1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
(** This file collects definitions and theorems on abstract rewriting systems.
These are particularly useful as we define the operational semantics as a
small step semantics. *)
From stdpp Require Export sets well_founded.
From stdpp Require Import options.
(** * Definitions *)
Section definitions.
Context `(R : relation A).
(** An element is reducible if a step is possible. *)
Definition red (x : A) := ∃ y, R x y.
(** An element is in normal form if no further steps are possible. *)
Definition nf (x : A) := ¬red x.
(** The symmetric closure. *)
Definition sc : relation A := λ x y, R x y ∨ R y x.
(** The reflexive transitive closure. *)
Inductive rtc : relation A :=
| rtc_refl x : rtc x x
| rtc_l x y z : R x y → rtc y z → rtc x z.
(** The reflexive transitive closure for setoids. *)
Inductive rtcS `{Equiv A} : relation A :=
| rtcS_refl x y : x ≡ y → rtcS x y
| rtcS_l x y z : R x y → rtcS y z → rtcS x z.
(** Reductions of exactly [n] steps. *)
Inductive nsteps : nat → relation A :=
| nsteps_O x : nsteps 0 x x
| nsteps_l n x y z : R x y → nsteps n y z → nsteps (S n) x z.
(** Reductions of at most [n] steps. *)
Inductive bsteps : nat → relation A :=
| bsteps_refl n x : bsteps n x x
| bsteps_l n x y z : R x y → bsteps n y z → bsteps (S n) x z.
(** The transitive closure. *)
Inductive tc : relation A :=
| tc_once x y : R x y → tc x y
| tc_l x y z : R x y → tc y z → tc x z.
(** An element [x] is universally looping if all paths starting at [x]
are infinite. *)
CoInductive all_loop : A → Prop :=
| all_loop_do_step x : red x → (∀ y, R x y → all_loop y) → all_loop x.
(** An element [x] is existentally looping if some path starting at [x]
is infinite. *)
CoInductive ex_loop : A → Prop :=
| ex_loop_do_step x y : R x y → ex_loop y → ex_loop x.
End definitions.
(** The reflexive transitive symmetric closure. *)
Definition rtsc {A} (R : relation A) := rtc (sc R).
(** Weakly and strongly normalizing elements. *)
Definition wn {A} (R : relation A) (x : A) := ∃ y, rtc R x y ∧ nf R y.
Notation sn R := (Acc (flip R)).
(** The various kinds of "confluence" properties. Any relation that has the
diamond property is confluent, and any confluent relation is locally confluent.
The naming convention are taken from "Term Rewriting and All That" by Baader and
Nipkow. *)
Definition diamond {A} (R : relation A) :=
∀ x y1 y2, R x y1 → R x y2 → ∃ z, R y1 z ∧ R y2 z.
Definition confluent {A} (R : relation A) :=
diamond (rtc R).
Definition locally_confluent {A} (R : relation A) :=
∀ x y1 y2, R x y1 → R x y2 → ∃ z, rtc R y1 z ∧ rtc R y2 z.
Global Hint Unfold nf red : core.
(** * General theorems *)
Section general.
Context `{R : relation A}.
Local Hint Constructors rtc nsteps bsteps tc : core.
(** ** Results about the reflexive-transitive closure [rtc] *)
Lemma rtc_transitive x y z : rtc R x y → rtc R y z → rtc R x z.
Proof. induction 1; eauto. Qed.
(* We give this instance a lower-than-usual priority because [setoid_rewrite]
queries for [@Reflexive Prop ?r] in the hope of [iff_reflexive] getting
picked as the instance. [rtc_reflexive] overlaps with that, leading to
backtracking. We cannot set [Hint Mode] because that query must not fail,
but we can at least avoid picking [rtc_reflexive].
See Coq bug https://github.com/coq/coq/issues/7916 and the test
[tests.typeclasses.test_setoid_rewrite]. *)
Global Instance rtc_po : PreOrder (rtc R) | 10.
Proof. split; [exact (@rtc_refl A R) | exact rtc_transitive]. Qed.
(* Not an instance, related to the issue described above, this sometimes makes
[setoid_rewrite] queries loop. *)
Lemma rtc_equivalence : Symmetric R → Equivalence (rtc R).
Proof.
split; try apply _.
intros x y. induction 1 as [|x1 x2 x3]; [done|trans x2; eauto].
