File: sets.v

package info (click to toggle)
coq-stdpp 1.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,696 kB
  • sloc: makefile: 52; sh: 35; sed: 1
file content (1418 lines) | stat: -rw-r--r-- 60,339 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
(** This file collects definitions and theorems on sets. Most
importantly, it implements some tactics to automatically solve goals involving
sets. *)
From stdpp Require Export orders list list_numbers.
From stdpp Require Import finite.
From stdpp Require Import options.

(* FIXME: This file needs a 'Proof Using' hint, but they need to be set
locally (or things moved out of sections) as no default works well enough. *)
Unset Default Proof Using.

(* Higher precedence to make sure these instances are not used for other types
with an [ElemOf] instance, such as lists. *)
Global Instance set_equiv_instance `{ElemOf A C} : Equiv C | 20 := λ X Y,
  ∀ x, x ∈ X ↔ x ∈ Y.
Global Instance set_subseteq_instance `{ElemOf A C} : SubsetEq C | 20 := λ X Y,
  ∀ x, x ∈ X → x ∈ Y.
Global Instance set_disjoint_instance `{ElemOf A C} : Disjoint C | 20 := λ X Y,
  ∀ x, x ∈ X → x ∈ Y → False.
Global Typeclasses Opaque set_equiv_instance set_subseteq_instance set_disjoint_instance.

(** * Setoids *)
Section setoids_simple.
  Context `{SemiSet A C}.

  Global Instance set_equiv_equivalence : Equivalence (≡@{C}).
  Proof.
    split.
    - done.
    - intros X Y ? x. by symmetry.
    - intros X Y Z ?? x; by trans (x ∈ Y).
  Qed.
  Global Instance singleton_proper : Proper ((=) ==> (≡@{C})) singleton.
  Proof. apply _. Qed.
  Global Instance elem_of_proper : Proper ((=) ==> (≡) ==> iff) (∈@{C}) | 5.
  Proof. by intros x ? <- X Y. Qed.
  Global Instance disjoint_proper: Proper ((≡) ==> (≡) ==> iff) (##@{C}).
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply forall_proper; intros x. by rewrite HX, HY.
  Qed.
  Global Instance union_proper : Proper ((≡) ==> (≡) ==> (≡@{C})) union.
  Proof. intros X1 X2 HX Y1 Y2 HY x. rewrite !elem_of_union. f_equiv; auto. Qed.
  Global Instance union_list_proper: Proper ((≡) ==> (≡@{C})) union_list.
  Proof. by induction 1; simpl; try apply union_proper. Qed.
  Global Instance subseteq_proper : Proper ((≡@{C}) ==> (≡@{C}) ==> iff) (⊆).
  Proof.
    intros X1 X2 HX Y1 Y2 HY. apply forall_proper; intros x. by rewrite HX, HY.
  Qed.
  Global Instance subset_proper : Proper ((≡@{C}) ==> (≡@{C}) ==> iff) (⊂).
  Proof. solve_proper. Qed.
End setoids_simple.

Section setoids.
  Context `{Set_ A C}.

  (** * Setoids *)
  Global Instance intersection_proper :
    Proper ((≡) ==> (≡) ==> (≡@{C})) intersection.
  Proof.
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_intersection, HX, HY.
  Qed.
  Global Instance difference_proper :
     Proper ((≡) ==> (≡) ==> (≡@{C})) difference.
  Proof.
    intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_difference, HX, HY.
  Qed.
End setoids.

Section setoids_monad.
  Context `{MonadSet M}.

  Global Instance set_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> (≡) ==> (≡)) (@fmap M _ A B).
  Proof.
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_fmap. f_equiv; intros z.
    by rewrite HX, Hf.
  Qed.
  Global Instance set_bind_proper {A B} :
    Proper (pointwise_relation _ (≡) ==> (≡) ==> (≡)) (@mbind M _ A B).
  Proof.
    intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_bind. f_equiv; intros z.
    by rewrite HX, (Hf z).
  Qed.
  Global Instance set_join_proper {A} :
    Proper ((≡) ==> (≡)) (@mjoin M _ A).
  Proof.
    intros X1 X2 HX x. rewrite !elem_of_join. f_equiv; intros z. by rewrite HX.
  Qed.
End setoids_monad.

(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

This transformation is implemented using type classes instead of setoid
rewriting to ensure that we traverse each term at most once and to be able to
deal with occurrences of the set operations under binders. *)
Class SetUnfold (P Q : Prop) := { set_unfold : P ↔ Q }.
Global Arguments set_unfold _ _ {_} : assert.
Global Hint Mode SetUnfold + - : typeclass_instances.

(** The class [SetUnfoldElemOf] is a more specialized version of [SetUnfold]
for propositions of the shape [x ∈ X] to improve performance. *)
Class SetUnfoldElemOf `{ElemOf A C} (x : A) (X : C) (Q : Prop) :=
  { set_unfold_elem_of : x ∈ X ↔ Q }.
Global Arguments set_unfold_elem_of {_ _ _} _ _ _ {_} : assert.
Global Hint Mode SetUnfoldElemOf + + + - + - : typeclass_instances.

Global Instance set_unfold_elem_of_default `{ElemOf A C} (x : A) (X : C) :
  SetUnfoldElemOf x X (x ∈ X) | 1000.
Proof. done. Qed.
Global Instance set_unfold_elem_of_set_unfold `{ElemOf A C} (x : A) (X : C) Q :
  SetUnfoldElemOf x X Q → SetUnfold (x ∈ X) Q.
Proof. by destruct 1; constructor. Qed.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Global Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

Global Instance set_unfold_default P : SetUnfold P P | 1000. done. Qed.
Definition set_unfold_1 `{SetUnfold P Q} : P → Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q → P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P → Q) (P' → Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P ∧ Q) (P' ∧ Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P ∨ Q) (P' ∨ Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P ↔ Q) (P' ↔ Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P' → SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A → Prop) :
  (∀ x, SetUnfold (P x) (P' x)) → SetUnfold (∀ x, P x) (∀ x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A → Prop) :
  (∀ x, SetUnfold (P x) (P' x)) → SetUnfold (∃ x, P x) (∃ x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Global Hint Extern 0 (SetUnfold (_ → _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Global Hint Extern 0 (SetUnfold (_ ∧ _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Global Hint Extern 0 (SetUnfold (_ ∨ _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Global Hint Extern 0 (SetUnfold (_ ↔ _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Global Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Global Hint Extern 1 (SetUnfold (∀ _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Global Hint Extern 0 (SetUnfold (∃ _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SemiSet A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfoldElemOf x (∅ : C) False.
  Proof. constructor. split; [|done]. apply not_elem_of_empty. Qed.
  Global Instance set_unfold_singleton x y : SetUnfoldElemOf x ({[ y ]} : C) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfoldElemOf x X P → SetUnfoldElemOf x Y Q →
    SetUnfoldElemOf x (X ∪ Y) (P ∨ Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union,
      (set_unfold_elem_of x X P), (set_unfold_elem_of x Y Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X ≡ X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A → Prop) :
    (∀ x, SetUnfoldElemOf x X (P x)) → SetUnfold (∅ ≡ X) (∀ x, ¬P x) | 5.
  Proof.
    intros ?; constructor. unfold equiv, set_equiv_instance.
    pose proof (not_elem_of_empty (C:=C)); naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A → Prop) X :
    (∀ x, SetUnfoldElemOf x X (P x)) → SetUnfold (X ≡ ∅) (∀ x, ¬P x) | 5.
  Proof.
    intros ?; constructor. unfold equiv, set_equiv_instance.
    pose proof (not_elem_of_empty (C:=C)); naive_solver.
  Qed.
  Global Instance set_unfold_equiv (P Q : A → Prop) X Y :
    (∀ x, SetUnfoldElemOf x X (P x)) → (∀ x, SetUnfoldElemOf x Y (Q x)) →
    SetUnfold (X ≡ Y) (∀ x, P x ↔ Q x) | 10.
  Proof. constructor. apply forall_proper; naive_solver. Qed.
  Global Instance set_unfold_subseteq (P Q : A → Prop) X Y :
    (∀ x, SetUnfoldElemOf x X (P x)) → (∀ x, SetUnfoldElemOf x Y (Q x)) →
    SetUnfold (X ⊆ Y) (∀ x, P x → Q x).
  Proof. constructor. apply forall_proper; naive_solver. Qed.
  Global Instance set_unfold_subset (P Q : A → Prop) X Y :
    (∀ x, SetUnfoldElemOf x X (P x)) → (∀ x, SetUnfoldElemOf x Y (Q x)) →
    SetUnfold (X ⊂ Y) ((∀ x, P x → Q x) ∧ ¬∀ x, Q x → P x).
  Proof.
    constructor. unfold strict.
    repeat f_equiv; apply forall_proper; naive_solver.
  Qed.
  Global Instance set_unfold_disjoint (P Q : A → Prop) X Y :
    (∀ x, SetUnfoldElemOf x X (P x)) → (∀ x, SetUnfoldElemOf x Y (Q x)) →
    SetUnfold (X ## Y) (∀ x, P x → Q x → False).
  Proof. constructor. unfold disjoint, set_disjoint_instance. naive_solver. Qed.

