1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
|
(** This file collects definitions and theorems on sets. Most
importantly, it implements some tactics to automatically solve goals involving
sets. *)
From stdpp Require Export orders list list_numbers.
From stdpp Require Import finite.
From stdpp Require Import options.
(* FIXME: This file needs a 'Proof Using' hint, but they need to be set
locally (or things moved out of sections) as no default works well enough. *)
Unset Default Proof Using.
(* Higher precedence to make sure these instances are not used for other types
with an [ElemOf] instance, such as lists. *)
Global Instance set_equiv_instance `{ElemOf A C} : Equiv C | 20 := λ X Y,
∀ x, x ∈ X ↔ x ∈ Y.
Global Instance set_subseteq_instance `{ElemOf A C} : SubsetEq C | 20 := λ X Y,
∀ x, x ∈ X → x ∈ Y.
Global Instance set_disjoint_instance `{ElemOf A C} : Disjoint C | 20 := λ X Y,
∀ x, x ∈ X → x ∈ Y → False.
Global Typeclasses Opaque set_equiv_instance set_subseteq_instance set_disjoint_instance.
(** * Setoids *)
Section setoids_simple.
Context `{SemiSet A C}.
Global Instance set_equiv_equivalence : Equivalence (≡@{C}).
Proof.
split.
- done.
- intros X Y ? x. by symmetry.
- intros X Y Z ?? x; by trans (x ∈ Y).
Qed.
Global Instance singleton_proper : Proper ((=) ==> (≡@{C})) singleton.
Proof. apply _. Qed.
Global Instance elem_of_proper : Proper ((=) ==> (≡) ==> iff) (∈@{C}) | 5.
Proof. by intros x ? <- X Y. Qed.
Global Instance disjoint_proper: Proper ((≡) ==> (≡) ==> iff) (##@{C}).
Proof.
intros X1 X2 HX Y1 Y2 HY; apply forall_proper; intros x. by rewrite HX, HY.
Qed.
Global Instance union_proper : Proper ((≡) ==> (≡) ==> (≡@{C})) union.
Proof. intros X1 X2 HX Y1 Y2 HY x. rewrite !elem_of_union. f_equiv; auto. Qed.
Global Instance union_list_proper: Proper ((≡) ==> (≡@{C})) union_list.
Proof. by induction 1; simpl; try apply union_proper. Qed.
Global Instance subseteq_proper : Proper ((≡@{C}) ==> (≡@{C}) ==> iff) (⊆).
Proof.
intros X1 X2 HX Y1 Y2 HY. apply forall_proper; intros x. by rewrite HX, HY.
Qed.
Global Instance subset_proper : Proper ((≡@{C}) ==> (≡@{C}) ==> iff) (⊂).
Proof. solve_proper. Qed.
End setoids_simple.
Section setoids.
Context `{Set_ A C}.
(** * Setoids *)
Global Instance intersection_proper :
Proper ((≡) ==> (≡) ==> (≡@{C})) intersection.
Proof.
intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_intersection, HX, HY.
Qed.
Global Instance difference_proper :
Proper ((≡) ==> (≡) ==> (≡@{C})) difference.
Proof.
intros X1 X2 HX Y1 Y2 HY x. by rewrite !elem_of_difference, HX, HY.
Qed.
End setoids.
Section setoids_monad.
Context `{MonadSet M}.
Global Instance set_fmap_proper {A B} :
Proper (pointwise_relation _ (=) ==> (≡) ==> (≡)) (@fmap M _ A B).
Proof.
intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_fmap. f_equiv; intros z.
by rewrite HX, Hf.
Qed.
Global Instance set_bind_proper {A B} :
Proper (pointwise_relation _ (≡) ==> (≡) ==> (≡)) (@mbind M _ A B).
Proof.
intros f1 f2 Hf X1 X2 HX x. rewrite !elem_of_bind. f_equiv; intros z.
by rewrite HX, (Hf z).
Qed.
Global Instance set_join_proper {A} :
Proper ((≡) ==> (≡)) (@mjoin M _ A).
Proof.
intros X1 X2 HX x. rewrite !elem_of_join. f_equiv; intros z. by rewrite HX.
Qed.
End setoids_monad.
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].
This transformation is implemented using type classes instead of setoid
rewriting to ensure that we traverse each term at most once and to be able to
deal with occurrences of the set operations under binders. *)
Class SetUnfold (P Q : Prop) := { set_unfold : P ↔ Q }.
Global Arguments set_unfold _ _ {_} : assert.
Global Hint Mode SetUnfold + - : typeclass_instances.
(** The class [SetUnfoldElemOf] is a more specialized version of [SetUnfold]
for propositions of the shape [x ∈ X] to improve performance. *)
Class SetUnfoldElemOf `{ElemOf A C} (x : A) (X : C) (Q : Prop) :=
{ set_unfold_elem_of : x ∈ X ↔ Q }.
Global Arguments set_unfold_elem_of {_ _ _} _ _ _ {_} : assert.
Global Hint Mode SetUnfoldElemOf + + + - + - : typeclass_instances.
Global Instance set_unfold_elem_of_default `{ElemOf A C} (x : A) (X : C) :
SetUnfoldElemOf x X (x ∈ X) | 1000.
Proof. done. Qed.
Global Instance set_unfold_elem_of_set_unfold `{ElemOf A C} (x : A) (X : C) Q :
SetUnfoldElemOf x X Q → SetUnfold (x ∈ X) Q.
Proof. by destruct 1; constructor. Qed.
Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Global Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.
Global Instance set_unfold_default P : SetUnfold P P | 1000. done. Qed.
Definition set_unfold_1 `{SetUnfold P Q} : P → Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q → P := proj2 (set_unfold P Q).
Lemma set_unfold_impl P Q P' Q' :
SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P → Q) (P' → Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P ∧ Q) (P' ∧ Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P ∨ Q) (P' ∨ Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P ↔ Q) (P' ↔ Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P' → SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A → Prop) :
(∀ x, SetUnfold (P x) (P' x)) → SetUnfold (∀ x, P x) (∀ x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A → Prop) :
(∀ x, SetUnfold (P x) (P' x)) → SetUnfold (∃ x, P x) (∃ x, P' x).
Proof. constructor. naive_solver. Qed.
(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Global Hint Extern 0 (SetUnfold (_ → _) _) =>
class_apply set_unfold_impl : typeclass_instances.
Global Hint Extern 0 (SetUnfold (_ ∧ _) _) =>
class_apply set_unfold_and : typeclass_instances.
Global Hint Extern 0 (SetUnfold (_ ∨ _) _) =>
class_apply set_unfold_or : typeclass_instances.
Global Hint Extern 0 (SetUnfold (_ ↔ _) _) =>
class_apply set_unfold_iff : typeclass_instances.
Global Hint Extern 0 (SetUnfold (¬ _) _) =>
class_apply set_unfold_not : typeclass_instances.
Global Hint Extern 1 (SetUnfold (∀ _, _) _) =>
class_apply set_unfold_forall : typeclass_instances.
Global Hint Extern 0 (SetUnfold (∃ _, _) _) =>
class_apply set_unfold_exist : typeclass_instances.
Section set_unfold_simple.
Context `{SemiSet A C}.
Implicit Types x y : A.
Implicit Types X Y : C.
Global Instance set_unfold_empty x : SetUnfoldElemOf x (∅ : C) False.
Proof. constructor. split; [|done]. apply not_elem_of_empty. Qed.
Global Instance set_unfold_singleton x y : SetUnfoldElemOf x ({[ y ]} : C) (x = y).
Proof. constructor; apply elem_of_singleton. Qed.
Global Instance set_unfold_union x X Y P Q :
SetUnfoldElemOf x X P → SetUnfoldElemOf x Y Q →
SetUnfoldElemOf x (X ∪ Y) (P ∨ Q).
Proof.
intros ??; constructor.
by rewrite elem_of_union,
(set_unfold_elem_of x X P), (set_unfold_elem_of x Y Q).
Qed.
Global Instance set_unfold_equiv_same X : SetUnfold (X ≡ X) True | 1.
Proof. done. Qed.
Global Instance set_unfold_equiv_empty_l X (P : A → Prop) :
(∀ x, SetUnfoldElemOf x X (P x)) → SetUnfold (∅ ≡ X) (∀ x, ¬P x) | 5.
Proof.
intros ?; constructor. unfold equiv, set_equiv_instance.
pose proof (not_elem_of_empty (C:=C)); naive_solver.
Qed.
Global Instance set_unfold_equiv_empty_r (P : A → Prop) X :
(∀ x, SetUnfoldElemOf x X (P x)) → SetUnfold (X ≡ ∅) (∀ x, ¬P x) | 5.
Proof.
intros ?; constructor. unfold equiv, set_equiv_instance.
pose proof (not_elem_of_empty (C:=C)); naive_solver.
Qed.
Global Instance set_unfold_equiv (P Q : A → Prop) X Y :
(∀ x, SetUnfoldElemOf x X (P x)) → (∀ x, SetUnfoldElemOf x Y (Q x)) →
SetUnfold (X ≡ Y) (∀ x, P x ↔ Q x) | 10.
Proof. constructor. apply forall_proper; naive_solver. Qed.
Global Instance set_unfold_subseteq (P Q : A → Prop) X Y :
(∀ x, SetUnfoldElemOf x X (P x)) → (∀ x, SetUnfoldElemOf x Y (Q x)) →
SetUnfold (X ⊆ Y) (∀ x, P x → Q x).
Proof. constructor. apply forall_proper; naive_solver. Qed.