Qed.
Lemma rtc_once x y : R x y → rtc R x y.
Proof. eauto. Qed.
Lemma rtc_r x y z : rtc R x y → R y z → rtc R x z.
Proof. intros. etrans; eauto. Qed.
Lemma rtc_inv x z : rtc R x z → x = z ∨ ∃ y, R x y ∧ rtc R y z.
Proof. inv 1; eauto. Qed.
Lemma rtc_ind_l (P : A → Prop) (z : A)
(Prefl : P z) (Pstep : ∀ x y, R x y → rtc R y z → P y → P x) :
∀ x, rtc R x z → P x.
Proof. induction 1; eauto. Qed.
Lemma rtc_ind_r_weak (P : A → A → Prop)
(Prefl : ∀ x, P x x) (Pstep : ∀ x y z, rtc R x y → R y z → P x y → P x z) :
∀ x z, rtc R x z → P x z.
Proof.
cut (∀ y z, rtc R y z → ∀ x, rtc R x y → P x y → P x z).
{ eauto using rtc_refl. }
induction 1; eauto using rtc_r.
Qed.
Lemma rtc_ind_r (P : A → Prop) (x : A)
(Prefl : P x) (Pstep : ∀ y z, rtc R x y → R y z → P y → P z) :
∀ z, rtc R x z → P z.
Proof.
intros z p. revert x z p Prefl Pstep. refine (rtc_ind_r_weak _ _ _); eauto.
Qed.
Lemma rtc_inv_r x z : rtc R x z → x = z ∨ ∃ y, rtc R x y ∧ R y z.
Proof. revert z. apply rtc_ind_r; eauto. Qed.
Lemma rtc_nf x y : rtc R x y → nf R x → x = y.
Proof. destruct 1 as [x|x y1 y2]; [done|]. intros []; eauto. Qed.
Lemma rtc_congruence {B} (f : A → B) (R' : relation B) x y :
(∀ x y, R x y → R' (f x) (f y)) → rtc R x y → rtc R' (f x) (f y).
Proof. induction 2; econstructor; eauto. Qed.
(** ** Results about [nsteps] *)
Lemma nsteps_once x y : R x y → nsteps R 1 x y.
Proof. eauto. Qed.
Lemma nsteps_once_inv x y : nsteps R 1 x y → R x y.
Proof. inv 1 as [|???? Hhead Htail]; by inv Htail. Qed.
Lemma nsteps_trans n m x y z :
nsteps R n x y → nsteps R m y z → nsteps R (n + m) x z.
Proof. induction 1; simpl; eauto. Qed.
Lemma nsteps_r n x y z : nsteps R n x y → R y z → nsteps R (S n) x z.
Proof. induction 1; eauto. Qed.
Lemma nsteps_add_inv n m x z :
nsteps R (n + m) x z → ∃ y, nsteps R n x y ∧ nsteps R m y z.
Proof.
revert x.
induction n as [|n IH]; intros x Hx; simpl; [by eauto|].
inv Hx; naive_solver.
Qed.
Lemma nsteps_inv_r n x z : nsteps R (S n) x z → ∃ y, nsteps R n x y ∧ R y z.
Proof.
rewrite <- PeanoNat.Nat.add_1_r.
intros (?&?&?%nsteps_once_inv)%nsteps_add_inv; eauto.
Qed.
Lemma nsteps_congruence {B} (f : A → B) (R' : relation B) n x y :
(∀ x y, R x y → R' (f x) (f y)) → nsteps R n x y → nsteps R' n (f x) (f y).
Proof. induction 2; econstructor; eauto. Qed.
(** ** Results about [bsteps] *)
Lemma bsteps_once n x y : R x y → bsteps R (S n) x y.
Proof. eauto. Qed.
Lemma bsteps_add_r n m x y :
bsteps R n x y → bsteps R (n + m) x y.
Proof. induction 1; simpl; eauto. Qed.
Lemma bsteps_weaken n m x y :
n ≤ m → bsteps R n x y → bsteps R m x y.
Proof.
intros. rewrite (Nat.le_add_sub n m); auto using bsteps_add_r.
Qed.
Lemma bsteps_add_l n m x y :
bsteps R n x y → bsteps R (m + n) x y.
Proof. apply bsteps_weaken. auto with arith. Qed.
Lemma bsteps_S n x y : bsteps R n x y → bsteps R (S n) x y.
