_loop_step. Qed.
  Lemma all_loop_alt x :
    all_loop R x ↔ ∀ y, rtc R x y → red R y.
  Proof.
    split; [eauto using all_loop_red, all_loop_rtc|].
    intros H. cut (∀ z, rtc R x z → all_loop R z); [eauto|].
    cofix FIX. constructor; eauto using rtc_r.
  Qed.

  Lemma wn_not_all_loop x : wn R x → ¬all_loop R x.
  Proof. intros (z&?&?). rewrite all_loop_alt. eauto. Qed.
  Lemma sn_not_ex_loop x : sn R x → ¬ex_loop R x.
  Proof. unfold not. induction 1; destruct 1; eauto. Qed.

  (** An alternative definition of confluence; also known as the Church-Rosser
  property. *)
  Lemma confluent_alt :
    confluent R ↔ (∀ x y, rtsc R x y → ∃ z, rtc R x z ∧ rtc R y z).
  Proof.
    split.
    - intros Hcr. induction 1 as [x|x y1 y1' [Hy1|Hy1] Hy1' (z&IH1&IH2)]; eauto.
      destruct (Hcr y1 x z) as (z'&?&?); eauto using rtc_transitive.
    - intros Hcr x y1 y2 Hy1 Hy2.
      apply Hcr; trans x; eauto using rtc_rtsc_rl, rtc_rtsc_lr.
  Qed.

  Lemma confluent_nf_r x y :
    confluent R → rtsc R x y → nf R y → rtc R x y.
  Proof.
    rewrite confluent_alt. intros Hcr ??. destruct (Hcr x y) as (z&Hx&Hy); auto.
    by apply rtc_nf in Hy as ->.
  Qed.
  Lemma confluent_nf_l x y :
    confluent R → rtsc R x y → nf R x → rtc R y x.
  Proof. intros. by apply (confluent_nf_r y x). Qed.

  Lemma diamond_confluent :
    diamond R → confluent R.
  Proof.
    intros Hdiam. assert (∀ x y1 y2,
      rtc R x y1 → R x y2 → ∃ z, rtc R y1 z ∧ rtc R y2 z) as Hstrip.
    { intros x y1 y2 Hy1; revert y2.
      induction Hy1 as [x|x y1 y1' Hy1 Hy1' IH]; [by eauto|]; intros y2 Hy2.
      destruct (Hdiam x y1 y2) as (z&Hy1z&Hy2z); auto.
      destruct (IH z) as (z'&?&?); eauto. }
    intros x y1 y2 Hy1; revert y2.
    induction Hy1 as [x|x y1 y1' Hy1 Hy1' IH]; [by eauto|]; intros y2 Hy2.
    destruct (Hstrip x y2 y1) as (z&?&?); eauto.
    destruct (IH z) as (z'&?&?); eauto using rtc_transitive.
  Qed.

  Lemma confluent_locally_confluent :
    confluent R → locally_confluent R.
  Proof. unfold confluent, locally_confluent; eauto. Qed.

  (** The following is also known as Newman's lemma *)
  Lemma locally_confluent_confluent :
    (∀ x, sn R x) → locally_confluent R → confluent R.
  Proof.
    intros Hsn Hcr x. induction (Hsn x) as [x _ IH].
    intros y1 y2 Hy1 Hy2. destruct Hy1 as [x|x y1 y1' Hy1 Hy1']; [by eauto|].
    destruct Hy2 as [x|x y2 y2' Hy2 Hy2']; [by eauto|].
    destruct (Hcr x y1 y2) as (z&Hy1z&Hy2z); auto.
    destruct (IH _ Hy1 y1' z) as (z1&?&?); auto.
    destruct (IH _ Hy2 y2' z1) as (z2&?&?); eauto using rtc_transitive.
  Qed.
End properties.

(** * Theorems on sub relations *)
Section subrel.
  Context {A} (R1 R2 : relation A).
  Notation subrel := (∀ x y, R1 x y → R2 x y).
  Lemma red_subrel x : subrel → red R1 x → red R2 x.
  Proof. intros ? [y ?]; eauto. Qed.
  Lemma nf_subrel x : subrel → nf R2 x → nf R1 x.
  Proof. intros ? H1 H2; destruct H1; by apply red_subrel. Qed.
  Lemma rtc_subrel x y : subrel → rtc R1 x y → rtc R2 x y.
  Proof. induction 2; [by apply rtc_refl|]. eapply rtc_l; eauto. Qed.
End subrel.