Global Instance set_unfold_subset (P Q : A → Prop) X Y :
(∀ x, SetUnfoldElemOf x X (P x)) → (∀ x, SetUnfoldElemOf x Y (Q x)) →
SetUnfold (X ⊂ Y) ((∀ x, P x → Q x) ∧ ¬∀ x, Q x → P x).
Proof.
constructor. unfold strict.
repeat f_equiv; apply forall_proper; naive_solver.
Qed.
Global Instance set_unfold_disjoint (P Q : A → Prop) X Y :
(∀ x, SetUnfoldElemOf x X (P x)) → (∀ x, SetUnfoldElemOf x Y (Q x)) →
SetUnfold (X ## Y) (∀ x, P x → Q x → False).
Proof. constructor. unfold disjoint, set_disjoint_instance. naive_solver. Qed.
Context `{!LeibnizEquiv C}.
Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
Proof. done. Qed.
Global Instance set_unfold_equiv_empty_l_L X (P : A → Prop) :
(∀ x, SetUnfoldElemOf x X (P x)) → SetUnfold (∅ = X) (∀ x, ¬P x) | 5.
Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_l. Qed.
Global Instance set_unfold_equiv_empty_r_L (P : A → Prop) X :
(∀ x, SetUnfoldElemOf x X (P x)) → SetUnfold (X = ∅) (∀ x, ¬P x) | 5.
Proof. constructor. unfold_leibniz. by apply set_unfold_equiv_empty_r. Qed.
Global Instance set_unfold_equiv_L (P Q : A → Prop) X Y :
(∀ x, SetUnfoldElemOf x X (P x)) → (∀ x, SetUnfoldElemOf x Y (Q x)) →
SetUnfold (X = Y) (∀ x, P x ↔ Q x) | 10.
Proof. constructor. unfold_leibniz. by apply set_unfold_equiv. Qed.
End set_unfold_simple.
Section set_unfold.
Context `{Set_ A C}.
Implicit Types x y : A.
Implicit Types X Y : C.
Global Instance set_unfold_intersection x X Y P Q :
SetUnfoldElemOf x X P → SetUnfoldElemOf x Y Q →
SetUnfoldElemOf x (X ∩ Y) (P ∧ Q).
Proof.
intros ??; constructor. rewrite elem_of_intersection.
by rewrite (set_unfold_elem_of x X P), (set_unfold_elem_of x Y Q).
Qed.
Global Instance set_unfold_difference x X Y P Q :
SetUnfoldElemOf x X P → SetUnfoldElemOf x Y Q →
SetUnfoldElemOf x (X ∖ Y) (P ∧ ¬Q).
Proof.
intros ??; constructor. rewrite elem_of_difference.
by rewrite (set_unfold_elem_of x X P), (set_unfold_elem_of x Y Q).
Qed.
End set_unfold.
Global Instance set_unfold_top `{TopSet A C} (x : A) :
SetUnfoldElemOf x (⊤ : C) True.
Proof. constructor. split; [done|intros; apply elem_of_top']. Qed.
Section set_unfold_monad.
Context `{MonadSet M}.
Global Instance set_unfold_ret {A} (x y : A) :
SetUnfoldElemOf x (mret (M:=M) y) (x = y).
Proof. constructor; apply elem_of_ret. Qed.
Global Instance set_unfold_bind {A B} (f : A → M B) X (P Q : A → Prop) x :
(∀ y, SetUnfoldElemOf y X (P y)) → (∀ y, SetUnfoldElemOf x (f y) (Q y)) →
SetUnfoldElemOf x (X ≫= f) (∃ y, Q y ∧ P y).
Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
Global Instance set_unfold_fmap {A B} (f : A → B) (X : M A) (P : A → Prop) x :
(∀ y, SetUnfoldElemOf y X (P y)) →
SetUnfoldElemOf x (f <$> X) (∃ y, x = f y ∧ P y).
Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
Global Instance set_unfold_join {A} (X : M (M A)) (P : M A → Prop) x :
(∀ Y, SetUnfoldElemOf Y X (P Y)) →
SetUnfoldElemOf x (mjoin X) (∃ Y, x ∈ Y ∧ P Y).
Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.
Section set_unfold_list.
Context {A : Type}.
Implicit Types x : A.
Implicit Types l : list A.
Global Instance set_unfold_nil x : SetUnfoldElemOf x [] False.
Proof. constructor; apply elem_of_nil. Qed.
Global Instance set_unfold_cons x y l P :
SetUnfoldElemOf x l P → SetUnfoldElemOf x (y :: l) (x = y ∨ P).
Proof. constructor. by rewrite elem_of_cons, (set_unfold_elem_of x l P). Qed.
Global Instance set_unfold_app x l k P Q :
SetUnfoldElemOf x l P → SetUnfoldElemOf x k Q →
SetUnfoldElemOf x (l ++ k) (P ∨ Q).
Proof.
intros ??; constructor.
by rewrite elem_of_app, (set_unfold_elem_of x l P), (set_unfold_elem_of x k Q).
Qed.
Global Instance set_unfold_list_cprod {B} (x : A * B) l (k : list B) P Q :
SetUnfoldElemOf x.1 l P → SetUnfoldElemOf x.2 k Q →
SetUnfoldElemOf x (cprod l k) (P ∧ Q).
Proof.
intros ??; constructor.
by rewrite elem_of_list_cprod, (set_unfold_elem_of x.1 l P),
(set_unfold_elem_of x.2 k Q).
Qed.
Global Instance set_unfold_included l k (P Q : A → Prop) :
(∀ x, SetUnfoldElemOf x l (P x)) → (∀ x, SetUnfoldElemOf x k (Q x)) →
SetUnfold (l ⊆ k) (∀ x, P x → Q x).
Proof.
constructor; unfold subseteq, list_subseteq.
apply forall_proper; naive_solver.
Qed.
Global Instance set_unfold_reverse x l P :
SetUnfoldElemOf x l P → SetUnfoldElemOf x (reverse l) P.
Proof. constructor. by rewrite elem_of_reverse, (set_unfold_elem_of x l P). Qed.
Global Instance set_unfold_list_fmap {B} (f : A → B) l P y :
(∀ x, SetUnfoldElemOf x l (P x)) →
SetUnfoldElemOf y (f <$> l) (∃ x, y = f x ∧ P x).
Proof.
constructor. rewrite elem_of_list_fmap. f_equiv; intros x.
by rewrite (set_unfold_elem_of x l (P x)).
Qed.
Global Instance set_unfold_rotate x l P n:
SetUnfoldElemOf x l P → SetUnfoldElemOf x (rotate n l) P.
Proof. constructor. by rewrite elem_of_rotate, (set_unfold_elem_of x l P). Qed.
Global Instance set_unfold_list_bind {B} (f : A → list B) l P Q y :
(∀ x, SetUnfoldElemOf x l (P x)) → (∀ x, SetUnfoldElemOf y (f x) (Q x)) →
SetUnfoldElemOf y (l ≫= f) (∃ x, Q x ∧ P x).
Proof. constructor. rewrite elem_of_list_bind. naive_solver. Qed.
End set_unfold_list.
Tactic Notation "set_unfold" :=
let rec unfold_hyps :=
try match goal with
| H : ?P |- _ =>
lazymatch type of P with
| Prop =>
apply set_unfold_1 in H; revert H;
first [unfold_hyps; intros H | intros H; fail 1]
| _ => fail
end
end in
apply set_unfold_2; unfold_hyps; csimpl in *.
Tactic Notation "set_unfold" "in" ident(H) :=
let P := type of H in
lazymatch type of P with
| Prop => apply set_unfold_1 in H
| _ => fail "hypothesis" H "is not a proposition"
end.
(** Since [firstorder] already fails or loops on very small goals generated by
[set_solver], we use the [naive_solver] tactic as a substitute. *)
Tactic Notation "set_solver" "by" tactic3(tac) :=
try fast_done;
intros; setoid_subst;
set_unfold;
intros; setoid_subst;
try match goal with |- _ ∈ _ => apply dec_stable end;
naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by eauto.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.
Global Hint Extern 1000 (_ ∉ _) => set_solver : set_solver.
Global Hint Extern 1000 (_ ∈ _) => set_solver : set_solver.
Global Hint Extern 1000 (_ ⊆ _) => set_solver : set_solver.
(** * Sets with [∪], [∅] and [{[_]}] *)
Section semi_set.
Context `{SemiSet A C}.
Implicit Types x y : A.
Implicit Types X Y : C.
Implicit Types Xs Ys : list C.
(** Equality *)
Lemma set_equiv X Y : X ≡ Y ↔ ∀ x, x ∈ X ↔ x ∈ Y.
Proof. set_solver. Qed.
Lemma set_equiv_subseteq X Y : X ≡ Y ↔ X ⊆ Y ∧ Y ⊆ X.
Proof. set_solver. Qed.
Global Instance singleton_equiv_inj : Inj (=) (≡@{C}) singleton.
Proof. unfold Inj. set_solver. Qed.
Global Instance singleton_inj `{!LeibnizEquiv C} : Inj (=) (=@{C}) singleton.
Proof. unfold Inj. set_solver. Qed.
(** Subset relation *)
Global Instance set_subseteq_antisymm: AntiSymm (≡) (⊆@{C}).
Proof. intros ??. set_solver. Qed.
Global Instance set_subseteq_preorder: PreOrder (⊆@{C}).
Proof. split; [by intros ??|]. intros ???; set_solver. Qed.
Lemma subseteq_union X Y : X ⊆ Y ↔ X ∪ Y ≡ Y.
Proof. set_solver. Qed.