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A → Prop) :
    (∀ x, SetUnfoldElemOf x X (P x)) → SetUnfold (∅ = X) (∀ x, ¬P x) | 5.
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_l. Qed.
  Global Instance set_unfold_equiv_empty_r_L (P : A → Prop) X :
    (∀ x, SetUnfoldElemOf x X (P x)) → SetUnfold (X = ∅) (∀ x, ¬P x) | 5.
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_r. Qed.
  Global Instance set_unfold_equiv_L (P Q : A → Prop) X Y :
    (∀ x, SetUnfoldElemOf x X (P x)) → (∀ x, SetUnfoldElemOf x Y (Q x)) →
    SetUnfold (X = Y) (∀ x, P x ↔ Q x) | 10.
  Proof. constructor. unfold_leibniz. by apply set_unfold_equiv. Qed.
End set_unfold_simple.

Section set_unfold.
  Context `{Set_ A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfoldElemOf x X P → SetUnfoldElemOf x Y Q →
    SetUnfoldElemOf x (X ∩ Y) (P ∧ Q).
  Proof.
    intros ??; constructor. rewrite elem_of_intersection.
    by rewrite (set_unfold_elem_of x X P), (set_unfold_elem_of x Y Q).
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfoldElemOf x X P → SetUnfoldElemOf x Y Q →
    SetUnfoldElemOf x (X ∖ Y) (P ∧ ¬Q).
  Proof.
    intros ??; constructor. rewrite elem_of_difference.
    by rewrite (set_unfold_elem_of x X P), (set_unfold_elem_of x Y Q).
  Qed.
End set_unfold.

Global Instance set_unfold_top `{TopSet A C} (x : A) :
  SetUnfoldElemOf x (⊤ : C) True.
Proof. constructor. split; [done|intros; apply elem_of_top']. Qed.

Section set_unfold_monad.
  Context `{MonadSet M}.

  Global Instance set_unfold_ret {A} (x y : A) :
    SetUnfoldElemOf x (mret (M:=M) y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {A B} (f : A → M B) X (P Q : A → Prop) x :
    (∀ y, SetUnfoldElemOf y X (P y)) → (∀ y, SetUnfoldElemOf x (f y) (Q y)) →
    SetUnfoldElemOf x (X ≫= f) (∃ y, Q y ∧ P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {A B} (f : A → B) (X : M A) (P : A → Prop) x :
    (∀ y, SetUnfoldElemOf y X (P y)) →
    SetUnfoldElemOf x (f <$> X) (∃ y, x = f y ∧ P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join {A} (X : M (M A)) (P : M A → Prop) x :
    (∀ Y, SetUnfoldElemOf Y X (P Y)) →
    SetUnfoldElemOf x (mjoin X) (∃ Y, x ∈ Y ∧ P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Section set_unfold_list.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfoldElemOf x [] False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfoldElemOf x l P → SetUnfoldElemOf x (y :: l) (x = y ∨ P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold_elem_of x l P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfoldElemOf x l P → SetUnfoldElemOf x k Q →
    SetUnfoldElemOf x (l ++ k) (P ∨ Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold_elem_of x l P), (set_unfold_elem_of x k Q).
  Qed.
  Global Instance set_unfold_list_cprod {B} (x : A * B) l (k : list B) P Q :
    SetUnfoldElemOf x.1 l P → SetUnfoldElemOf x.2 k Q →
    SetUnfoldElemOf x (cprod l k) (P ∧ Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_list_cprod, (set_unfold_elem_of x.1 l P),
      (set_unfold_elem_of x.2 k Q).
  Qed.

  Global Instance set_unfold_included l k (P Q : A → Prop) :
    (∀ x, SetUnfoldElemOf x l (P x)) → (∀ x, SetUnfoldElemOf x k (Q x)) →
    SetUnfold (l ⊆ k) (∀ x, P x → Q x).
  Proof.
    constructor; unfold subseteq, list_subseteq.
    apply forall_proper; naive_solver.
  Qed.

  Global Instance set_unfold_reverse x l P :
    SetUnfoldElemOf x l P → SetUnfoldElemOf x (reverse l) P.
  Proof. constructor. by rewrite elem_of_reverse, (set_unfold_elem_of x l P). Qed.

  Global Instance set_unfold_list_fmap {B} (f : A → B) l P y :
    (∀ x, SetUnfoldElemOf x l (P x)) →
    SetUnfoldElemOf y (f <$> l) (∃ x, y = f x ∧ P x).
  Proof.
    constructor. rewrite elem_of_list_fmap. f_equiv; intros x.
    by rewrite (set_unfold_elem_of x l (P x)).
  Qed.
  Global Instance set_unfold_rotate x l P n:
    SetUnfoldElemOf x l P → SetUnfoldElemOf x (rotate n l) P.
  Proof. constructor. by rewrite elem_of_rotate, (set_unfold_elem_of x l P). Qed.

  Global Instance set_unfold_list_bind {B} (f : A → list B) l P Q y :
    (∀ x, SetUnfoldElemOf x l (P x)) → (∀ x, SetUnfoldElemOf y (f x) (Q x)) →
    SetUnfoldElemOf y (l ≫= f) (∃ x, Q x ∧ P x).
  Proof. constructor. rewrite elem_of_list_bind. naive_solver. Qed.
End set_unfold_list.

Tactic Notation "set_unfold" :=
  let rec unfold_hyps :=
    try match goal with
    | H : ?P |- _ =>
       lazymatch type of P with
       | Prop =>
         apply set_unfold_1 in H; revert H;
         first [unfold_hyps; intros H | intros H; fail 1]
       | _ => fail
       end
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

Tactic Notation "set_unfold" "in" ident(H) :=
  let P := type of H in
  lazymatch type of P with
  | Prop => apply set_unfold_1 in H
  | _ => fail "hypothesis" H "is not a proposition"
  end.

(** Since [firstorder] already fails or loops on very small goals generated by
[set_solver], we use the [naive_solver] tactic as a substitute. *)
Tactic Notation "set_solver" "by" tactic3(tac) :=
  try fast_done;
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _ ∈ _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by eauto.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

Global Hint Extern 1000 (_ ∉ _) => set_solver : set_solver.
Global Hint Extern 1000 (_ ∈ _) => set_solver : set_solver.
Global Hint Extern 1000 (_ ⊆ _) => set_solver : set_solver.


(** * Sets with [∪], [∅] and [{[_]}] *)
Section semi_set.
  Context `{SemiSet A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.
  Implicit Types Xs Ys : list C.

  (** Equality *)
  Lemma set_equiv X Y : X ≡ Y ↔ ∀ x, x ∈ X ↔ x ∈ Y.
  Proof. set_solver. Qed.
  Lemma set_equiv_subseteq X Y : X ≡ Y ↔ X ⊆ Y ∧ Y ⊆ X.
  Proof. set_solver. Qed.
  Global Instance singleton_equiv_inj : Inj (=) (≡@{C}) singleton.
  Proof. unfold Inj. set_solver. Qed.
  Global Instance singleton_inj `{!LeibnizEquiv C} : Inj (=) (=@{C}) singleton.
  Proof. unfold Inj. set_solver. Qed.

  (** Subset relation *)
  Global Instance set_subseteq_antisymm: AntiSymm (≡) (⊆@{C}).
  Proof. intros ??. set_solver. Qed.

  Global Instance set_subseteq_preorder: PreOrder (⊆@{C}).
  Proof. split; [by intros ??|]. intros ???; set_solver. Qed.

  Lemma subseteq_union X Y : X ⊆ Y ↔ X ∪ Y ≡ Y.
  Proof. set_solver. Qed.
  Lemma subseteq_union_1 X Y : X ⊆ Y → X ∪ Y ≡ Y.
  Proof. by rewrite subseteq_union. Qed.
  Lemma subseteq_union_2 X Y : X ∪ Y ≡ Y → X ⊆ Y.
  Proof. by rewrite subseteq_union. Qed.

  Lemma union_subseteq_l X Y : X ⊆ X ∪ Y.
  Proof. set_solver. Qed.
  Lemma union_subseteq_l' X X' Y : X ⊆ X' → X ⊆ X' ∪ Y.
  Proof. set_solver. Qed.
  Lemma union_subseteq_r X Y : Y ⊆ X ∪ Y.
  Proof. set_solver. Qed.
  Lemma union_subseteq_r' X Y Y' : Y ⊆ Y' → Y ⊆ X ∪ Y'.
  Proof. set_solver. Qed.
  Lemma union_least X Y Z : X ⊆ Z → Y ⊆ Z → X ∪ Y ⊆ Z.
  Proof. set_solver. Qed.

  Lemma elem_of_subseteq X Y : X ⊆ Y ↔ ∀ x, x ∈ X → x ∈ Y.
  Proof. done. Qed.
  Lemma elem_of_subset X Y : X ⊂ Y ↔ (∀ x, x ∈ X → x ∈ Y) ∧ ¬(∀ x, x ∈ Y → x ∈ X).
  Proof. set_solver. Qed.
  Lemma elem_of_weaken x X Y : x ∈ X → X ⊆ Y → x ∈ Y.
  Proof. set_solver. Qed.

  Lemma not_elem_of_weaken x X Y : x ∉ Y → X ⊆ Y → x ∉ X.
  Proof. set_solver. Qed.