Proof. apply bsteps_weaken. lia. Qed.
Lemma bsteps_trans n m x y z :
bsteps R n x y → bsteps R m y z → bsteps R (n + m) x z.
Proof. induction 1; simpl; eauto using bsteps_add_l. Qed.
Lemma bsteps_r n x y z : bsteps R n x y → R y z → bsteps R (S n) x z.
Proof. induction 1; eauto. Qed.
Lemma bsteps_ind_r (P : nat → A → Prop) (x : A)
(Prefl : ∀ n, P n x)
(Pstep : ∀ n y z, bsteps R n x y → R y z → P n y → P (S n) z) :
∀ n z, bsteps R n x z → P n z.
Proof.
cut (∀ m y z, bsteps R m y z → ∀ n,
bsteps R n x y → (∀ m', n ≤ m' ∧ m' ≤ n + m → P m' y) → P (n + m) z).
{ intros help n. change n with (0 + n). eauto. }
induction 1 as [|m x' y z p2 p3 IH]; [by eauto with arith|].
intros n p1 H. rewrite <-plus_n_Sm.
apply (IH (S n)); [by eauto using bsteps_r |].
intros [|m'] [??]; [lia |]. apply Pstep with x'.
- apply bsteps_weaken with n; intuition lia.
- done.
- apply H; intuition lia.
Qed.
Lemma bsteps_congruence {B} (f : A → B) (R' : relation B) n x y :
(∀ x y, R x y → R' (f x) (f y)) → bsteps R n x y → bsteps R' n (f x) (f y).
Proof. induction 2; econstructor; eauto. Qed.
(** ** Results about the transitive closure [tc] *)
Lemma tc_transitive x y z : tc R x y → tc R y z → tc R x z.
Proof. induction 1; eauto. Qed.
Global Instance tc_transitive' : Transitive (tc R).
Proof. exact tc_transitive. Qed.
Lemma tc_r x y z : tc R x y → R y z → tc R x z.
Proof. intros. etrans; eauto. Qed.
Lemma tc_rtc_l x y z : rtc R x y → tc R y z → tc R x z.
Proof. induction 1; eauto. Qed.
Lemma tc_rtc_r x y z : tc R x y → rtc R y z → tc R x z.
Proof. intros Hxy Hyz. revert x Hxy. induction Hyz; eauto using tc_r. Qed.
Lemma tc_rtc x y : tc R x y → rtc R x y.
Proof. induction 1; eauto. Qed.
Lemma red_tc x : red (tc R) x ↔ red R x.
Proof.
split.
- intros [y []]; eexists; eauto.
- intros [y HR]. exists y. by apply tc_once.
Qed.
Lemma tc_congruence {B} (f : A → B) (R' : relation B) x y :
(∀ x y, R x y → R' (f x) (f y)) → tc R x y → tc R' (f x) (f y).
Proof. induction 2; econstructor; by eauto. Qed.
(** ** Results about the symmetric closure [sc] *)
Global Instance sc_symmetric : Symmetric (sc R).
Proof. unfold Symmetric, sc. naive_solver. Qed.
Lemma sc_lr x y : R x y → sc R x y.
Proof. by left. Qed.
Lemma sc_rl x y : R y x → sc R x y.
Proof. by right. Qed.
Lemma sc_congruence {B} (f : A → B) (R' : relation B) x y :
(∀ x y, R x y → R' (f x) (f y)) → sc R x y → sc R' (f x) (f y).
Proof. induction 2; econstructor; by eauto. Qed.
(** ** Equivalences between closure operators *)
Lemma bsteps_nsteps n x y : bsteps R n x y ↔ ∃ n', n' ≤ n ∧ nsteps R n' x y.
Proof.
split.
- induction 1 as [|n x1 x2 y ?? (n'&?&?)].
+ exists 0; naive_solver eauto with lia.
+ exists (S n'); naive_solver eauto with lia.
- intros (n'&Hn'&Hsteps). apply bsteps_weaken with n'; [done|].
clear Hn'. induction Hsteps; eauto.
Qed.
Lemma tc_nsteps x y : tc R x y ↔ ∃ n, 0 < n ∧ nsteps R n x y.
Proof.
split.
- induction 1 as [|x1 x2 y ?? (n&?&?)].
{ exists 1. eauto using nsteps_once with lia. }
exists (S n); eauto using nsteps_l.