Lemma subseteq_union_1 X Y : X ⊆ Y → X ∪ Y ≡ Y.
Proof. by rewrite subseteq_union. Qed.
Lemma subseteq_union_2 X Y : X ∪ Y ≡ Y → X ⊆ Y.
Proof. by rewrite subseteq_union. Qed.
Lemma union_subseteq_l X Y : X ⊆ X ∪ Y.
Proof. set_solver. Qed.
Lemma union_subseteq_l' X X' Y : X ⊆ X' → X ⊆ X' ∪ Y.
Proof. set_solver. Qed.
Lemma union_subseteq_r X Y : Y ⊆ X ∪ Y.
Proof. set_solver. Qed.
Lemma union_subseteq_r' X Y Y' : Y ⊆ Y' → Y ⊆ X ∪ Y'.
Proof. set_solver. Qed.
Lemma union_least X Y Z : X ⊆ Z → Y ⊆ Z → X ∪ Y ⊆ Z.
Proof. set_solver. Qed.
Lemma elem_of_subseteq X Y : X ⊆ Y ↔ ∀ x, x ∈ X → x ∈ Y.
Proof. done. Qed.
Lemma elem_of_subset X Y : X ⊂ Y ↔ (∀ x, x ∈ X → x ∈ Y) ∧ ¬(∀ x, x ∈ Y → x ∈ X).
Proof. set_solver. Qed.
Lemma elem_of_weaken x X Y : x ∈ X → X ⊆ Y → x ∈ Y.
Proof. set_solver. Qed.
Lemma not_elem_of_weaken x X Y : x ∉ Y → X ⊆ Y → x ∉ X.
Proof. set_solver. Qed.
(** Union *)
Lemma union_subseteq X Y Z : X ∪ Y ⊆ Z ↔ X ⊆ Z ∧ Y ⊆ Z.
Proof. set_solver. Qed.
Lemma not_elem_of_union x X Y : x ∉ X ∪ Y ↔ x ∉ X ∧ x ∉ Y.
Proof. set_solver. Qed.
Lemma elem_of_union_l x X Y : x ∈ X → x ∈ X ∪ Y.
Proof. set_solver. Qed.
Lemma elem_of_union_r x X Y : x ∈ Y → x ∈ X ∪ Y.
Proof. set_solver. Qed.
Lemma union_mono_l X Y1 Y2 : Y1 ⊆ Y2 → X ∪ Y1 ⊆ X ∪ Y2.
Proof. set_solver. Qed.
Lemma union_mono_r X1 X2 Y : X1 ⊆ X2 → X1 ∪ Y ⊆ X2 ∪ Y.
Proof. set_solver. Qed.
Lemma union_mono X1 X2 Y1 Y2 : X1 ⊆ X2 → Y1 ⊆ Y2 → X1 ∪ Y1 ⊆ X2 ∪ Y2.
Proof. set_solver. Qed.
Global Instance union_idemp : IdemP (≡@{C}) (∪).
Proof. intros X. set_solver. Qed.
Global Instance union_empty_l : LeftId (≡@{C}) ∅ (∪).
Proof. intros X. set_solver. Qed.
Global Instance union_empty_r : RightId (≡@{C}) ∅ (∪).
Proof. intros X. set_solver. Qed.
Global Instance union_comm : Comm (≡@{C}) (∪).
Proof. intros X Y. set_solver. Qed.
Global Instance union_assoc : Assoc (≡@{C}) (∪).
Proof. intros X Y Z. set_solver. Qed.
Lemma empty_union X Y : X ∪ Y ≡ ∅ ↔ X ≡ ∅ ∧ Y ≡ ∅.
Proof. set_solver. Qed.
Lemma union_cancel_l X Y Z : Z ## X → Z ## Y → Z ∪ X ≡ Z ∪ Y → X ≡ Y.
Proof. set_solver. Qed.
Lemma union_cancel_r X Y Z : X ## Z → Y ## Z → X ∪ Z ≡ Y ∪ Z → X ≡ Y.
Proof. set_solver. Qed.
(** Empty *)
Lemma empty_subseteq X : ∅ ⊆ X.
Proof. set_solver. Qed.
Lemma elem_of_equiv_empty X : X ≡ ∅ ↔ ∀ x, x ∉ X.
Proof. set_solver. Qed.
Lemma elem_of_empty x : x ∈@{C} ∅ ↔ False.
Proof. set_solver. Qed.
Lemma equiv_empty X : X ⊆ ∅ → X ≡ ∅.
Proof. set_solver. Qed.
Lemma union_positive_l X Y : X ∪ Y ≡ ∅ → X ≡ ∅.
Proof. set_solver. Qed.
Lemma union_positive_l_alt X Y : X ≢ ∅ → X ∪ Y ≢ ∅.
Proof. set_solver. Qed.
Lemma non_empty_inhabited x X : x ∈ X → X ≢ ∅.
Proof. set_solver. Qed.
(** Singleton *)
Lemma elem_of_singleton_1 x y : x ∈@{C} {[y]} → x = y.
Proof. by rewrite elem_of_singleton. Qed.
Lemma elem_of_singleton_2 x y : x = y → x ∈@{C} {[y]}.
Proof. by rewrite elem_of_singleton. Qed.
Lemma elem_of_subseteq_singleton x X : x ∈ X ↔ {[ x ]} ⊆ X.
Proof. set_solver. Qed.
Lemma non_empty_singleton x : {[ x ]} ≢@{C} ∅.
Proof. set_solver. Qed.
Lemma not_elem_of_singleton x y : x ∉@{C} {[ y ]} ↔ x ≠ y.
Proof. by rewrite elem_of_singleton. Qed.
Lemma not_elem_of_singleton_1 x y : x ∉@{C} {[ y ]} → x ≠ y.
Proof. apply not_elem_of_singleton. Qed.
Lemma not_elem_of_singleton_2 x y : x ≠ y → x ∉@{C} {[ y ]}.
Proof. apply not_elem_of_singleton. Qed.
Lemma singleton_subseteq_l x X : {[ x ]} ⊆ X ↔ x ∈ X.
Proof. set_solver. Qed.
Lemma singleton_subseteq x y : {[ x ]} ⊆@{C} {[ y ]} ↔ x = y.
Proof. set_solver. Qed.
(** Disjointness *)
Lemma elem_of_disjoint X Y : X ## Y ↔ ∀ x, x ∈ X → x ∈ Y → False.
Proof. done. Qed.
Global Instance disjoint_sym : Symmetric (##@{C}).
Proof. intros X Y. set_solver. Qed.
Lemma disjoint_empty_l Y : ∅ ## Y.
Proof. set_solver. Qed.
Lemma disjoint_empty_r X : X ## ∅.
Proof. set_solver. Qed.
Lemma disjoint_singleton_l x Y : {[ x ]} ## Y ↔ x ∉ Y.
Proof. set_solver. Qed.
Lemma disjoint_singleton_r y X : X ## {[ y ]} ↔ y ∉ X.
Proof. set_solver. Qed.
Lemma disjoint_union_l X1 X2 Y : X1 ∪ X2 ## Y ↔ X1 ## Y ∧ X2 ## Y.
Proof. set_solver. Qed.
Lemma disjoint_union_r X Y1 Y2 : X ## Y1 ∪ Y2 ↔ X ## Y1 ∧ X ## Y2.
Proof. set_solver. Qed.
(** Big unions *)
Lemma elem_of_union_list Xs x : x ∈ ⋃ Xs ↔ ∃ X, X ∈ Xs ∧ x ∈ X.
Proof.
split.
- induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
- intros [X [Hx]]. induction Hx; simpl; [by apply elem_of_union_l |].
intros. apply elem_of_union_r; auto.
Qed.
Lemma union_list_nil : ⋃ @nil C = ∅.
Proof. done. Qed.
Lemma union_list_cons X Xs : ⋃ (X :: Xs) = X ∪ ⋃ Xs.
Proof. done. Qed.
Lemma union_list_singleton X : ⋃ [X] ≡ X.
Proof. simpl. by rewrite (right_id ∅ _). Qed.
Lemma union_list_app Xs1 Xs2 : ⋃ (Xs1 ++ Xs2) ≡ ⋃ Xs1 ∪ ⋃ Xs2.
Proof.
induction Xs1 as [|X Xs1 IH]; simpl; [by rewrite (left_id ∅ _)|].
by rewrite IH, (assoc _).
Qed.
Lemma union_list_reverse Xs : ⋃ (reverse Xs) ≡ ⋃ Xs.
Proof.
induction Xs as [|X Xs IH]; simpl; [done |].
by rewrite reverse_cons, union_list_app,
union_list_singleton, (comm _), IH.
Qed.
Lemma union_list_mono Xs Ys : Xs ⊆* Ys → ⋃ Xs ⊆ ⋃ Ys.
Proof. induction 1; simpl; auto using union_mono. Qed.
Lemma empty_union_list Xs : ⋃ Xs ≡ ∅ ↔ Forall (.≡ ∅) Xs.
Proof.
split.
- induction Xs; simpl; rewrite ?empty_union; intuition.
- induction 1 as [|?? E1 ? E2]; simpl; [done|]. by apply empty_union.
Qed.
Section leibniz.
Context `{!LeibnizEquiv C}.
Lemma set_eq X Y : X = Y ↔ ∀ x, x ∈ X ↔ x ∈ Y.
Proof. unfold_leibniz. apply set_equiv. Qed.
Lemma set_eq_subseteq X Y : X = Y ↔ X ⊆ Y ∧ Y ⊆ X.