  (** Union *)
  Lemma union_subseteq X Y Z : X ∪ Y ⊆ Z ↔ X ⊆ Z ∧ Y ⊆ Z.
  Proof. set_solver. Qed.
  Lemma not_elem_of_union x X Y : x ∉ X ∪ Y ↔ x ∉ X ∧ x ∉ Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_l x X Y : x ∈ X → x ∈ X ∪ Y.
  Proof. set_solver. Qed.
  Lemma elem_of_union_r x X Y : x ∈ Y → x ∈ X ∪ Y.
  Proof. set_solver. Qed.
  Lemma union_mono_l X Y1 Y2 : Y1 ⊆ Y2 → X ∪ Y1 ⊆ X ∪ Y2.
  Proof. set_solver. Qed.
  Lemma union_mono_r X1 X2 Y : X1 ⊆ X2 → X1 ∪ Y ⊆ X2 ∪ Y.
  Proof. set_solver. Qed.
  Lemma union_mono X1 X2 Y1 Y2 : X1 ⊆ X2 → Y1 ⊆ Y2 → X1 ∪ Y1 ⊆ X2 ∪ Y2.
  Proof. set_solver. Qed.

  Global Instance union_idemp : IdemP (≡@{C}) (∪).
  Proof. intros X. set_solver. Qed.
  Global Instance union_empty_l : LeftId (≡@{C}) ∅ (∪).
  Proof. intros X. set_solver. Qed.
  Global Instance union_empty_r : RightId (≡@{C}) ∅ (∪).
  Proof. intros X. set_solver. Qed.
  Global Instance union_comm : Comm (≡@{C}) (∪).
  Proof. intros X Y. set_solver. Qed.
  Global Instance union_assoc : Assoc (≡@{C}) (∪).
  Proof. intros X Y Z. set_solver. Qed.

  Lemma empty_union X Y : X ∪ Y ≡ ∅ ↔ X ≡ ∅ ∧ Y ≡ ∅.
  Proof. set_solver. Qed.

  Lemma union_cancel_l X Y Z : Z ## X → Z ## Y → Z ∪ X ≡ Z ∪ Y → X ≡ Y.
  Proof. set_solver. Qed.
  Lemma union_cancel_r X Y Z : X ## Z → Y ## Z → X ∪ Z ≡ Y ∪ Z → X ≡ Y.
  Proof. set_solver. Qed.

  (** Empty *)
  Lemma empty_subseteq X : ∅ ⊆ X.
  Proof. set_solver. Qed.
  Lemma elem_of_equiv_empty X : X ≡ ∅ ↔ ∀ x, x ∉ X.
  Proof. set_solver. Qed.
  Lemma elem_of_empty x : x ∈@{C} ∅ ↔ False.
  Proof. set_solver. Qed.
  Lemma equiv_empty X : X ⊆ ∅ → X ≡ ∅.
  Proof. set_solver. Qed.
  Lemma union_positive_l X Y : X ∪ Y ≡ ∅ → X ≡ ∅.
  Proof. set_solver. Qed.
  Lemma union_positive_l_alt X Y : X ≢ ∅ → X ∪ Y ≢ ∅.
  Proof. set_solver. Qed.
  Lemma non_empty_inhabited x X : x ∈ X → X ≢ ∅.
  Proof. set_solver. Qed.

  (** Singleton *)
  Lemma elem_of_singleton_1 x y : x ∈@{C} {[y]} → x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y → x ∈@{C} {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x ∈ X ↔ {[ x ]} ⊆ X.
  Proof. set_solver. Qed.
  Lemma non_empty_singleton x : {[ x ]} ≢@{C} ∅.
  Proof. set_solver. Qed.
  Lemma not_elem_of_singleton x y : x ∉@{C} {[ y ]} ↔ x ≠ y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_singleton_1 x y : x ∉@{C} {[ y ]} → x ≠ y.
  Proof. apply not_elem_of_singleton. Qed.
  Lemma not_elem_of_singleton_2 x y : x ≠ y → x ∉@{C} {[ y ]}.
  Proof. apply not_elem_of_singleton. Qed.

  Lemma singleton_subseteq_l x X : {[ x ]} ⊆ X ↔ x ∈ X.
  Proof. set_solver. Qed.
  Lemma singleton_subseteq x y : {[ x ]} ⊆@{C} {[ y ]} ↔ x = y.
  Proof. set_solver. Qed.

  (** Disjointness *)
  Lemma elem_of_disjoint X Y : X ## Y ↔ ∀ x, x ∈ X → x ∈ Y → False.
  Proof. done. Qed.

  Global Instance disjoint_sym : Symmetric (##@{C}).
  Proof. intros X Y. set_solver. Qed.
  Lemma disjoint_empty_l Y : ∅ ## Y.
  Proof. set_solver. Qed.
  Lemma disjoint_empty_r X : X ## ∅.
  Proof. set_solver. Qed.
  Lemma disjoint_singleton_l x Y : {[ x ]} ## Y ↔ x ∉ Y.
  Proof. set_solver. Qed.
  Lemma disjoint_singleton_r y X : X ## {[ y ]} ↔ y ∉ X.
  Proof. set_solver. Qed.
  Lemma disjoint_union_l X1 X2 Y : X1 ∪ X2 ## Y ↔ X1 ## Y ∧ X2 ## Y.
  Proof. set_solver. Qed.
  Lemma disjoint_union_r X Y1 Y2 : X ## Y1 ∪ Y2 ↔ X ## Y1 ∧ X ## Y2.
  Proof. set_solver. Qed.

  (** Big unions *)
  Lemma elem_of_union_list Xs x : x ∈ ⋃ Xs ↔ ∃ X, X ∈ Xs ∧ x ∈ X.
  Proof.
    split.
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
    - intros [X [Hx]]. induction Hx; simpl; [by apply elem_of_union_l |].
      intros. apply elem_of_union_r; auto.
  Qed.

  Lemma union_list_nil : ⋃ @nil C = ∅.
  Proof. done. Qed.
  Lemma union_list_cons X Xs : ⋃ (X :: Xs) = X ∪ ⋃ Xs.
  Proof. done. Qed.
  Lemma union_list_singleton X : ⋃ [X] ≡ X.
  Proof. simpl. by rewrite (right_id ∅ _). Qed.
  Lemma union_list_app Xs1 Xs2 : ⋃ (Xs1 ++ Xs2) ≡ ⋃ Xs1 ∪ ⋃ Xs2.
  Proof.
    induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id ∅ _)|].
    by rewrite IH, (assoc _).
  Qed.
  Lemma union_list_reverse Xs : ⋃ (reverse Xs) ≡ ⋃ Xs.
  Proof.
    induction Xs as [|X Xs IH]; simpl; [done |].
    by rewrite reverse_cons, union_list_app,
      union_list_singleton, (comm _), IH.
  Qed.
  Lemma union_list_mono Xs Ys : Xs ⊆* Ys → ⋃ Xs ⊆ ⋃ Ys.
  Proof. induction 1; simpl; auto using union_mono. Qed.

  Lemma empty_union_list Xs : ⋃ Xs ≡ ∅ ↔ Forall (.≡ ∅) Xs.
  Proof.
    split.
    - induction Xs; simpl; rewrite ?empty_union; intuition.
    - induction 1 as [|?? E1 ? E2]; simpl; [done|]. by apply empty_union.
  Qed.

  Section leibniz.
    Context `{!LeibnizEquiv C}.

    Lemma set_eq X Y : X = Y ↔ ∀ x, x ∈ X ↔ x ∈ Y.
    Proof. unfold_leibniz. apply set_equiv. Qed.
    Lemma set_eq_subseteq X Y : X = Y ↔ X ⊆ Y ∧ Y ⊆ X.
    Proof. unfold_leibniz. apply set_equiv_subseteq. Qed.

    (** Subset relation *)
    Global Instance set_subseteq_partialorder : PartialOrder (⊆@{C}).
    Proof. split; [apply _|]. intros ??. unfold_leibniz. apply (anti_symm _). Qed.

    Lemma subseteq_union_L X Y : X ⊆ Y ↔ X ∪ Y = Y.
    Proof. unfold_leibniz. apply subseteq_union. Qed.
    Lemma subseteq_union_1_L X Y : X ⊆ Y → X ∪ Y = Y.
    Proof. unfold_leibniz. apply subseteq_union_1. Qed.
    Lemma subseteq_union_2_L X Y : X ∪ Y = Y → X ⊆ Y.
    Proof. unfold_leibniz. apply subseteq_union_2. Qed.

    (** Union *)
    Global Instance union_idemp_L : IdemP (=@{C}) (∪).
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
    Global Instance union_empty_l_L : LeftId (=@{C}) ∅ (∪).
    Proof. intros ?. unfold_leibniz. apply (left_id _ _). Qed.
    Global Instance union_empty_r_L : RightId (=@{C}) ∅ (∪).
    Proof. intros ?. unfold_leibniz. apply (right_id _ _). Qed.
    Global Instance union_comm_L : Comm (=@{C}) (∪).
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance union_assoc_L : Assoc (=@{C}) (∪).
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.