- intros (n & ? & Hstep). induction Hstep as [|n x1 x2 y ? Hstep]; [lia|].
destruct Hstep; eauto with lia.
Qed.
Lemma rtc_tc x y : rtc R x y ↔ x = y ∨ tc R x y.
Proof.
split; [|naive_solver eauto using tc_rtc].
induction 1; naive_solver.
Qed.
Lemma rtc_nsteps x y : rtc R x y ↔ ∃ n, nsteps R n x y.
Proof.
split.
- induction 1; naive_solver.
- intros [n Hsteps]. induction Hsteps; naive_solver.
Qed.
Lemma rtc_nsteps_1 x y : rtc R x y → ∃ n, nsteps R n x y.
Proof. rewrite rtc_nsteps. naive_solver. Qed.
Lemma rtc_nsteps_2 n x y : nsteps R n x y → rtc R x y.
Proof. rewrite rtc_nsteps. naive_solver. Qed.
Lemma rtc_bsteps x y : rtc R x y ↔ ∃ n, bsteps R n x y.
Proof. rewrite rtc_nsteps. setoid_rewrite bsteps_nsteps. naive_solver. Qed.
Lemma rtc_bsteps_1 x y : rtc R x y → ∃ n, bsteps R n x y.
Proof. rewrite rtc_bsteps. naive_solver. Qed.
Lemma rtc_bsteps_2 n x y : bsteps R n x y → rtc R x y.
Proof. rewrite rtc_bsteps. naive_solver. Qed.
Lemma nsteps_list n x y :
nsteps R n x y ↔ ∃ l,
length l = S n ∧
head l = Some x ∧
last l = Some y ∧
∀ i a b, l !! i = Some a → l !! S i = Some b → R a b.
Proof.
setoid_rewrite head_lookup. split.
- induction 1 as [x|n' x x' y ?? IH].
{ exists [x]; naive_solver. }
destruct IH as (l & Hlen & Hfirst & Hlast & Hcons).
exists (x :: l). simpl. rewrite Hlen, last_cons, Hlast.
split_and!; [done..|]. intros [|i]; naive_solver.
- intros ([|x' l]&?&Hfirst&Hlast&Hcons); simplify_eq/=.
revert x Hlast Hcons.
induction l as [|x1 l IH]; intros x2 Hlast Hcons; simplify_eq/=; [constructor|].
econstructor; [by apply (Hcons 0)|].
apply IH; [done|]. intros i. apply (Hcons (S i)).
Qed.
Lemma bsteps_list n x y :
bsteps R n x y ↔ ∃ l,
length l ≤ S n ∧
head l = Some x ∧
last l = Some y ∧
∀ i a b, l !! i = Some a → l !! S i = Some b → R a b.
Proof.
rewrite bsteps_nsteps. split.
- intros (n'&?&(l&?&?&?&?)%nsteps_list). exists l; eauto with lia.
- intros (l&?&?&?&?). exists (pred (length l)). split; [lia|].
apply nsteps_list. exists l. split; [|by eauto]. by destruct l.
Qed.
Lemma rtc_list x y :
rtc R x y ↔ ∃ l,
head l = Some x ∧
last l = Some y ∧
∀ i a b, l !! i = Some a → l !! S i = Some b → R a b.
Proof.
rewrite rtc_bsteps. split.
- intros (n'&(l&?&?&?&?)%bsteps_list). exists l; eauto with lia.
- intros (l&?&?&?). exists (pred (length l)).
apply bsteps_list. exists l. eauto with lia.
Qed.
Lemma tc_list x y :
tc R x y ↔ ∃ l,
1 < length l ∧
head l = Some x ∧
last l = Some y ∧
∀ i a b, l !! i = Some a → l !! S i = Some b → R a b.
Proof.
rewrite tc_nsteps. split.
- intros (n'&?&(l&?&?&?&?)%nsteps_list). exists l; eauto with lia.
- intros (l&?&?&?&?). exists (pred (length l)).
split; [lia|]. apply nsteps_list. exists l. eauto with lia.
Qed.
Lemma ex_loop_inv x :
ex_loop R x →
∃ x', R x x' ∧ ex_loop R x'.
Proof. inv 1; eauto. Qed.
End general.
Section more_general.
Context `{R : relation A}.