Proof. unfold_leibniz. apply set_equiv_subseteq. Qed.
(** Subset relation *)
Global Instance set_subseteq_partialorder : PartialOrder (⊆@{C}).
Proof. split; [apply _|]. intros ??. unfold_leibniz. apply (anti_symm _). Qed.
Lemma subseteq_union_L X Y : X ⊆ Y ↔ X ∪ Y = Y.
Proof. unfold_leibniz. apply subseteq_union. Qed.
Lemma subseteq_union_1_L X Y : X ⊆ Y → X ∪ Y = Y.
Proof. unfold_leibniz. apply subseteq_union_1. Qed.
Lemma subseteq_union_2_L X Y : X ∪ Y = Y → X ⊆ Y.
Proof. unfold_leibniz. apply subseteq_union_2. Qed.
(** Union *)
Global Instance union_idemp_L : IdemP (=@{C}) (∪).
Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
Global Instance union_empty_l_L : LeftId (=@{C}) ∅ (∪).
Proof. intros ?. unfold_leibniz. apply (left_id _ _). Qed.
Global Instance union_empty_r_L : RightId (=@{C}) ∅ (∪).
Proof. intros ?. unfold_leibniz. apply (right_id _ _). Qed.
Global Instance union_comm_L : Comm (=@{C}) (∪).
Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
Global Instance union_assoc_L : Assoc (=@{C}) (∪).
Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
Lemma empty_union_L X Y : X ∪ Y = ∅ ↔ X = ∅ ∧ Y = ∅.
Proof. unfold_leibniz. apply empty_union. Qed.
Lemma union_cancel_l_L X Y Z : Z ## X → Z ## Y → Z ∪ X = Z ∪ Y → X = Y.
Proof. unfold_leibniz. apply union_cancel_l. Qed.
Lemma union_cancel_r_L X Y Z : X ## Z → Y ## Z → X ∪ Z = Y ∪ Z → X = Y.
Proof. unfold_leibniz. apply union_cancel_r. Qed.
(** Empty *)
Lemma elem_of_equiv_empty_L X : X = ∅ ↔ ∀ x, x ∉ X.
Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
Lemma equiv_empty_L X : X ⊆ ∅ → X = ∅.
Proof. unfold_leibniz. apply equiv_empty. Qed.
Lemma union_positive_l_L X Y : X ∪ Y = ∅ → X = ∅.
Proof. unfold_leibniz. apply union_positive_l. Qed.
Lemma union_positive_l_alt_L X Y : X ≠ ∅ → X ∪ Y ≠ ∅.
Proof. unfold_leibniz. apply union_positive_l_alt. Qed.
Lemma non_empty_inhabited_L x X : x ∈ X → X ≠ ∅.
Proof. unfold_leibniz. apply non_empty_inhabited. Qed.
(** Singleton *)
Lemma non_empty_singleton_L x : {[ x ]} ≠@{C} ∅.
Proof. unfold_leibniz. apply non_empty_singleton. Qed.
(** Big unions *)
Lemma union_list_singleton_L X : ⋃ [X] = X.
Proof. unfold_leibniz. apply union_list_singleton. Qed.
Lemma union_list_app_L Xs1 Xs2 : ⋃ (Xs1 ++ Xs2) = ⋃ Xs1 ∪ ⋃ Xs2.
Proof. unfold_leibniz. apply union_list_app. Qed.
Lemma union_list_reverse_L Xs : ⋃ (reverse Xs) = ⋃ Xs.
Proof. unfold_leibniz. apply union_list_reverse. Qed.
Lemma empty_union_list_L Xs : ⋃ Xs = ∅ ↔ Forall (.= ∅) Xs.
Proof. unfold_leibniz. apply empty_union_list. Qed.
End leibniz.
Lemma not_elem_of_iff `{!RelDecision (∈@{C})} X Y x :
(x ∈ X ↔ x ∈ Y) ↔ (x ∉ X ↔ x ∉ Y).
Proof. destruct (decide (x ∈ X)), (decide (x ∈ Y)); tauto. Qed.
Section dec.
Context `{!RelDecision (≡@{C})}.
Lemma set_subseteq_inv X Y : X ⊆ Y → X ⊂ Y ∨ X ≡ Y.
Proof. destruct (decide (X ≡ Y)); [by right|left;set_solver]. Qed.
Lemma set_not_subset_inv X Y : X ⊄ Y → X ⊈ Y ∨ X ≡ Y.
Proof. destruct (decide (X ≡ Y)); [by right|left;set_solver]. Qed.
Lemma non_empty_union X Y : X ∪ Y ≢ ∅ ↔ X ≢ ∅ ∨ Y ≢ ∅.
Proof. destruct (decide (X ≡ ∅)); set_solver. Qed.
Lemma non_empty_union_list Xs : ⋃ Xs ≢ ∅ → Exists (.≢ ∅) Xs.
Proof. rewrite empty_union_list. apply (not_Forall_Exists _). Qed.
End dec.
Section dec_leibniz.
Context `{!RelDecision (≡@{C}), !LeibnizEquiv C}.
Lemma set_subseteq_inv_L X Y : X ⊆ Y → X ⊂ Y ∨ X = Y.
Proof. unfold_leibniz. apply set_subseteq_inv. Qed.
Lemma set_not_subset_inv_L X Y : X ⊄ Y → X ⊈ Y ∨ X = Y.
Proof. unfold_leibniz. apply set_not_subset_inv. Qed.
Lemma non_empty_union_L X Y : X ∪ Y ≠ ∅ ↔ X ≠ ∅ ∨ Y ≠ ∅.
Proof. unfold_leibniz. apply non_empty_union. Qed.
Lemma non_empty_union_list_L Xs : ⋃ Xs ≠ ∅ → Exists (.≠ ∅) Xs.
Proof. unfold_leibniz. apply non_empty_union_list. Qed.
End dec_leibniz.
End semi_set.
(** * Sets with [∪], [∩], [∖], [∅] and [{[_]}] *)
Section set.
Context `{Set_ A C}.
Implicit Types x y : A.
Implicit Types X Y : C.
(** Intersection *)
Lemma subseteq_intersection X Y : X ⊆ Y ↔ X ∩ Y ≡ X.
Proof. set_solver. Qed.
Lemma subseteq_intersection_1 X Y : X ⊆ Y → X ∩ Y ≡ X.
Proof. apply subseteq_intersection. Qed.
Lemma subseteq_intersection_2 X Y : X ∩ Y ≡ X → X ⊆ Y.
Proof. apply subseteq_intersection. Qed.
Lemma intersection_subseteq_l X Y : X ∩ Y ⊆ X.
Proof. set_solver. Qed.
Lemma intersection_subseteq_r X Y : X ∩ Y ⊆ Y.
Proof. set_solver. Qed.
Lemma intersection_greatest X Y Z : Z ⊆ X → Z ⊆ Y → Z ⊆ X ∩ Y.
Proof. set_solver. Qed.
Lemma intersection_mono_l X Y1 Y2 : Y1 ⊆ Y2 → X ∩ Y1 ⊆ X ∩ Y2.
Proof. set_solver. Qed.
Lemma intersection_mono_r X1 X2 Y : X1 ⊆ X2 → X1 ∩ Y ⊆ X2 ∩ Y.
Proof. set_solver. Qed.
Lemma intersection_mono X1 X2 Y1 Y2 :
X1 ⊆ X2 → Y1 ⊆ Y2 → X1 ∩ Y1 ⊆ X2 ∩ Y2.
Proof. set_solver. Qed.
Global Instance intersection_idemp : IdemP (≡@{C}) (∩).
Proof. intros X; set_solver. Qed.
Global Instance intersection_comm : Comm (≡@{C}) (∩).
Proof. intros X Y; set_solver. Qed.
Global Instance intersection_assoc : Assoc (≡@{C}) (∩).
Proof. intros X Y Z; set_solver. Qed.
Global Instance intersection_empty_l : LeftAbsorb (≡@{C}) ∅ (∩).
Proof. intros X; set_solver. Qed.
Global Instance intersection_empty_r: RightAbsorb (≡@{C}) ∅ (∩).
Proof. intros X; set_solver. Qed.
Lemma intersection_singletons x : {[x]} ∩ {[x]} ≡@{C} {[x]}.
Proof. set_solver. Qed.
Lemma union_intersection_l X Y Z : X ∪ (Y ∩ Z) ≡ (X ∪ Y) ∩ (X ∪ Z).
Proof. set_solver. Qed.
Lemma union_intersection_r X Y Z : (X ∩ Y) ∪ Z ≡ (X ∪ Z) ∩ (Y ∪ Z).
Proof. set_solver. Qed.
Lemma intersection_union_l X Y Z : X ∩ (Y ∪ Z) ≡ (X ∩ Y) ∪ (X ∩ Z).
Proof. set_solver. Qed.
Lemma intersection_union_r X Y Z : (X ∪ Y) ∩ Z ≡ (X ∩ Z) ∪ (Y ∩ Z).
Proof. set_solver. Qed.
(** Difference *)
Lemma difference_twice X Y : (X ∖ Y) ∖ Y ≡ X ∖ Y.
Proof. set_solver. Qed.
Lemma subseteq_empty_difference X Y : X ⊆ Y → X ∖ Y ≡ ∅.
Proof. set_solver. Qed.
Lemma difference_diag X : X ∖ X ≡ ∅.
Proof. set_solver. Qed.
Lemma difference_empty X : X ∖ ∅ ≡ X.
Proof. set_solver. Qed.
Lemma difference_union_distr_l X Y Z : (X ∪ Y) ∖ Z ≡ X ∖ Z ∪ Y ∖ Z.