    Lemma empty_union_L X Y : X ∪ Y = ∅ ↔ X = ∅ ∧ Y = ∅.
    Proof. unfold_leibniz. apply empty_union. Qed.

    Lemma union_cancel_l_L X Y Z : Z ## X → Z ## Y → Z ∪ X = Z ∪ Y → X = Y.
    Proof. unfold_leibniz. apply union_cancel_l. Qed.
    Lemma union_cancel_r_L X Y Z : X ## Z → Y ## Z → X ∪ Z = Y ∪ Z → X = Y.
    Proof. unfold_leibniz. apply union_cancel_r. Qed.

    (** Empty *)
    Lemma elem_of_equiv_empty_L X : X = ∅ ↔ ∀ x, x ∉ X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma equiv_empty_L X : X ⊆ ∅ → X = ∅.
    Proof. unfold_leibniz. apply equiv_empty. Qed.
    Lemma union_positive_l_L X Y : X ∪ Y = ∅ → X = ∅.
    Proof. unfold_leibniz. apply union_positive_l. Qed.
    Lemma union_positive_l_alt_L X Y : X ≠ ∅ → X ∪ Y ≠ ∅.
    Proof. unfold_leibniz. apply union_positive_l_alt. Qed.
    Lemma non_empty_inhabited_L x X : x ∈ X → X ≠ ∅.
    Proof. unfold_leibniz. apply non_empty_inhabited. Qed.

    (** Singleton *)
    Lemma non_empty_singleton_L x : {[ x ]} ≠@{C} ∅.
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.

    (** Big unions *)
    Lemma union_list_singleton_L X : ⋃ [X] = X.
    Proof. unfold_leibniz. apply union_list_singleton. Qed.
    Lemma union_list_app_L Xs1 Xs2 : ⋃ (Xs1 ++ Xs2) = ⋃ Xs1 ∪ ⋃ Xs2.
    Proof. unfold_leibniz. apply union_list_app. Qed.
    Lemma union_list_reverse_L Xs : ⋃ (reverse Xs) = ⋃ Xs.
    Proof. unfold_leibniz. apply union_list_reverse. Qed.

    Lemma empty_union_list_L Xs : ⋃ Xs = ∅ ↔ Forall (.= ∅) Xs.
    Proof. unfold_leibniz. apply empty_union_list. Qed.
  End leibniz.

  Lemma not_elem_of_iff `{!RelDecision (∈@{C})} X Y x :
    (x ∈ X ↔ x ∈ Y) ↔ (x ∉ X ↔ x ∉ Y).
  Proof. destruct (decide (x ∈ X)), (decide (x ∈ Y)); tauto. Qed.

  Section dec.
    Context `{!RelDecision (≡@{C})}.

    Lemma set_subseteq_inv X Y : X ⊆ Y → X ⊂ Y ∨ X ≡ Y.
    Proof. destruct (decide (X ≡ Y)); [by right|left;set_solver]. Qed.
    Lemma set_not_subset_inv X Y : X ⊄ Y → X ⊈ Y ∨ X ≡ Y.
    Proof. destruct (decide (X ≡ Y)); [by right|left;set_solver]. Qed.

    Lemma non_empty_union X Y : X ∪ Y ≢ ∅ ↔ X ≢ ∅ ∨ Y ≢ ∅.
    Proof. destruct (decide (X ≡ ∅)); set_solver. Qed.
    Lemma non_empty_union_list Xs : ⋃ Xs ≢ ∅ → Exists (.≢ ∅) Xs.
    Proof. rewrite empty_union_list. apply (not_Forall_Exists _). Qed.
  End dec.

  Section dec_leibniz.
    Context `{!RelDecision (≡@{C}), !LeibnizEquiv C}.

    Lemma set_subseteq_inv_L X Y : X ⊆ Y → X ⊂ Y ∨ X = Y.
    Proof. unfold_leibniz. apply set_subseteq_inv. Qed.
    Lemma set_not_subset_inv_L X Y : X ⊄ Y → X ⊈ Y ∨ X = Y.
    Proof. unfold_leibniz. apply set_not_subset_inv. Qed.

    Lemma non_empty_union_L X Y : X ∪ Y ≠ ∅ ↔ X ≠ ∅ ∨ Y ≠ ∅.
    Proof. unfold_leibniz. apply non_empty_union. Qed.
    Lemma non_empty_union_list_L Xs : ⋃ Xs ≠ ∅ → Exists (.≠ ∅) Xs.
    Proof. unfold_leibniz. apply non_empty_union_list. Qed.
  End dec_leibniz.
End semi_set.


(** * Sets with [∪], [∩], [∖], [∅] and [{[_]}] *)
Section set.
  Context `{Set_ A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  (** Intersection *)
  Lemma subseteq_intersection X Y : X ⊆ Y ↔ X ∩ Y ≡ X.
  Proof. set_solver. Qed.
  Lemma subseteq_intersection_1 X Y : X ⊆ Y → X ∩ Y ≡ X.
  Proof. apply subseteq_intersection. Qed.
  Lemma subseteq_intersection_2 X Y : X ∩ Y ≡ X → X ⊆ Y.
  Proof. apply subseteq_intersection. Qed.

  Lemma intersection_subseteq_l X Y : X ∩ Y ⊆ X.
  Proof. set_solver. Qed.
  Lemma intersection_subseteq_r X Y : X ∩ Y ⊆ Y.
  Proof. set_solver. Qed.
  Lemma intersection_greatest X Y Z : Z ⊆ X → Z ⊆ Y → Z ⊆ X ∩ Y.
  Proof. set_solver. Qed.

  Lemma intersection_mono_l X Y1 Y2 : Y1 ⊆ Y2 → X ∩ Y1 ⊆ X ∩ Y2.
  Proof. set_solver. Qed.
  Lemma intersection_mono_r X1 X2 Y : X1 ⊆ X2 → X1 ∩ Y ⊆ X2 ∩ Y.
  Proof. set_solver. Qed.
  Lemma intersection_mono X1 X2 Y1 Y2 :
    X1 ⊆ X2 → Y1 ⊆ Y2 → X1 ∩ Y1 ⊆ X2 ∩ Y2.
  Proof. set_solver. Qed.

  Global Instance intersection_idemp : IdemP (≡@{C}) (∩).
  Proof. intros X; set_solver. Qed.
  Global Instance intersection_comm : Comm (≡@{C}) (∩).
  Proof. intros X Y; set_solver. Qed.
  Global Instance intersection_assoc : Assoc (≡@{C}) (∩).
  Proof. intros X Y Z; set_solver. Qed.
  Global Instance intersection_empty_l : LeftAbsorb (≡@{C}) ∅ (∩).
  Proof. intros X; set_solver. Qed.
  Global Instance intersection_empty_r: RightAbsorb (≡@{C}) ∅ (∩).
  Proof. intros X; set_solver. Qed.

  Lemma intersection_singletons x : {[x]} ∩ {[x]} ≡@{C} {[x]}.
  Proof. set_solver. Qed.

  Lemma union_intersection_l X Y Z : X ∪ (Y ∩ Z) ≡ (X ∪ Y) ∩ (X ∪ Z).
  Proof. set_solver. Qed.
  Lemma union_intersection_r X Y Z : (X ∩ Y) ∪ Z ≡ (X ∪ Z) ∩ (Y ∪ Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_l X Y Z : X ∩ (Y ∪ Z) ≡ (X ∩ Y) ∪ (X ∩ Z).
  Proof. set_solver. Qed.
  Lemma intersection_union_r X Y Z : (X ∪ Y) ∩ Z ≡ (X ∩ Z) ∪ (Y ∩ Z).
  Proof. set_solver. Qed.

  (** Difference *)
  Lemma difference_twice X Y : (X ∖ Y) ∖ Y ≡ X ∖ Y.
  Proof. set_solver. Qed.
  Lemma subseteq_empty_difference X Y : X ⊆ Y → X ∖ Y ≡ ∅.
  Proof. set_solver. Qed.
  Lemma difference_diag X : X ∖ X ≡ ∅.
  Proof. set_solver. Qed.
  Lemma difference_empty X : X ∖ ∅ ≡ X.
  Proof. set_solver. Qed.
  Lemma difference_union_distr_l X Y Z : (X ∪ Y) ∖ Z ≡ X ∖ Z ∪ Y ∖ Z.
  Proof. set_solver. Qed.
  Lemma difference_union_distr_r X Y Z : Z ∖ (X ∪ Y) ≡ (Z ∖ X) ∩ (Z ∖ Y).
  Proof. set_solver. Qed.
  Lemma difference_intersection_distr_l X Y Z : (X ∩ Y) ∖ Z ≡ X ∖ Z ∩ Y ∖ Z.
  Proof. set_solver. Qed.
  Lemma difference_disjoint X Y : X ## Y → X ∖ Y ≡ X.
  Proof. set_solver. Qed.
  Lemma subset_difference_elem_of x X : x ∈ X → X ∖ {[ x ]} ⊂ X.
  Proof. set_solver. Qed.
  Lemma difference_difference_l X Y Z : (X ∖ Y) ∖ Z ≡ X ∖ (Y ∪ Z).
  Proof. set_solver. Qed.