(** ** Results about the reflexive-transitive-symmetric closure [rtsc] *)
Global Instance rtsc_equivalence : Equivalence (rtsc R) | 10.
Proof. apply rtc_equivalence, _. Qed.
Lemma rtsc_lr x y : R x y → rtsc R x y.
Proof. unfold rtsc. eauto using sc_lr, rtc_once. Qed.
Lemma rtsc_rl x y : R y x → rtsc R x y.
Proof. unfold rtsc. eauto using sc_rl, rtc_once. Qed.
Lemma rtc_rtsc_rl x y : rtc R x y → rtsc R x y.
Proof. induction 1; econstructor; eauto using sc_lr. Qed.
Lemma rtc_rtsc_lr x y : rtc R y x → rtsc R x y.
Proof. intros. symmetry. eauto using rtc_rtsc_rl. Qed.
Lemma rtsc_congruence {B} (f : A → B) (R' : relation B) x y :
(∀ x y, R x y → R' (f x) (f y)) → rtsc R x y → rtsc R' (f x) (f y).
Proof. unfold rtsc; eauto using rtc_congruence, sc_congruence. Qed.
Lemma ex_loop_tc x :
ex_loop (tc R) x ↔ ex_loop R x.
Proof.
split.
- revert x; cofix IH.
intros x (y & Hstep & Hloop')%ex_loop_inv.
destruct Hstep as [x y Hstep|x y z Hstep Hsteps].
+ econstructor; eauto.
+ econstructor; [by eauto|].
eapply IH. econstructor; eauto.
- revert x; cofix IH.
intros x (y & Hstep & Hloop')%ex_loop_inv.
econstructor; eauto using tc_once.
Qed.
End more_general.
Section properties.
Context `{R : relation A}.
Local Hint Constructors rtc nsteps bsteps tc : core.
Lemma nf_wn x : nf R x → wn R x.
Proof. intros. exists x; eauto. Qed.
Lemma wn_step x y : wn R y → R x y → wn R x.
Proof. intros (z & ? & ?) ?. exists z; eauto. Qed.
Lemma wn_step_rtc x y : wn R y → rtc R x y → wn R x.
Proof. induction 2; eauto using wn_step. Qed.
Lemma nf_sn x : nf R x → sn R x.
Proof. intros Hnf. constructor; intros y Hxy. destruct Hnf; eauto. Qed.
Lemma sn_step x y : sn R x → R x y → sn R y.
Proof. induction 1; eauto. Qed.
Lemma sn_step_rtc x y : sn R x → rtc R x y → sn R y.
Proof. induction 2; eauto using sn_step. Qed.
(** An acyclic relation that can only take finitely many steps (sometimes
called "globally finite") is strongly normalizing *)
Lemma tc_finite_sn x : Irreflexive (tc R) → pred_finite (tc R x) → sn R x.
Proof.
intros Hirr [xs Hfin]. remember (length xs) as n eqn:Hn.
revert x xs Hn Hfin.
induction (lt_wf n) as [n _ IH]; intros x xs -> Hfin.
constructor; simpl; intros x' Hxx'.
assert (x' ∈ xs) as (xs1&xs2&->)%elem_of_list_split by eauto using tc_once.
refine (IH (length xs1 + length xs2) _ _ (xs1 ++ xs2) _ _);
[rewrite length_app; simpl; lia..|].
intros x'' Hx'x''. opose proof* (Hfin x'') as Hx''; [by econstructor|].
cut (x' ≠ x''); [set_solver|].
intros ->. by apply (Hirr x'').
Qed.
(** The following theorem requires that [red R] is decidable. The intuition
for this requirement is that [wn R] is a very "positive" statement as it
points out a particular trace. In contrast, [sn R] just says "this also holds
for all successors", there is no "data"/"trace" there. *)
Lemma sn_wn `{!∀ y, Decision (red R y)} x : sn R x → wn R x.
Proof.
induction 1 as [x _ IH]. destruct (decide (red R x)) as [[x' ?]|?].
- destruct (IH x') as (y&?&?); eauto using wn_step.
- by apply nf_wn.
Qed.
Lemma all_loop_red x : all_loop R x → red R x.
Proof. destruct 1; auto. Qed.
Lemma all_loop_step x y : all_loop R x → R x y → all_loop R y.
Proof. destruct 1; auto. Qed.
Lemma all_loop_rtc x y : all_loop R x → rtc R x y → all_loop R y.