Proof. set_solver. Qed.
Lemma difference_union_distr_r X Y Z : Z ∖ (X ∪ Y) ≡ (Z ∖ X) ∩ (Z ∖ Y).
Proof. set_solver. Qed.
Lemma difference_intersection_distr_l X Y Z : (X ∩ Y) ∖ Z ≡ X ∖ Z ∩ Y ∖ Z.
Proof. set_solver. Qed.
Lemma difference_disjoint X Y : X ## Y → X ∖ Y ≡ X.
Proof. set_solver. Qed.
Lemma subset_difference_elem_of x X : x ∈ X → X ∖ {[ x ]} ⊂ X.
Proof. set_solver. Qed.
Lemma difference_difference_l X Y Z : (X ∖ Y) ∖ Z ≡ X ∖ (Y ∪ Z).
Proof. set_solver. Qed.
Lemma difference_mono X1 X2 Y1 Y2 :
X1 ⊆ X2 → Y2 ⊆ Y1 → X1 ∖ Y1 ⊆ X2 ∖ Y2.
Proof. set_solver. Qed.
Lemma difference_mono_l X Y1 Y2 : Y2 ⊆ Y1 → X ∖ Y1 ⊆ X ∖ Y2.
Proof. set_solver. Qed.
Lemma difference_mono_r X1 X2 Y : X1 ⊆ X2 → X1 ∖ Y ⊆ X2 ∖ Y.
Proof. set_solver. Qed.
Lemma subseteq_difference_r X Y1 Y2 :
X ## Y2 → X ⊆ Y1 → X ⊆ Y1 ∖ Y2.
Proof. set_solver. Qed.
Lemma subseteq_difference_l X1 X2 Y : X1 ⊆ Y → X1 ∖ X2 ⊆ Y.
Proof. set_solver. Qed.
(** Disjointness *)
Lemma disjoint_intersection X Y : X ## Y ↔ X ∩ Y ≡ ∅.
Proof. set_solver. Qed.
Lemma disjoint_difference_l1 X1 X2 Y : Y ⊆ X2 → X1 ∖ X2 ## Y.
Proof. set_solver. Qed.
Lemma disjoint_difference_l2 X1 X2 Y : X1 ## Y → X1 ∖ X2 ## Y.
Proof. set_solver. Qed.
Lemma disjoint_difference_r1 X Y1 Y2 : X ⊆ Y2 → X ## Y1 ∖ Y2.
Proof. set_solver. Qed.
Lemma disjoint_difference_r2 X Y1 Y2 : X ## Y1 → X ## Y1 ∖ Y2.
Proof. set_solver. Qed.
Section leibniz.
Context `{!LeibnizEquiv C}.
(** Intersection *)
Lemma subseteq_intersection_L X Y : X ⊆ Y ↔ X ∩ Y = X.
Proof. unfold_leibniz. apply subseteq_intersection. Qed.
Lemma subseteq_intersection_1_L X Y : X ⊆ Y → X ∩ Y = X.
Proof. unfold_leibniz. apply subseteq_intersection_1. Qed.
Lemma subseteq_intersection_2_L X Y : X ∩ Y = X → X ⊆ Y.
Proof. unfold_leibniz. apply subseteq_intersection_2. Qed.
Global Instance intersection_idemp_L : IdemP (=@{C}) (∩).
Proof. intros ?. unfold_leibniz. apply (idemp _). Qed.
Global Instance intersection_comm_L : Comm (=@{C}) (∩).
Proof. intros ??. unfold_leibniz. apply (comm _). Qed.
Global Instance intersection_assoc_L : Assoc (=@{C}) (∩).
Proof. intros ???. unfold_leibniz. apply (assoc _). Qed.
Global Instance intersection_empty_l_L: LeftAbsorb (=@{C}) ∅ (∩).
Proof. intros ?. unfold_leibniz. apply (left_absorb _ _). Qed.
Global Instance intersection_empty_r_L: RightAbsorb (=@{C}) ∅ (∩).
Proof. intros ?. unfold_leibniz. apply (right_absorb _ _). Qed.
Lemma intersection_singletons_L x : {[x]} ∩ {[x]} =@{C} {[x]}.
Proof. unfold_leibniz. apply intersection_singletons. Qed.
Lemma union_intersection_l_L X Y Z : X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z).
Proof. unfold_leibniz; apply union_intersection_l. Qed.
Lemma union_intersection_r_L X Y Z : (X ∩ Y) ∪ Z = (X ∪ Z) ∩ (Y ∪ Z).
Proof. unfold_leibniz; apply union_intersection_r. Qed.
Lemma intersection_union_l_L X Y Z : X ∩ (Y ∪ Z) = (X ∩ Y) ∪ (X ∩ Z).
Proof. unfold_leibniz; apply intersection_union_l. Qed.
Lemma intersection_union_r_L X Y Z : (X ∪ Y) ∩ Z = (X ∩ Z) ∪ (Y ∩ Z).
Proof. unfold_leibniz; apply intersection_union_r. Qed.
(** Difference *)
Lemma difference_twice_L X Y : (X ∖ Y) ∖ Y = X ∖ Y.
Proof. unfold_leibniz. apply difference_twice. Qed.
Lemma subseteq_empty_difference_L X Y : X ⊆ Y → X ∖ Y = ∅.
Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
Lemma difference_diag_L X : X ∖ X = ∅.
Proof. unfold_leibniz. apply difference_diag. Qed.
Lemma difference_empty_L X : X ∖ ∅ = X.
Proof. unfold_leibniz. apply difference_empty. Qed.
Lemma difference_union_distr_l_L X Y Z : (X ∪ Y) ∖ Z = X ∖ Z ∪ Y ∖ Z.
Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Lemma difference_union_distr_r_L X Y Z : Z ∖ (X ∪ Y) = (Z ∖ X) ∩ (Z ∖ Y).
Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
Lemma difference_intersection_distr_l_L X Y Z :
(X ∩ Y) ∖ Z = X ∖ Z ∩ Y ∖ Z.
Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
Lemma difference_disjoint_L X Y : X ## Y → X ∖ Y = X.
Proof. unfold_leibniz. apply difference_disjoint. Qed.
Lemma difference_difference_l_L X Y Z : (X ∖ Y) ∖ Z = X ∖ (Y ∪ Z).
Proof. unfold_leibniz. apply difference_difference_l. Qed.
(** Disjointness *)
Lemma disjoint_intersection_L X Y : X ## Y ↔ X ∩ Y = ∅.
Proof. unfold_leibniz. apply disjoint_intersection. Qed.
End leibniz.
Section dec.
Context `{!RelDecision (∈@{C})}.
Lemma not_elem_of_intersection x X Y : x ∉ X ∩ Y ↔ x ∉ X ∨ x ∉ Y.
Proof. rewrite elem_of_intersection. destruct (decide (x ∈ X)); tauto. Qed.
Lemma not_elem_of_difference x X Y : x ∉ X ∖ Y ↔ x ∉ X ∨ x ∈ Y.
Proof. rewrite elem_of_difference. destruct (decide (x ∈ Y)); tauto. Qed.
Lemma union_difference X Y : X ⊆ Y → Y ≡ X ∪ Y ∖ X.
Proof.
intros ? x; split; rewrite !elem_of_union, elem_of_difference; [|intuition].
destruct (decide (x ∈ X)); intuition.
Qed.
Lemma union_difference_singleton x Y : x ∈ Y → Y ≡ {[x]} ∪ Y ∖ {[x]}.
Proof. intros ?. apply union_difference. set_solver. Qed.
Lemma difference_union X Y : X ∖ Y ∪ Y ≡ X ∪ Y.
Proof.
intros x. rewrite !elem_of_union; rewrite elem_of_difference.
split; [ | destruct (decide (x ∈ Y)) ]; intuition.
Qed.
Lemma difference_difference_r X Y Z : X ∖ (Y ∖ Z) ≡ (X ∖ Y) ∪ (X ∩ Z).
Proof. intros x. destruct (decide (x ∈ Z)); set_solver. Qed.
Lemma difference_union_intersection X Y : (X ∖ Y) ∪ (X ∩ Y) ≡ X.
Proof. rewrite union_intersection_l, difference_union. set_solver. Qed.
Lemma subseteq_disjoint_union X Y : X ⊆ Y ↔ ∃ Z, Y ≡ X ∪ Z ∧ X ## Z.
Proof.
split; [|set_solver].
exists (Y ∖ X); split; [auto using union_difference|set_solver].
Qed.
Lemma non_empty_difference X Y : X ⊂ Y → Y ∖ X ≢ ∅.
Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
Lemma empty_difference_subseteq X Y : X ∖ Y ≡ ∅ → X ⊆ Y.
Proof. set_solver. Qed.
Lemma singleton_union_difference X Y x :
{[x]} ∪ (X ∖ Y) ≡ ({[x]} ∪ X) ∖ (Y ∖ {[x]}).
Proof. intro y; destruct (decide (y ∈@{C} {[x]})); set_solver. Qed.
End dec.
Section dec_leibniz.
Context `{!RelDecision (∈@{C}), !LeibnizEquiv C}.
Lemma union_difference_L X Y : X ⊆ Y → Y = X ∪ Y ∖ X.
Proof. unfold_leibniz. apply union_difference. Qed.
Lemma union_difference_singleton_L x Y : x ∈ Y → Y = {[x]} ∪ Y ∖ {[x]}.
Proof. unfold_leibniz. apply union_difference_singleton. Qed.
Lemma difference_union_L X Y : X ∖ Y ∪ Y = X ∪ Y.