  Lemma difference_mono X1 X2 Y1 Y2 :
    X1 ⊆ X2 → Y2 ⊆ Y1 → X1 ∖ Y1 ⊆ X2 ∖ Y2.
  Proof. set_solver. Qed.
  Lemma difference_mono_l X Y1 Y2 : Y2 ⊆ Y1 → X ∖ Y1 ⊆ X ∖ Y2.
  Proof. set_solver. Qed.
  Lemma difference_mono_r X1 X2 Y : X1 ⊆ X2 → X1 ∖ Y ⊆ X2 ∖ Y.
  Proof. set_solver. Qed.

  Lemma subseteq_difference_r X Y1 Y2 :
    X ## Y2 → X ⊆ Y1 → X ⊆ Y1 ∖ Y2.
  Proof. set_solver. Qed.
  Lemma subseteq_difference_l X1 X2 Y : X1 ⊆ Y → X1 ∖ X2 ⊆ Y.
  Proof. set_solver. Qed.

  (** Disjointness *)
  Lemma disjoint_intersection X Y : X ## Y ↔ X ∩ Y ≡ ∅.
  Proof. set_solver. Qed.
  Lemma disjoint_difference_l1 X1 X2 Y : Y ⊆ X2 → X1 ∖ X2 ## Y.
  Proof. set_solver. Qed.
  Lemma disjoint_difference_l2 X1 X2 Y : X1 ## Y → X1 ∖ X2 ## Y.
  Proof. set_solver. Qed.
  Lemma disjoint_difference_r1 X Y1 Y2 : X ⊆ Y2 → X ## Y1 ∖ Y2.
  Proof. set_solver. Qed.
  Lemma disjoint_difference_r2 X Y1 Y2 : X ## Y1 → X ## Y1 ∖ Y2.
  Proof. set_solver. Qed.

  Section leibniz.
    Context `{!LeibnizEquiv C}.

    (** Intersection *)
    Lemma subseteq_intersection_L X Y : X ⊆ Y ↔ X ∩ Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection. Qed.
    Lemma subseteq_intersection_1_L X Y : X ⊆ Y → X ∩ Y = X.
    Proof. unfold_leibniz. apply subseteq_intersection_1. Qed.
    Lemma subseteq_intersection_2_L X Y : X ∩ Y = X → X ⊆ Y.
    Proof. unfold_leibniz. apply subseteq_intersection_2. Qed.

    Global Instance intersection_idemp_L : IdemP (=@{C}) (∩).
    Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
    Global Instance intersection_comm_L : Comm (=@{C}) (∩).
    Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
    Global Instance intersection_assoc_L : Assoc (=@{C}) (∩).
    Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
    Global Instance intersection_empty_l_L: LeftAbsorb (=@{C}) ∅ (∩).
    Proof. intros ?. unfold_leibniz. apply (left_absorb _ _). Qed.
    Global Instance intersection_empty_r_L: RightAbsorb (=@{C}) ∅ (∩).
    Proof. intros ?. unfold_leibniz. apply (right_absorb _ _). Qed.

    Lemma intersection_singletons_L x : {[x]} ∩ {[x]} =@{C} {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.

    Lemma union_intersection_l_L X Y Z : X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z).
    Proof. unfold_leibniz; apply union_intersection_l. Qed.
    Lemma union_intersection_r_L X Y Z : (X ∩ Y) ∪ Z = (X ∪ Z) ∩ (Y ∪ Z).
    Proof. unfold_leibniz; apply union_intersection_r. Qed.
    Lemma intersection_union_l_L X Y Z : X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z).
    Proof. unfold_leibniz; apply intersection_union_l. Qed.
    Lemma intersection_union_r_L X Y Z : (X ∪ Y) ∩ Z = (X ∩ Z) ∪ (Y ∩ Z).
    Proof. unfold_leibniz; apply intersection_union_r. Qed.

    (** Difference *)
    Lemma difference_twice_L X Y : (X ∖ Y) ∖ Y = X ∖ Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
    Lemma subseteq_empty_difference_L X Y : X ⊆ Y → X ∖ Y = ∅.
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
    Lemma difference_diag_L X : X ∖ X = ∅.
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_empty_L X : X ∖ ∅ = X.
    Proof. unfold_leibniz. apply difference_empty. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X ∪ Y) ∖ Z = X ∖ Z ∪ Y ∖ Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
    Lemma difference_union_distr_r_L X Y Z : Z ∖ (X ∪ Y) = (Z ∖ X) ∩ (Z ∖ Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
    Lemma difference_intersection_distr_l_L X Y Z :
      (X ∩ Y) ∖ Z = X ∖ Z ∩ Y ∖ Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
    Lemma difference_disjoint_L X Y : X ## Y → X ∖ Y = X.
    Proof. unfold_leibniz. apply difference_disjoint. Qed.
    Lemma difference_difference_l_L X Y Z : (X ∖ Y) ∖ Z = X ∖ (Y ∪ Z).
    Proof. unfold_leibniz. apply difference_difference_l. Qed.

    (** Disjointness *)
    Lemma disjoint_intersection_L X Y : X ## Y ↔ X ∩ Y = ∅.
    Proof. unfold_leibniz. apply disjoint_intersection. Qed.
  End leibniz.

  Section dec.
    Context `{!RelDecision (∈@{C})}.

    Lemma not_elem_of_intersection x X Y : x ∉ X ∩ Y ↔ x ∉ X ∨ x ∉ Y.
    Proof. rewrite elem_of_intersection. destruct (decide (x ∈ X)); tauto. Qed.
    Lemma not_elem_of_difference x X Y : x ∉ X ∖ Y ↔ x ∉ X ∨ x ∈ Y.
    Proof. rewrite elem_of_difference. destruct (decide (x ∈ Y)); tauto. Qed.
    Lemma union_difference X Y : X ⊆ Y → Y ≡ X ∪ Y ∖ X.
    Proof.
      intros ? x; split; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x ∈ X)); intuition.
    Qed.
    Lemma union_difference_singleton x Y : x ∈ Y → Y ≡ {[x]} ∪ Y ∖ {[x]}.
    Proof. intros ?. apply union_difference. set_solver. Qed.
    Lemma difference_union X Y : X ∖ Y ∪ Y ≡ X ∪ Y.
    Proof.
      intros x. rewrite !elem_of_union; rewrite elem_of_difference.
      split; [ | destruct (decide (x ∈ Y)) ]; intuition.
    Qed.
    Lemma difference_difference_r X Y Z : X ∖ (Y ∖ Z) ≡ (X ∖ Y) ∪ (X ∩ Z).
    Proof. intros x. destruct (decide (x ∈ Z)); set_solver. Qed.
    Lemma difference_union_intersection X Y : (X ∖ Y) ∪ (X ∩ Y) ≡ X.
    Proof. rewrite union_intersection_l, difference_union. set_solver. Qed.

    Lemma subseteq_disjoint_union X Y : X ⊆ Y ↔ ∃ Z, Y ≡ X ∪ Z ∧ X ## Z.
    Proof.
      split; [|set_solver].
      exists (Y ∖ X); split; [auto using union_difference|set_solver].
    Qed.
    Lemma non_empty_difference X Y : X ⊂ Y → Y ∖ X ≢ ∅.
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
    Lemma empty_difference_subseteq X Y : X ∖ Y ≡ ∅ → X ⊆ Y.
    Proof. set_solver. Qed.
    Lemma singleton_union_difference X Y x :
      {[x]} ∪ (X ∖ Y) ≡ ({[x]} ∪ X) ∖ (Y ∖ {[x]}).
    Proof. intro y; destruct (decide (y ∈@{C} {[x]})); set_solver. Qed.
  End dec.

  Section dec_leibniz.
    Context `{!RelDecision (∈@{C}), !LeibnizEquiv C}.

    Lemma union_difference_L X Y : X ⊆ Y → Y = X ∪ Y ∖ X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma union_difference_singleton_L x Y : x ∈ Y → Y = {[x]} ∪ Y ∖ {[x]}.
    Proof. unfold_leibniz. apply union_difference_singleton. Qed.
    Lemma difference_union_L X Y : X ∖ Y ∪ Y = X ∪ Y.
    Proof. unfold_leibniz. apply difference_union. Qed.
    Lemma non_empty_difference_L X Y : X ⊂ Y → Y ∖ X ≠ ∅.
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
    Lemma empty_difference_subseteq_L X Y : X ∖ Y = ∅ → X ⊆ Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
    Lemma subseteq_disjoint_union_L X Y : X ⊆ Y ↔ ∃ Z, Y = X ∪ Z ∧ X ## Z.
    Proof. unfold_leibniz. apply subseteq_disjoint_union. Qed.
    Lemma singleton_union_difference_L X Y x :
      {[x]} ∪ (X ∖ Y) = ({[x]} ∪ X) ∖ (Y ∖ {[x]}).
    Proof. unfold_leibniz. apply singleton_union_difference. Qed.
    Lemma difference_difference_r_L X Y Z : X ∖ (Y ∖ Z) = (X ∖ Y) ∪ (X ∩ Z).
    Proof. unfold_leibniz. apply difference_difference_r. Qed.
    Lemma difference_union_intersection_L X Y : (X ∖ Y) ∪ (X ∩ Y) = X.
    Proof. unfold_leibniz. apply difference_union_intersection. Qed.