Proof. induction 2; eauto using all_loop_step. Qed.
Lemma all_loop_alt x :
all_loop R x ↔ ∀ y, rtc R x y → red R y.
Proof.
split; [eauto using all_loop_red, all_loop_rtc|].
intros H. cut (∀ z, rtc R x z → all_loop R z); [eauto|].
cofix FIX. constructor; eauto using rtc_r.
Qed.
Lemma wn_not_all_loop x : wn R x → ¬all_loop R x.
Proof. intros (z&?&?). rewrite all_loop_alt. eauto. Qed.
Lemma sn_not_ex_loop x : sn R x → ¬ex_loop R x.
Proof. unfold not. induction 1; destruct 1; eauto. Qed.
(** An alternative definition of confluence; also known as the Church-Rosser
property. *)
Lemma confluent_alt :
confluent R ↔ (∀ x y, rtsc R x y → ∃ z, rtc R x z ∧ rtc R y z).
Proof.
split.
- intros Hcr. induction 1 as [x|x y1 y1' [Hy1|Hy1] Hy1' (z&IH1&IH2)]; eauto.
destruct (Hcr y1 x z) as (z'&?&?); eauto using rtc_transitive.
- intros Hcr x y1 y2 Hy1 Hy2.
apply Hcr; trans x; eauto using rtc_rtsc_rl, rtc_rtsc_lr.
Qed.
Lemma confluent_nf_r x y :
confluent R → rtsc R x y → nf R y → rtc R x y.
Proof.
rewrite confluent_alt. intros Hcr ??. destruct (Hcr x y) as (z&Hx&Hy); auto.
by apply rtc_nf in Hy as ->.
Qed.
Lemma confluent_nf_l x y :
confluent R → rtsc R x y → nf R x → rtc R y x.
Proof. intros. by apply (confluent_nf_r y x). Qed.
Lemma diamond_confluent :
diamond R → confluent R.
Proof.
intros Hdiam. assert (∀ x y1 y2,
rtc R x y1 → R x y2 → ∃ z, rtc R y1 z ∧ rtc R y2 z) as Hstrip.
{ intros x y1 y2 Hy1; revert y2.
induction Hy1 as [x|x y1 y1' Hy1 Hy1' IH]; [by eauto|]; intros y2 Hy2.
destruct (Hdiam x y1 y2) as (z&Hy1z&Hy2z); auto.
destruct (IH z) as (z'&?&?); eauto. }
intros x y1 y2 Hy1; revert y2.
induction Hy1 as [x|x y1 y1' Hy1 Hy1' IH]; [by eauto|]; intros y2 Hy2.
destruct (Hstrip x y2 y1) as (z&?&?); eauto.
destruct (IH z) as (z'&?&?); eauto using rtc_transitive.
Qed.
Lemma confluent_locally_confluent :
confluent R → locally_confluent R.
Proof. unfold confluent, locally_confluent; eauto. Qed.
(** The following is also known as Newman's lemma *)
Lemma locally_confluent_confluent :
(∀ x, sn R x) → locally_confluent R → confluent R.
Proof.
intros Hsn Hcr x. induction (Hsn x) as [x _ IH].
intros y1 y2 Hy1 Hy2. destruct Hy1 as [x|x y1 y1' Hy1 Hy1']; [by eauto|].
destruct Hy2 as [x|x y2 y2' Hy2 Hy2']; [by eauto|].
destruct (Hcr x y1 y2) as (z&Hy1z&Hy2z); auto.
destruct (IH _ Hy1 y1' z) as (z1&?&?); auto.
destruct (IH _ Hy2 y2' z1) as (z2&?&?); eauto using rtc_transitive.
Qed.
End properties.
(** * Theorems on sub relations *)
Section subrel.
Context {A} (R1 R2 : relation A).
Notation subrel := (∀ x y, R1 x y → R2 x y).
Lemma red_subrel x : subrel → red R1 x → red R2 x.
Proof. intros ? [y ?]; eauto. Qed.
Lemma nf_subrel x : subrel → nf R2 x → nf R1 x.
Proof. intros ? H1 H2; destruct H1; by apply red_subrel. Qed.
Lemma rtc_subrel x y : subrel → rtc R1 x y → rtc R2 x y.
Proof. induction 2; [by apply rtc_refl|]. eapply rtc_l; eauto. Qed.
End subrel.
|