Proof. unfold_leibniz. apply difference_union. Qed.
Lemma non_empty_difference_L X Y : X ⊂ Y → Y ∖ X ≠ ∅.
Proof. unfold_leibniz. apply non_empty_difference. Qed.
Lemma empty_difference_subseteq_L X Y : X ∖ Y = ∅ → X ⊆ Y.
Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
Lemma subseteq_disjoint_union_L X Y : X ⊆ Y ↔ ∃ Z, Y = X ∪ Z ∧ X ## Z.
Proof. unfold_leibniz. apply subseteq_disjoint_union. Qed.
Lemma singleton_union_difference_L X Y x :
{[x]} ∪ (X ∖ Y) = ({[x]} ∪ X) ∖ (Y ∖ {[x]}).
Proof. unfold_leibniz. apply singleton_union_difference. Qed.
Lemma difference_difference_r_L X Y Z : X ∖ (Y ∖ Z) = (X ∖ Y) ∪ (X ∩ Z).
Proof. unfold_leibniz. apply difference_difference_r. Qed.
Lemma difference_union_intersection_L X Y : (X ∖ Y) ∪ (X ∩ Y) = X.
Proof. unfold_leibniz. apply difference_union_intersection. Qed.
End dec_leibniz.
End set.
(** * Sets with [∪], [∩], [∖], [∅], [{[_]}], and [⊤] *)
Section top_set.
Context `{TopSet A C}.
Implicit Types x y : A.
Implicit Types X Y : C.
Lemma elem_of_top x : x ∈@{C} ⊤ ↔ True.
Proof. split; [done|intros; apply elem_of_top']. Qed.
Lemma top_subseteq X : X ⊆ ⊤.
Proof. intros x. by rewrite elem_of_top. Qed.
End top_set.
(** * Conversion of option and list *)
Section option_and_list_to_set.
Context `{SemiSet A C}.
Implicit Types l : list A.
Lemma elem_of_option_to_set (x : A) mx: x ∈ option_to_set (C:=C) mx ↔ mx = Some x.
Proof. destruct mx; set_solver. Qed.
Lemma not_elem_of_option_to_set (x : A) mx: x ∉ option_to_set (C:=C) mx ↔ mx ≠ Some x.
Proof. by rewrite elem_of_option_to_set. Qed.
Lemma elem_of_list_to_set (x : A) l : x ∈ list_to_set (C:=C) l ↔ x ∈ l.
Proof.
split.
- induction l; simpl; [by rewrite elem_of_empty|].
rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
- induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
Qed.
Lemma not_elem_of_list_to_set (x : A) l : x ∉ list_to_set (C:=C) l ↔ x ∉ l.
Proof. by rewrite elem_of_list_to_set. Qed.
Global Instance set_unfold_option_to_set (mx : option A) x :
SetUnfoldElemOf x (option_to_set (C:=C) mx) (mx = Some x).
Proof. constructor; apply elem_of_option_to_set. Qed.
Global Instance set_unfold_list_to_set (l : list A) x P :
SetUnfoldElemOf x l P → SetUnfoldElemOf x (list_to_set (C:=C) l) P.
Proof. constructor. by rewrite elem_of_list_to_set, (set_unfold (x ∈ l) P). Qed.
Lemma list_to_set_nil : list_to_set [] =@{C} ∅.
Proof. done. Qed.
Lemma list_to_set_cons x l : list_to_set (x :: l) =@{C} {[ x ]} ∪ list_to_set l.
Proof. done. Qed.
Lemma list_to_set_app l1 l2 : list_to_set (l1 ++ l2) ≡@{C} list_to_set l1 ∪ list_to_set l2.
Proof. set_solver. Qed.
Lemma list_to_set_singleton x : list_to_set [x] ≡@{C} {[ x ]}.
Proof. set_solver. Qed.
Lemma list_to_set_snoc l x : list_to_set (l ++ [x]) ≡@{C} list_to_set l ∪ {[ x ]}.
Proof. set_solver. Qed.
Global Instance list_to_set_perm : Proper ((≡ₚ) ==> (≡)) (list_to_set (C:=C)).
Proof. induction 1; set_solver. Qed.
Section leibniz.
Context `{!LeibnizEquiv C}.
Lemma list_to_set_app_L l1 l2 :
list_to_set (l1 ++ l2) =@{C} list_to_set l1 ∪ list_to_set l2.
Proof. set_solver. Qed.
Global Instance list_to_set_perm_L : Proper ((≡ₚ) ==> (=)) (list_to_set (C:=C)).
Proof. induction 1; set_solver. Qed.
End leibniz.
End option_and_list_to_set.
(** * Finite types to sets. *)
Definition fin_to_set (A : Type) `{Singleton A C, Empty C, Union C, Finite A} : C :=
list_to_set (enum A).
Section fin_to_set.
Context `{SemiSet A C, Finite A}.
Implicit Types a : A.
Lemma elem_of_fin_to_set a : a ∈@{C} fin_to_set A.
Proof. apply elem_of_list_to_set, elem_of_enum. Qed.
Global Instance set_unfold_fin_to_set a :
SetUnfoldElemOf (C:=C) a (fin_to_set A) True.
Proof. constructor. split; auto using elem_of_fin_to_set. Qed.
End fin_to_set.
(** * Guard *)
Global Instance set_mfail `{MonadSet M} : MFail M := λ _ _, ∅.
Global Typeclasses Opaque set_mfail.
Section set_monad_base.
Context `{MonadSet M}.
Lemma elem_of_mfail {A} x : x ∈@{M A} mfail ↔ False.
Proof. unfold mfail, set_mfail. by rewrite elem_of_empty. Qed.
Global Instance set_unfold_elem_of_mfail {A} (x : A) :
SetUnfoldElemOf x (mfail : M A) False.
Proof. constructor. by apply elem_of_mfail. Qed.
(** This lemma includes a bind, to avoid equalities of proofs. We cannot have
[p ∈ guard P ↔ P] unless [P] is proof irrelant. The best (but less usable)
self-contained alternative would be [p ∈ guard P ↔ decide P = left p]. *)
Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
x ∈ (guard P;; X) ↔ P ∧ x ∈ X.
Proof.
case_guard; rewrite elem_of_bind;
[setoid_rewrite elem_of_ret | setoid_rewrite elem_of_mfail];
naive_solver.
Qed.
Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
P → x ∈ X → x ∈ (guard P;; X).
Proof. by rewrite elem_of_guard. Qed.
Lemma guard_empty `{Decision P} {A} (X : M A) : (guard P;; X) ≡ ∅ ↔ ¬P ∨ X ≡ ∅.
Proof.
rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
destruct (decide P); naive_solver.
Qed.
Global Instance set_unfold_guard `{Decision P} {A} (x : A) (X : M A) Q :
SetUnfoldElemOf x X Q → SetUnfoldElemOf x (guard P;; X) (P ∧ Q).
Proof. constructor. by rewrite elem_of_guard, (set_unfold (x ∈ X) Q). Qed.
Lemma bind_empty {A B} (f : A → M B) X :
X ≫= f ≡ ∅ ↔ X ≡ ∅ ∨ ∀ x, x ∈ X → f x ≡ ∅.
Proof. set_solver. Qed.
End set_monad_base.
(** * Quantifiers *)
Definition set_Forall `{ElemOf A C} (P : A → Prop) (X : C) := ∀ x, x ∈ X → P x.
Definition set_Exists `{ElemOf A C} (P : A → Prop) (X : C) := ∃ x, x ∈ X ∧ P x.
Section quantifiers.
Context `{SemiSet A C} (P : A → Prop).
Implicit Types X Y : C.
Global Instance set_unfold_set_Forall X (QX QP : A → Prop) :
(∀ x, SetUnfoldElemOf x X (QX x)) →
(∀ x, SetUnfold (P x) (QP x)) →
SetUnfold (set_Forall P X) (∀ x, QX x → QP x).
Proof.
intros HX HP; constructor. unfold set_Forall. apply forall_proper; intros x.
by rewrite (set_unfold (x ∈ X) _), (set_unfold (P x) _).
Qed.
Global Instance set_unfold_set_Exists X (QX QP : A → Prop) :
(∀ x, SetUnfoldElemOf x X (QX x)) →
(∀ x, SetUnfold (P x) (QP x)) →
SetUnfold (set_Exists P X) (∃ x, QX x ∧ QP x).
Proof.
intros HX HP; constructor. unfold set_Exists. f_equiv; intros x.
by rewrite (set_unfold (x ∈ X) _), (set_unfold (P x) _).
Qed.
Lemma set_Forall_empty : set_Forall P (∅ : C).
Proof. set_solver. Qed.
Lemma set_Forall_singleton x : set_Forall P ({[ x ]} : C) ↔ P x.
Proof. set_solver. Qed.
Lemma set_Forall_union X Y :
set_Forall P X → set_Forall P Y → set_Forall P (X ∪ Y).
Proof. set_solver. Qed.
Lemma set_Forall_union_inv_1 X Y : set_Forall P (X ∪ Y) → set_Forall P X.
Proof. set_solver. Qed.
Lemma set_Forall_union_inv_2 X Y : set_Forall P (X ∪ Y) → set_Forall P Y.
Proof. set_solver. Qed.
Lemma set_Forall_list_to_set l : set_Forall P (list_to_set (C:=C) l) ↔ Forall P l.
Proof. rewrite Forall_forall. set_solver. Qed.
Lemma set_Exists_empty : ¬set_Exists P (∅ : C).
Proof. set_solver. Qed.