  End dec_leibniz.
End set.


(** * Sets with [∪], [∩], [∖], [∅], [{[_]}], and [⊤] *)
Section top_set.
  Context `{TopSet A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Lemma elem_of_top x : x ∈@{C} ⊤ ↔ True.
  Proof. split; [done|intros; apply elem_of_top']. Qed.
  Lemma top_subseteq X : X ⊆ ⊤.
  Proof. intros x. by rewrite elem_of_top. Qed.
End top_set.


(** * Conversion of option and list *)
Section option_and_list_to_set.
  Context `{SemiSet A C}.
  Implicit Types l : list A.

  Lemma elem_of_option_to_set (x : A) mx: x ∈ option_to_set (C:=C) mx ↔ mx = Some x.
  Proof. destruct mx; set_solver. Qed.
  Lemma not_elem_of_option_to_set (x : A) mx: x ∉ option_to_set (C:=C) mx ↔ mx ≠ Some x.
  Proof. by rewrite elem_of_option_to_set. Qed.

  Lemma elem_of_list_to_set (x : A) l : x ∈ list_to_set (C:=C) l ↔ x ∈ l.
  Proof.
    split.
    - induction l; simpl; [by rewrite elem_of_empty|].
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
  Qed.
  Lemma not_elem_of_list_to_set (x : A) l : x ∉ list_to_set (C:=C) l ↔ x ∉ l.
  Proof. by rewrite elem_of_list_to_set. Qed.

  Global Instance set_unfold_option_to_set (mx : option A) x :
    SetUnfoldElemOf x (option_to_set (C:=C) mx) (mx = Some x).
  Proof. constructor; apply elem_of_option_to_set. Qed.
  Global Instance set_unfold_list_to_set (l : list A) x P :
    SetUnfoldElemOf x l P → SetUnfoldElemOf x (list_to_set (C:=C) l) P.
  Proof. constructor. by rewrite elem_of_list_to_set, (set_unfold (x ∈ l) P). Qed.

  Lemma list_to_set_nil : list_to_set [] =@{C} ∅.
  Proof. done. Qed.
  Lemma list_to_set_cons x l : list_to_set (x :: l) =@{C} {[ x ]} ∪ list_to_set l.
  Proof. done. Qed.
  Lemma list_to_set_app l1 l2 : list_to_set (l1 ++ l2) ≡@{C} list_to_set l1 ∪ list_to_set l2.
  Proof. set_solver. Qed.
  Lemma list_to_set_singleton x : list_to_set [x] ≡@{C} {[ x ]}.
  Proof. set_solver. Qed.
  Lemma list_to_set_snoc l x : list_to_set (l ++ [x]) ≡@{C} list_to_set l ∪ {[ x ]}.
  Proof. set_solver. Qed.
  Global Instance list_to_set_perm : Proper ((≡ₚ) ==> (≡)) (list_to_set (C:=C)).
  Proof. induction 1; set_solver. Qed.

  Section leibniz.
    Context `{!LeibnizEquiv C}.

    Lemma list_to_set_app_L l1 l2 :
      list_to_set (l1 ++ l2) =@{C} list_to_set l1 ∪ list_to_set l2.
    Proof. set_solver. Qed.
    Global Instance list_to_set_perm_L : Proper ((≡ₚ) ==> (=)) (list_to_set (C:=C)).
    Proof. induction 1; set_solver. Qed.
  End leibniz.
End option_and_list_to_set.

(** * Finite types to sets. *)
Definition fin_to_set (A : Type) `{Singleton A C, Empty C, Union C, Finite A} : C :=
  list_to_set (enum A).

Section fin_to_set.
  Context `{SemiSet A C, Finite A}.
  Implicit Types a : A.

  Lemma elem_of_fin_to_set a : a ∈@{C} fin_to_set A.
  Proof. apply elem_of_list_to_set, elem_of_enum. Qed.

  Global Instance set_unfold_fin_to_set a :
    SetUnfoldElemOf (C:=C) a (fin_to_set A) True.
  Proof. constructor. split; auto using elem_of_fin_to_set. Qed.
End fin_to_set.

(** * Guard *)
Global Instance set_mfail `{MonadSet M} : MFail M := λ _ _, ∅.
Global Typeclasses Opaque set_mfail.

Section set_monad_base.
  Context `{MonadSet M}.

  Lemma elem_of_mfail {A} x : x ∈@{M A} mfail ↔ False.
  Proof. unfold mfail, set_mfail. by rewrite elem_of_empty. Qed.

  Global Instance set_unfold_elem_of_mfail {A} (x : A) :
    SetUnfoldElemOf x (mfail : M A) False.
  Proof. constructor. by apply elem_of_mfail. Qed.

  (** This lemma includes a bind, to avoid equalities of proofs. We cannot have
  [p ∈ guard P ↔ P] unless [P] is proof irrelant. The best (but less usable)
  self-contained alternative would be [p ∈ guard P ↔ decide P = left p]. *)
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x ∈ (guard P;; X) ↔ P ∧ x ∈ X.
  Proof.
    case_guard; rewrite elem_of_bind;
      [setoid_rewrite elem_of_ret | setoid_rewrite elem_of_mfail];
      naive_solver.
  Qed.
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P → x ∈ X → x ∈ (guard P;; X).
  Proof. by rewrite elem_of_guard. Qed.
  Lemma guard_empty `{Decision P} {A} (X : M A) : (guard P;; X) ≡ ∅ ↔ ¬P ∨ X ≡ ∅.
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) (X : M A) Q :
    SetUnfoldElemOf x X Q → SetUnfoldElemOf x (guard P;; X) (P ∧ Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x ∈ X) Q). Qed.
  Lemma bind_empty {A B} (f : A → M B) X :
    X ≫= f ≡ ∅ ↔ X ≡ ∅ ∨ ∀ x, x ∈ X → f x ≡ ∅.
  Proof. set_solver. Qed.
End set_monad_base.


(** * Quantifiers *)
Definition set_Forall `{ElemOf A C} (P : A → Prop) (X : C) := ∀ x, x ∈ X → P x.
Definition set_Exists `{ElemOf A C} (P : A → Prop) (X : C) := ∃ x, x ∈ X ∧ P x.

Section quantifiers.
  Context `{SemiSet A C} (P : A → Prop).
  Implicit Types X Y : C.

  Global Instance set_unfold_set_Forall X (QX QP : A → Prop) :
    (∀ x, SetUnfoldElemOf x X (QX x)) →
    (∀ x, SetUnfold (P x) (QP x)) →
    SetUnfold (set_Forall P X) (∀ x, QX x → QP x).
  Proof.
    intros HX HP; constructor. unfold set_Forall. apply forall_proper; intros x.
    by rewrite (set_unfold (x ∈ X) _), (set_unfold (P x) _).
  Qed.
  Global Instance set_unfold_set_Exists X (QX QP : A → Prop) :
    (∀ x, SetUnfoldElemOf x X (QX x)) →
    (∀ x, SetUnfold (P x) (QP x)) →
    SetUnfold (set_Exists P X) (∃ x, QX x ∧ QP x).
  Proof.
    intros HX HP; constructor. unfold set_Exists. f_equiv; intros x.
    by rewrite (set_unfold (x ∈ X) _), (set_unfold (P x) _).
  Qed.

  Lemma set_Forall_empty : set_Forall P (∅ : C).
  Proof. set_solver. Qed.
  Lemma set_Forall_singleton x : set_Forall P ({[ x ]} : C) ↔ P x.
  Proof. set_solver. Qed.
  Lemma set_Forall_union X Y :
    set_Forall P X → set_Forall P Y → set_Forall P (X ∪ Y).
  Proof. set_solver. Qed.
  Lemma set_Forall_union_inv_1 X Y : set_Forall P (X ∪ Y) → set_Forall P X.
  Proof. set_solver. Qed.
  Lemma set_Forall_union_inv_2 X Y : set_Forall P (X ∪ Y) → set_Forall P Y.
  Proof. set_solver. Qed.
  Lemma set_Forall_list_to_set l : set_Forall P (list_to_set (C:=C) l) ↔ Forall P l.
  Proof. rewrite Forall_forall. set_solver. Qed.

  Lemma set_Exists_empty : ¬set_Exists P (∅ : C).
  Proof. set_solver. Qed.
  Lemma set_Exists_singleton x : set_Exists P ({[ x ]} : C) ↔ P x.
  Proof. set_solver. Qed.
  Lemma set_Exists_union_1 X Y : set_Exists P X → set_Exists P (X ∪ Y).
  Proof. set_solver. Qed.
  Lemma set_Exists_union_2 X Y : set_Exists P Y → set_Exists P (X ∪ Y).
  Proof. set_solver. Qed.
  Lemma set_Exists_union_inv X Y :
    set_Exists P (X ∪ Y) → set_Exists P X ∨ set_Exists P Y.
  Proof. set_solver. Qed.
  Lemma set_Exists_list_to_set l : set_Exists P (list_to_set (C:=C) l) ↔ Exists P l.
  Proof. rewrite Exists_exists. set_solver. Qed.
End quantifiers.

Section more_quantifiers.
  Context `{SemiSet A C}.
  Implicit Types X : C.