Lemma set_Exists_singleton x : set_Exists P ({[ x ]} : C) ↔ P x.
Proof. set_solver. Qed.
Lemma set_Exists_union_1 X Y : set_Exists P X → set_Exists P (X ∪ Y).
Proof. set_solver. Qed.
Lemma set_Exists_union_2 X Y : set_Exists P Y → set_Exists P (X ∪ Y).
Proof. set_solver. Qed.
Lemma set_Exists_union_inv X Y :
set_Exists P (X ∪ Y) → set_Exists P X ∨ set_Exists P Y.
Proof. set_solver. Qed.
Lemma set_Exists_list_to_set l : set_Exists P (list_to_set (C:=C) l) ↔ Exists P l.
Proof. rewrite Exists_exists. set_solver. Qed.
End quantifiers.
Section more_quantifiers.
Context `{SemiSet A C}.
Implicit Types X : C.
Lemma set_Forall_impl (P Q : A → Prop) X :
set_Forall P X → (∀ x, P x → Q x) → set_Forall Q X.
Proof. set_solver. Qed.
Lemma set_Exists_impl (P Q : A → Prop) X :
set_Exists P X → (∀ x, P x → Q x) → set_Exists Q X.
Proof. set_solver. Qed.
End more_quantifiers.
(** * Properties of implementations of sets that form a monad *)
Section set_monad.
Context `{MonadSet M}.
Global Instance set_fmap_mono {A B} :
Proper (pointwise_relation _ (=) ==> (⊆) ==> (⊆)) (@fmap M _ A B).
Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
Global Instance set_bind_mono {A B} :
Proper (pointwise_relation _ (⊆) ==> (⊆) ==> (⊆)) (@mbind M _ A B).
Proof. unfold respectful, pointwise_relation; intros f g Hfg X Y ?. set_solver. Qed.
Global Instance set_join_mono {A} :
Proper ((⊆) ==> (⊆)) (@mjoin M _ A).
Proof. intros X Y ?; set_solver. Qed.
Lemma set_bind_singleton {A B} (f : A → M B) x : {[ x ]} ≫= f ≡ f x.
Proof. set_solver. Qed.
Lemma set_guard_True {A} `{Decision P} (X : M A) : P → (guard P;; X) ≡ X.
Proof. set_solver. Qed.
Lemma set_fmap_compose {A B C} (f : A → B) (g : B → C) (X : M A) :
g ∘ f <$> X ≡ g <$> (f <$> X).
Proof. set_solver. Qed.
Lemma elem_of_fmap_1 {A B} (f : A → B) (X : M A) (y : B) :
y ∈ f <$> X → ∃ x, y = f x ∧ x ∈ X.
Proof. set_solver. Qed.
Lemma elem_of_fmap_2 {A B} (f : A → B) (X : M A) (x : A) :
x ∈ X → f x ∈ f <$> X.
Proof. set_solver. Qed.
Lemma elem_of_fmap_2_alt {A B} (f : A → B) (X : M A) (x : A) (y : B) :
x ∈ X → y = f x → y ∈ f <$> X.
Proof. set_solver. Qed.
Lemma elem_of_mapM {A B} (f : A → M B) l k :
l ∈ mapM f k ↔ Forall2 (λ x y, x ∈ f y) l k.
Proof.
split.
- revert l. induction k; set_solver by eauto.
- induction 1; set_solver.
Qed.
Lemma length_set_mapM {A B} (f : A → M B) l k :
l ∈ mapM f k → length l = length k.
Proof. revert l; induction k; set_solver by eauto. Qed.
Lemma elem_of_mapM_fmap {A B} (f : A → B) (g : B → M A) l k :
Forall (λ x, ∀ y, y ∈ g x → f y = x) l → k ∈ mapM g l → fmap f k = l.
Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
Lemma elem_of_mapM_Forall {A B} (f : A → M B) (P : B → Prop) l k :
l ∈ mapM f k → Forall (λ x, ∀ y, y ∈ f x → P y) k → Forall P l.
Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
Lemma elem_of_mapM_Forall2_l {A B C} (f : A → M B) (P: B → C → Prop) l1 l2 k :
l1 ∈ mapM f k → Forall2 (λ x y, ∀ z, z ∈ f x → P z y) k l2 →
Forall2 P l1 l2.
Proof.
rewrite elem_of_mapM. intros Hl1. revert l2.
induction Hl1; inv 1; constructor; auto.
Qed.
Global Instance monadset_cprod {A B} : CProd (M A) (M B) (M (A * B)) := λ X Y,
x ← X; fmap (x,.) Y.
Lemma elem_of_monadset_cprod {A B} (X : M A) (Y : M B) (x : A * B) :
x ∈ cprod X Y ↔ x.1 ∈ X ∧ x.2 ∈ Y.
Proof. unfold cprod, monadset_cprod. destruct x; set_solver. Qed.
Global Instance set_unfold_monadset_cprod {A B} (X : M A) (Y : M B) P Q x :
SetUnfoldElemOf x.1 X P →
SetUnfoldElemOf x.2 Y Q →
SetUnfoldElemOf x (cprod X Y) (P ∧ Q).
Proof.
constructor.
by rewrite elem_of_monadset_cprod, (set_unfold_elem_of x.1 X P),
(set_unfold_elem_of x.2 Y Q).
Qed.
End set_monad.
(** Finite sets *)
Definition pred_finite {A} (P : A → Prop) := ∃ xs : list A, ∀ x, P x → x ∈ xs.
Definition set_finite `{ElemOf A B} (X : B) := pred_finite (.∈ X).
Definition pred_infinite {A} (P : A → Prop) := ∀ xs : list A, ∃ x, P x ∧ x ∉ xs.
Definition set_infinite `{ElemOf A C} (X : C) := pred_infinite (.∈ X).
Section pred_finite_infinite.
Lemma pred_finite_impl {A} (P Q : A → Prop) :
pred_finite P → (∀ x, Q x → P x) → pred_finite Q.
Proof. unfold pred_finite. set_solver. Qed.
Lemma pred_infinite_impl {A} (P Q : A → Prop) :
pred_infinite P → (∀ x, P x → Q x) → pred_infinite Q.
Proof. unfold pred_infinite. set_solver. Qed.
(** If [f] is surjective onto [P], then pre-composing with [f] preserves
infinity. *)
Lemma pred_infinite_surj {A B} (P : B → Prop) (f : A → B) :
(∀ x, P x → ∃ y, f y = x) →
pred_infinite P → pred_infinite (P ∘ f).
Proof.
intros Hf HP xs. destruct (HP (f <$> xs)) as [x [HPx Hx]].
destruct (Hf _ HPx) as [y Hf']. exists y. split.
- simpl. rewrite Hf'. done.
- intros Hy. apply Hx. apply elem_of_list_fmap. eauto.
Qed.
Lemma pred_not_infinite_finite {A} (P : A → Prop) :
pred_infinite P → pred_finite P → False.
Proof. intros Hinf [xs ?]. destruct (Hinf xs). set_solver. Qed.
Lemma pred_infinite_True `{Infinite A} : pred_infinite (λ _: A, True).
Proof.
intros xs. exists (fresh xs). split; [done|]. apply infinite_is_fresh.
Qed.
Lemma pred_finite_lt n : pred_finite (flip lt n).
Proof.
exists (seq 0 n); intros i Hi. apply (elem_of_list_lookup_2 _ i).
by rewrite lookup_seq.
Qed.
Lemma pred_infinite_lt n : pred_infinite (lt n).
Proof.
intros l. exists (S (n `max` max_list l)). split; [lia| ].
intros H%max_list_elem_of_le; lia.
Qed.
Lemma pred_finite_le n : pred_finite (flip le n).
Proof. eapply pred_finite_impl; [apply (pred_finite_lt (S n))|]; naive_solver lia. Qed.
Lemma pred_infinite_le n : pred_infinite (le n).
Proof. eapply pred_infinite_impl; [apply (pred_infinite_lt (S n))|]; naive_solver lia. Qed.
End pred_finite_infinite.
Section set_finite_infinite.
Context `{SemiSet A C}.
Implicit Types X Y : C.
Lemma set_not_infinite_finite X : set_infinite X → set_finite X → False.
Proof. apply pred_not_infinite_finite. Qed.
Global Instance set_finite_subseteq :
Proper (flip (⊆) ==> impl) (@set_finite A C _).
Proof. intros X Y HX ?. eapply pred_finite_impl; set_solver. Qed.
Global Instance set_finite_proper : Proper ((≡) ==> iff) (@set_finite A C _).
Proof. intros X Y HX; apply exist_proper. by setoid_rewrite HX. Qed.
Lemma empty_finite : set_finite (∅ : C).
Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
Lemma singleton_finite (x : A) : set_finite ({[ x ]} : C).
Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
Lemma union_finite X Y : set_finite X → set_finite Y → set_finite (X ∪ Y).
Proof.
intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
rewrite elem_of_union, elem_of_app; naive_solver.
Qed.
Lemma union_finite_inv_l X Y : set_finite (X ∪ Y) → set_finite X.
Proof. intros [l ?]; exists l; set_solver. Qed.
Lemma union_finite_inv_r X Y : set_finite (X ∪ Y) → set_finite Y.
Proof. intros [l ?]; exists l; set_solver. Qed.
Lemma list_to_set_finite l : set_finite (list_to_set (C:=C) l).
Proof. exists l. intros x. by rewrite elem_of_list_to_set. Qed.
Global Instance set_infinite_subseteq :
Proper ((⊆) ==> impl) (@set_infinite A C _).