  Lemma set_Forall_impl (P Q : A → Prop) X :
    set_Forall P X → (∀ x, P x → Q x) → set_Forall Q X.
  Proof. set_solver. Qed.
  Lemma set_Exists_impl (P Q : A → Prop) X :
    set_Exists P X → (∀ x, P x → Q x) → set_Exists Q X.
  Proof. set_solver. Qed.
End more_quantifiers.

(** * Properties of implementations of sets that form a monad *)
Section set_monad.
  Context `{MonadSet M}.

  Global Instance set_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> (⊆) ==> (⊆)) (@fmap M _ A B).
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
  Global Instance set_bind_mono {A B} :
    Proper (pointwise_relation _ (⊆) ==> (⊆) ==> (⊆)) (@mbind M _ A B).
  Proof. unfold respectful, pointwise_relation; intros f g Hfg X Y ?. set_solver. Qed.
  Global Instance set_join_mono {A} :
    Proper ((⊆) ==> (⊆)) (@mjoin M _ A).
  Proof. intros X Y ?; set_solver. Qed.

  Lemma set_bind_singleton {A B} (f : A → M B) x : {[ x ]} ≫= f ≡ f x.
  Proof. set_solver. Qed.
  Lemma set_guard_True {A} `{Decision P} (X : M A) : P → (guard P;; X) ≡ X.
  Proof. set_solver. Qed.
  Lemma set_fmap_compose {A B C} (f : A → B) (g : B → C) (X : M A) :
    g ∘ f <$> X ≡ g <$> (f <$> X).
  Proof. set_solver. Qed.
  Lemma elem_of_fmap_1 {A B} (f : A → B) (X : M A) (y : B) :
    y ∈ f <$> X → ∃ x, y = f x ∧ x ∈ X.
  Proof. set_solver. Qed.
  Lemma elem_of_fmap_2 {A B} (f : A → B) (X : M A) (x : A) :
    x ∈ X → f x ∈ f <$> X.
  Proof. set_solver. Qed.
  Lemma elem_of_fmap_2_alt {A B} (f : A → B) (X : M A) (x : A) (y : B) :
    x ∈ X → y = f x → y ∈ f <$> X.
  Proof. set_solver. Qed.

  Lemma elem_of_mapM {A B} (f : A → M B) l k :
    l ∈ mapM f k ↔ Forall2 (λ x y, x ∈ f y) l k.
  Proof.
    split.
    - revert l. induction k; set_solver by eauto.
    - induction 1; set_solver.
  Qed.
  Lemma length_set_mapM {A B} (f : A → M B) l k :
    l ∈ mapM f k → length l = length k.
  Proof. revert l; induction k; set_solver by eauto. Qed.
  Lemma elem_of_mapM_fmap {A B} (f : A → B) (g : B → M A) l k :
    Forall (λ x, ∀ y, y ∈ g x → f y = x) l → k ∈ mapM g l → fmap f k = l.
  Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
  Lemma elem_of_mapM_Forall {A B} (f : A → M B) (P : B → Prop) l k :
    l ∈ mapM f k → Forall (λ x, ∀ y, y ∈ f x → P y) k → Forall P l.
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A → M B) (P: B → C → Prop) l1 l2 k :
    l1 ∈ mapM f k → Forall2 (λ x y, ∀ z, z ∈ f x → P z y) k l2 →
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inv 1; constructor; auto.
  Qed.

  Global Instance monadset_cprod {A B} : CProd (M A) (M B) (M (A * B)) := λ X Y,
    x ← X; fmap (x,.) Y.

  Lemma elem_of_monadset_cprod {A B} (X : M A) (Y : M B) (x : A * B) :
    x ∈ cprod X Y ↔ x.1 ∈ X ∧ x.2 ∈ Y.
  Proof. unfold cprod, monadset_cprod. destruct x; set_solver. Qed.

  Global Instance set_unfold_monadset_cprod {A B} (X : M A) (Y : M B) P Q x :
    SetUnfoldElemOf x.1 X P →
    SetUnfoldElemOf x.2 Y Q →
    SetUnfoldElemOf x (cprod X Y) (P ∧ Q).
  Proof.
    constructor.
    by rewrite elem_of_monadset_cprod, (set_unfold_elem_of x.1 X P),
      (set_unfold_elem_of x.2 Y Q).
  Qed.

End set_monad.

(** Finite sets *)
Definition pred_finite {A} (P : A → Prop) := ∃ xs : list A, ∀ x, P x → x ∈ xs.
Definition set_finite `{ElemOf A B} (X : B) := pred_finite (.∈ X).

Definition pred_infinite {A} (P : A → Prop) := ∀ xs : list A, ∃ x, P x ∧ x ∉ xs.
Definition set_infinite `{ElemOf A C} (X : C) := pred_infinite (.∈ X).

Section pred_finite_infinite.
  Lemma pred_finite_impl {A} (P Q : A → Prop) :
    pred_finite P → (∀ x, Q x → P x) → pred_finite Q.
  Proof. unfold pred_finite. set_solver. Qed.

  Lemma pred_infinite_impl {A} (P Q : A → Prop) :
    pred_infinite P → (∀ x, P x → Q x) → pred_infinite Q.
  Proof. unfold pred_infinite. set_solver. Qed.

  (** If [f] is surjective onto [P], then pre-composing with [f] preserves
  infinity. *)
  Lemma pred_infinite_surj {A B} (P : B → Prop) (f : A → B) :
    (∀ x, P x → ∃ y, f y = x) →
    pred_infinite P → pred_infinite (P ∘ f).
  Proof.
    intros Hf HP xs. destruct (HP (f <$> xs)) as [x [HPx Hx]].
    destruct (Hf _ HPx) as [y Hf']. exists y. split.
    - simpl. rewrite Hf'. done.
    - intros Hy. apply Hx. apply elem_of_list_fmap. eauto.
  Qed.

  Lemma pred_not_infinite_finite {A} (P : A → Prop) :
    pred_infinite P → pred_finite P → False.
  Proof. intros Hinf [xs ?]. destruct (Hinf xs). set_solver. Qed.

  Lemma pred_infinite_True `{Infinite A} : pred_infinite (λ _: A, True).
  Proof.
    intros xs. exists (fresh xs). split; [done|]. apply infinite_is_fresh.
  Qed.

  Lemma pred_finite_lt n : pred_finite (flip lt n).
  Proof.
    exists (seq 0 n); intros i Hi. apply (elem_of_list_lookup_2 _ i).
    by rewrite lookup_seq.
  Qed.
  Lemma pred_infinite_lt n : pred_infinite (lt n).
  Proof.
    intros l. exists (S (n `max` max_list l)). split; [lia| ].
    intros H%max_list_elem_of_le; lia.
  Qed.

  Lemma pred_finite_le n : pred_finite (flip le n).
  Proof. eapply pred_finite_impl; [apply (pred_finite_lt (S n))|]; naive_solver lia. Qed.
  Lemma pred_infinite_le n : pred_infinite (le n).
  Proof. eapply pred_infinite_impl; [apply (pred_infinite_lt (S n))|]; naive_solver lia. Qed.
End pred_finite_infinite.

Section set_finite_infinite.
  Context `{SemiSet A C}.
  Implicit Types X Y : C.

  Lemma set_not_infinite_finite X : set_infinite X → set_finite X → False.
  Proof. apply pred_not_infinite_finite. Qed.

  Global Instance set_finite_subseteq :
    Proper (flip (⊆) ==> impl) (@set_finite A C _).
  Proof. intros X Y HX ?. eapply pred_finite_impl; set_solver. Qed.
  Global Instance set_finite_proper : Proper ((≡) ==> iff) (@set_finite A C _).
  Proof. intros X Y HX; apply exist_proper. by setoid_rewrite HX. Qed.

  Lemma empty_finite : set_finite (∅ : C).
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite ({[ x ]} : C).
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
  Lemma union_finite X Y : set_finite X → set_finite Y → set_finite (X ∪ Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X ∪ Y) → set_finite X.
  Proof. intros [l ?]; exists l; set_solver. Qed.
  Lemma union_finite_inv_r X Y : set_finite (X ∪ Y) → set_finite Y.
  Proof. intros [l ?]; exists l; set_solver. Qed.
  Lemma list_to_set_finite l : set_finite (list_to_set (C:=C) l).
  Proof. exists l. intros x. by rewrite elem_of_list_to_set. Qed.

  Global Instance set_infinite_subseteq :
    Proper ((⊆) ==> impl) (@set_infinite A C _).
  Proof. intros X Y HX ?. eapply pred_infinite_impl; set_solver. Qed.
  Global Instance set_infinite_proper : Proper ((≡) ==> iff) (@set_infinite A C _).
  Proof. intros X Y HX; apply forall_proper. by setoid_rewrite HX. Qed.

  Lemma union_infinite_l X Y : set_infinite X → set_infinite (X ∪ Y).
  Proof. intros Hinf xs. destruct (Hinf xs). set_solver. Qed.
  Lemma union_infinite_r X Y : set_infinite Y → set_infinite (X ∪ Y).
  Proof. intros Hinf xs. destruct (Hinf xs). set_solver. Qed.
End set_finite_infinite.

Section more_finite.
  Context `{Set_ A C}.
  Implicit Types X Y : C.