Proof. intros X Y HX ?. eapply pred_infinite_impl; set_solver. Qed.
Global Instance set_infinite_proper : Proper ((≡) ==> iff) (@set_infinite A C _).
Proof. intros X Y HX; apply forall_proper. by setoid_rewrite HX. Qed.
Lemma union_infinite_l X Y : set_infinite X → set_infinite (X ∪ Y).
Proof. intros Hinf xs. destruct (Hinf xs). set_solver. Qed.
Lemma union_infinite_r X Y : set_infinite Y → set_infinite (X ∪ Y).
Proof. intros Hinf xs. destruct (Hinf xs). set_solver. Qed.
End set_finite_infinite.
Section more_finite.
Context `{Set_ A C}.
Implicit Types X Y : C.
Lemma intersection_finite_l X Y : set_finite X → set_finite (X ∩ Y).
Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
Lemma intersection_finite_r X Y : set_finite Y → set_finite (X ∩ Y).
Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
Lemma difference_finite X Y : set_finite X → set_finite (X ∖ Y).
Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
Lemma difference_finite_inv X Y `{∀ x, Decision (x ∈ Y)} :
set_finite Y → set_finite (X ∖ Y) → set_finite X.
Proof.
intros [l ?] [k ?]; exists (l ++ k).
intros x ?; destruct (decide (x ∈ Y)); rewrite elem_of_app; set_solver.
Qed.
Lemma difference_infinite X Y :
set_infinite X → set_finite Y → set_infinite (X ∖ Y).
Proof. intros Hinf [xs ?] xs'. destruct (Hinf (xs ++ xs')). set_solver. Qed.
End more_finite.
Lemma top_infinite `{TopSet A C, Infinite A} : set_infinite (⊤ : C).
Proof.
intros xs. exists (fresh xs). split; [set_solver|]. apply infinite_is_fresh.
Qed.
(** This formulation of finiteness is stronger than [pred_finite]: when equality
is decidable, it is equivalent to the predicate being finite AND decidable. *)
Lemma dec_pred_finite_alt {A} (P : A → Prop) `{!∀ x, Decision (P x)} :
pred_finite P ↔ ∃ xs : list A, ∀ x, P x ↔ x ∈ xs.
Proof.
split; intros [xs ?].
- exists (filter P xs). intros x. rewrite elem_of_list_filter. naive_solver.
- exists xs. naive_solver.
Qed.
Lemma finite_sig_pred_finite {A} (P : A → Prop) `{Finite (sig P)} :
pred_finite P.
Proof.
exists (proj1_sig <$> enum _). intros x px.
apply elem_of_list_fmap_1_alt with (x ↾ px); [apply elem_of_enum|]; done.
Qed.
Lemma pred_finite_arg2 {A B} (P : A → B → Prop) x :
pred_finite (uncurry P) → pred_finite (P x).
Proof.
intros [xys ?]. exists (xys.*2). intros y ?.
apply elem_of_list_fmap_1_alt with (x, y); by auto.
Qed.
Lemma pred_finite_arg1 {A B} (P : A → B → Prop) y :
pred_finite (uncurry P) → pred_finite (flip P y).
Proof.
intros [xys ?]. exists (xys.*1). intros x ?.
apply elem_of_list_fmap_1_alt with (x, y); by auto.
Qed.
(** Sets of sequences of natural numbers *)
(* The set [seq_seq start len] of natural numbers contains the sequence
[start, start + 1, ..., start + (len-1)]. *)
Fixpoint set_seq `{Singleton nat C, Union C, Empty C} (start len : nat) : C :=
match len with
| O => ∅
| S len' => {[ start ]} ∪ set_seq (S start) len'
end.
Section set_seq.
Context `{SemiSet nat C}.
Implicit Types start len x : nat.
Lemma elem_of_set_seq start len x :
x ∈ set_seq (C:=C) start len ↔ start ≤ x < start + len.
Proof.
revert start. induction len as [|len IH]; intros start; simpl.
- rewrite elem_of_empty. lia.
- rewrite elem_of_union, elem_of_singleton, IH. lia.
Qed.
Global Instance set_unfold_seq start len x :
SetUnfoldElemOf x (set_seq (C:=C) start len) (start ≤ x < start + len).
Proof. constructor; apply elem_of_set_seq. Qed.
Lemma set_seq_len_pos n start len : n ∈ set_seq (C:=C) start len → 0 < len.
Proof. rewrite elem_of_set_seq. lia. Qed.
Lemma set_seq_subseteq start1 len1 start2 len2 :
0 < len1 →
set_seq (C:=C) start1 len1 ⊆ set_seq (C:=C) start2 len2 ↔
start2 ≤ start1 ∧ start1 + len1 ≤ start2 + len2.
Proof.
intros Hlen. set_unfold. split.
- intros Hx. pose proof (Hx start1). pose proof (Hx (start1 + len1 - 1)). lia.
- intros Heq x. lia.
Qed.
Lemma set_seq_subseteq_len_gt start1 len1 start2 len2 :
set_seq (C:=C) start1 len1 ⊆ set_seq (C:=C) start2 len2 → len1 ≤ len2.
Proof.
destruct len1 as [|len1].
- set_unfold. lia.
- rewrite set_seq_subseteq; lia.
Qed.
Lemma set_seq_add_disjoint start len1 len2 :
set_seq (C:=C) start len1 ## set_seq (start + len1) len2.
Proof. set_solver by lia. Qed.
Lemma set_seq_add start len1 len2 :
set_seq (C:=C) start (len1 + len2)
≡ set_seq start len1 ∪ set_seq (start + len1) len2.
Proof. set_solver by lia. Qed.
Lemma set_seq_add_L `{!LeibnizEquiv C} start len1 len2 :
set_seq (C:=C) start (len1 + len2)
= set_seq start len1 ∪ set_seq (start + len1) len2.
Proof. unfold_leibniz. apply set_seq_add. Qed.
Lemma set_seq_S_start_disjoint start len :
{[ start ]} ## set_seq (C:=C) (S start) len.
Proof. set_solver by lia. Qed.
Lemma set_seq_S_start start len :
set_seq (C:=C) start (S len) ≡ {[ start ]} ∪ set_seq (S start) len.
Proof. set_solver by lia. Qed.
Lemma set_seq_S_end_disjoint start len :
{[ start + len ]} ## set_seq (C:=C) start len.
Proof. set_solver by lia. Qed.
Lemma set_seq_S_end_union start len :
set_seq start (S len) ≡@{C} {[ start + len ]} ∪ set_seq start len.
Proof. set_solver by lia. Qed.
Lemma set_seq_S_end_union_L `{!LeibnizEquiv C} start len :
set_seq start (S len) =@{C} {[ start + len ]} ∪ set_seq start len.
Proof. unfold_leibniz. apply set_seq_S_end_union. Qed.
Lemma list_to_set_seq start len :
list_to_set (seq start len) =@{C} set_seq start len.
Proof. revert start; induction len; intros; f_equal/=; auto. Qed.
Lemma set_seq_finite start len : set_finite (set_seq (C:=C) start len).
Proof.
exists (seq start len); intros x. rewrite <-list_to_set_seq. set_solver.
Qed.
End set_seq.
(** Mimimal elements *)
Definition minimal `{ElemOf A C} (R : relation A) (x : A) (X : C) : Prop :=
∀ y, y ∈ X → R y x → R x y.
Global Instance: Params (@minimal) 5 := {}.
Global Typeclasses Opaque minimal.
Section minimal.
Context `{SemiSet A C} {R : relation A}.
Implicit Types X Y : C.
Global Instance minimal_proper x : Proper ((≡@{C}) ==> iff) (minimal R x).
Proof. intros X X' y; unfold minimal; set_solver. Qed.
Lemma minimal_anti_symm_1 `{!AntiSymm (=) R} X x y :
minimal R x X → y ∈ X → R y x → x = y.
Proof. intros Hmin ??. apply (anti_symm _); auto. Qed.
Lemma minimal_anti_symm `{!AntiSymm (=) R} X x :
minimal R x X ↔ ∀ y, y ∈ X → R y x → x = y.
Proof. unfold minimal; naive_solver eauto using minimal_anti_symm_1. Qed.
Lemma minimal_strict_1 `{!StrictOrder R} X x y :
minimal R x X → y ∈ X → ¬R y x.
Proof. intros Hmin ??. destruct (irreflexivity R x); trans y; auto. Qed.
Lemma minimal_strict `{!StrictOrder R} X x :
minimal R x X ↔ ∀ y, y ∈ X → ¬R y x.
Proof. unfold minimal; split; [eauto using minimal_strict_1|naive_solver]. Qed.
Lemma empty_minimal x : minimal R x (∅ : C).
Proof. unfold minimal; set_solver. Qed.
Lemma singleton_minimal x : minimal R x ({[ x ]} : C).
Proof. unfold minimal; set_solver. Qed.
Lemma singleton_minimal_not_above y x : ¬R y x → minimal R x ({[ y ]} : C).
Proof. unfold minimal; set_solver. Qed.
Lemma union_minimal X Y x :
minimal R x X → minimal R x Y → minimal R x (X ∪ Y).
Proof. unfold minimal; set_solver. Qed.
Lemma minimal_subseteq X Y x : minimal R x X → Y ⊆ X → minimal R x Y.
Proof. unfold minimal; set_solver. Qed.
Lemma minimal_weaken `{!Transitive R} X x x' :
minimal R x X → R x' x → minimal R x' X.
Proof.
intros Hmin ? y ??. trans x; [done|]. by eapply (Hmin y), transitivity.
Qed.
End minimal.
|