  Lemma intersection_finite_l X Y : set_finite X → set_finite (X ∩ Y).
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
  Lemma intersection_finite_r X Y : set_finite Y → set_finite (X ∩ Y).
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
  Lemma difference_finite X Y : set_finite X → set_finite (X ∖ Y).
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
  Lemma difference_finite_inv X Y `{∀ x, Decision (x ∈ Y)} :
    set_finite Y → set_finite (X ∖ Y) → set_finite X.
  Proof.
    intros [l ?] [k ?]; exists (l ++ k).
    intros x ?; destruct (decide (x ∈ Y)); rewrite elem_of_app; set_solver.
  Qed.

  Lemma difference_infinite X Y :
    set_infinite X → set_finite Y → set_infinite (X ∖ Y).
  Proof. intros Hinf [xs ?] xs'. destruct (Hinf (xs ++ xs')). set_solver. Qed.
End more_finite.

Lemma top_infinite `{TopSet A C, Infinite A} : set_infinite (⊤ : C).
Proof.
  intros xs. exists (fresh xs). split; [set_solver|]. apply infinite_is_fresh.
Qed.

(** This formulation of finiteness is stronger than [pred_finite]: when equality
    is decidable, it is equivalent to the predicate being finite AND decidable. *)
Lemma dec_pred_finite_alt {A} (P : A → Prop) `{!∀ x, Decision (P x)} :
  pred_finite P ↔ ∃ xs : list A, ∀ x, P x ↔ x ∈ xs.
Proof.
  split; intros [xs ?].
  - exists (filter P xs). intros x. rewrite elem_of_list_filter. naive_solver.
  - exists xs. naive_solver.
Qed.

Lemma finite_sig_pred_finite {A} (P : A → Prop) `{Finite (sig P)} :
  pred_finite P.
Proof.
  exists (proj1_sig <$> enum _). intros x px.
  apply elem_of_list_fmap_1_alt with (x ↾ px); [apply elem_of_enum|]; done.
Qed.

Lemma pred_finite_arg2 {A B} (P : A → B → Prop) x :
  pred_finite (uncurry P) → pred_finite (P x).
Proof.
  intros [xys ?]. exists (xys.*2). intros y ?.
  apply elem_of_list_fmap_1_alt with (x, y); by auto.
Qed.

Lemma pred_finite_arg1 {A B} (P : A → B → Prop) y :
  pred_finite (uncurry P) → pred_finite (flip P y).
Proof.
  intros [xys ?]. exists (xys.*1). intros x ?.
  apply elem_of_list_fmap_1_alt with (x, y); by auto.
Qed.

(** Sets of sequences of natural numbers *)
(* The set [seq_seq start len] of natural numbers contains the sequence
[start, start + 1, ..., start + (len-1)]. *)
Fixpoint set_seq `{Singleton nat C, Union C, Empty C} (start len : nat) : C :=
  match len with
  | O => ∅
  | S len' => {[ start ]} ∪ set_seq (S start) len'
  end.

Section set_seq.
  Context `{SemiSet nat C}.
  Implicit Types start len x : nat.

  Lemma elem_of_set_seq start len x :
    x ∈ set_seq (C:=C) start len ↔ start ≤ x < start + len.
  Proof.
    revert start. induction len as [|len IH]; intros start; simpl.
    - rewrite elem_of_empty. lia.
    - rewrite elem_of_union, elem_of_singleton, IH. lia.
  Qed.
  Global Instance set_unfold_seq start len x :
    SetUnfoldElemOf x (set_seq (C:=C) start len) (start ≤ x < start + len).
  Proof. constructor; apply elem_of_set_seq. Qed.

  Lemma set_seq_len_pos n start len : n ∈ set_seq (C:=C) start len → 0 < len.
  Proof. rewrite elem_of_set_seq. lia. Qed.

  Lemma set_seq_subseteq start1 len1 start2 len2 :
    0 < len1 →
    set_seq (C:=C) start1 len1 ⊆ set_seq (C:=C) start2 len2 ↔
      start2 ≤ start1 ∧ start1 + len1 ≤ start2 + len2.
  Proof.
    intros Hlen. set_unfold. split.
    - intros Hx. pose proof (Hx start1). pose proof (Hx (start1 + len1 - 1)). lia.
    - intros Heq x. lia.
  Qed.

  Lemma set_seq_subseteq_len_gt start1 len1 start2 len2 :
    set_seq (C:=C) start1 len1 ⊆ set_seq (C:=C) start2 len2 → len1 ≤ len2.
  Proof.
    destruct len1 as [|len1].
    - set_unfold. lia.
    - rewrite set_seq_subseteq; lia.
  Qed.

  Lemma set_seq_add_disjoint start len1 len2 :
    set_seq (C:=C) start len1 ## set_seq (start + len1) len2.
  Proof. set_solver by lia. Qed.
  Lemma set_seq_add start len1 len2 :
    set_seq (C:=C) start (len1 + len2)
    ≡ set_seq start len1 ∪ set_seq (start + len1) len2.
  Proof. set_solver by lia. Qed.
  Lemma set_seq_add_L `{!LeibnizEquiv C} start len1 len2 :
    set_seq (C:=C) start (len1 + len2)
    = set_seq start len1 ∪ set_seq (start + len1) len2.
  Proof. unfold_leibniz. apply set_seq_add. Qed.

  Lemma set_seq_S_start_disjoint start len :
    {[ start ]} ## set_seq (C:=C) (S start) len.
  Proof. set_solver by lia. Qed.
  Lemma set_seq_S_start start len :
    set_seq (C:=C) start (S len) ≡ {[ start ]} ∪ set_seq (S start) len.
  Proof. set_solver by lia. Qed.

  Lemma set_seq_S_end_disjoint start len :
    {[ start + len ]} ## set_seq (C:=C) start len.
  Proof. set_solver by lia. Qed.
  Lemma set_seq_S_end_union start len :
    set_seq start (S len) ≡@{C} {[ start + len ]} ∪ set_seq start len.
  Proof. set_solver by lia. Qed.
  Lemma set_seq_S_end_union_L `{!LeibnizEquiv C} start len :
    set_seq start (S len) =@{C} {[ start + len ]} ∪ set_seq start len.
  Proof. unfold_leibniz. apply set_seq_S_end_union. Qed.

  Lemma list_to_set_seq start len :
    list_to_set (seq start len) =@{C} set_seq start len.
  Proof. revert start; induction len; intros; f_equal/=; auto. Qed.

  Lemma set_seq_finite start len : set_finite (set_seq (C:=C) start len).
  Proof.
    exists (seq start len); intros x. rewrite <-list_to_set_seq. set_solver.
  Qed.
End set_seq.

(** Mimimal elements *)
Definition minimal `{ElemOf A C} (R : relation A) (x : A) (X : C) : Prop :=
  ∀ y, y ∈ X → R y x → R x y.
Global Instance: Params (@minimal) 5 := {}.
Global Typeclasses Opaque minimal.

Section minimal.
  Context `{SemiSet A C} {R : relation A}.
  Implicit Types X Y : C.

  Global Instance minimal_proper x : Proper ((≡@{C}) ==> iff) (minimal R x).
  Proof. intros X X' y; unfold minimal; set_solver. Qed.

  Lemma minimal_anti_symm_1 `{!AntiSymm (=) R} X x y :
    minimal R x X → y ∈ X → R y x → x = y.
  Proof. intros Hmin ??. apply (anti_symm _); auto. Qed.
  Lemma minimal_anti_symm `{!AntiSymm (=) R} X x :
    minimal R x X ↔ ∀ y, y ∈ X → R y x → x = y.
  Proof. unfold minimal; naive_solver eauto using minimal_anti_symm_1. Qed.

  Lemma minimal_strict_1 `{!StrictOrder R} X x y :
    minimal R x X → y ∈ X → ¬R y x.
  Proof. intros Hmin ??. destruct (irreflexivity R x); trans y; auto. Qed.
  Lemma minimal_strict `{!StrictOrder R} X x :
    minimal R x X ↔ ∀ y, y ∈ X → ¬R y x.
  Proof. unfold minimal; split; [eauto using minimal_strict_1|naive_solver]. Qed.

  Lemma empty_minimal x : minimal R x (∅ : C).
  Proof. unfold minimal; set_solver. Qed.
  Lemma singleton_minimal x : minimal R x ({[ x ]} : C).
  Proof. unfold minimal; set_solver. Qed.
  Lemma singleton_minimal_not_above y x : ¬R y x → minimal R x ({[ y ]} : C).
  Proof. unfold minimal; set_solver. Qed.
  Lemma union_minimal X Y x :
    minimal R x X → minimal R x Y → minimal R x (X ∪ Y).
  Proof. unfold minimal; set_solver. Qed.
  Lemma minimal_subseteq X Y x : minimal R x X → Y ⊆ X → minimal R x Y.
  Proof. unfold minimal; set_solver. Qed.

  Lemma minimal_weaken `{!Transitive R} X x x' :
    minimal R x X → R x' x → minimal R x' X.
  Proof.
    intros Hmin ? y ??. trans x; [done|]. by eapply (Hmin y), transitivity.
  Qed.
End minimal.