1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
(** This files extends the implementation of finite over [positive] to finite
maps whose keys range over Coq's data type of binary naturals [Z]. *)
From stdpp Require Import pmap mapset.
From stdpp Require Export prelude fin_maps.
From stdpp Require Import options.
Local Open Scope Z_scope.
Record Zmap (A : Type) : Type :=
ZMap { Zmap_0 : option A; Zmap_pos : Pmap A; Zmap_neg : Pmap A }.
Add Printing Constructor Zmap.
Global Arguments Zmap_0 {_} _ : assert.
Global Arguments Zmap_pos {_} _ : assert.
Global Arguments Zmap_neg {_} _ : assert.
Global Arguments ZMap {_} _ _ _ : assert.
Global Instance Zmap_eq_dec `{EqDecision A} : EqDecision (Zmap A).
Proof.
refine (λ t1 t2,
match t1, t2 with
| ZMap x t1 t1', ZMap y t2 t2' =>
cast_if_and3 (decide (x = y)) (decide (t1 = t2)) (decide (t1' = t2'))
end); abstract congruence.
Defined.
Global Instance Zmap_empty {A} : Empty (Zmap A) := ZMap None ∅ ∅.
Global Instance Zmap_lookup {A} : Lookup Z A (Zmap A) := λ i t,
match i with
| Z0 => Zmap_0 t | Zpos p => Zmap_pos t !! p | Zneg p => Zmap_neg t !! p
end.
Global Instance Zmap_partial_alter {A} : PartialAlter Z A (Zmap A) := λ f i t,
match i, t with
| Z0, ZMap o t t' => ZMap (f o) t t'
| Z.pos p, ZMap o t t' => ZMap o (partial_alter f p t) t'
| Z.neg p, ZMap o t t' => ZMap o t (partial_alter f p t')
end.
Global Instance Zmap_fmap: FMap Zmap := λ A B f t,
match t with ZMap o t t' => ZMap (f <$> o) (f <$> t) (f <$> t') end.
Global Instance Zmap_omap: OMap Zmap := λ A B f t,
match t with ZMap o t t' => ZMap (o ≫= f) (omap f t) (omap f t') end.
Global Instance Zmap_merge: Merge Zmap := λ A B C f t1 t2,
match t1, t2 with
| ZMap o1 t1 t1', ZMap o2 t2 t2' =>
ZMap (diag_None f o1 o2) (merge f t1 t2) (merge f t1' t2')
end.
Global Instance Zmap_fold {A} : MapFold Z A (Zmap A) := λ B f d t,
match t with
| ZMap mx t t' => map_fold (f ∘ Z.pos) (map_fold (f ∘ Z.neg)
match mx with Some x => f 0 x d | None => d end t') t
end.
Global Instance Zmap_map: FinMap Z Zmap.
Proof.
split.
- intros ? [??] [??] H. f_equal.
+ apply (H 0).
+ apply map_eq. intros i. apply (H (Z.pos i)).
+ apply map_eq. intros i. apply (H (Z.neg i)).
- by intros ? [].
- intros ? f [] [|?|?]; simpl; [done| |]; apply lookup_partial_alter.
- intros ? f [] [|?|?] [|?|?]; simpl; intuition congruence ||
intros; apply lookup_partial_alter_ne; congruence.
- intros ??? [??] []; simpl; [done| |]; apply lookup_fmap.
- intros ?? f [??] [|?|?]; simpl; [done| |]; apply (lookup_omap f).
- intros ??? f [??] [??] [|?|?]; simpl; [done| |]; apply (lookup_merge f).
- done.
- intros A P Hemp Hins [mx t t'].
induction t as [|i x t ? Hfold IH] using map_fold_fmap_ind.
{ induction t' as [|i x t' ? Hfold IH] using map_fold_fmap_ind.
{ destruct mx as [x|]; [|done].
replace (ZMap (Some x) ∅ ∅) with (<[0:=x]> ∅ : Zmap _) by done.
by apply Hins. }
apply (Hins (Z.neg i) x (ZMap mx ∅ t')); [done| |done].
intros A' B f g b. apply Hfold. }
apply (Hins (Z.pos i) x (ZMap mx t t')); [done| |done].
intros A' B f g b. apply Hfold.
Qed.
(** * Finite sets *)
(** We construct sets of [Z]s satisfying extensional equality. *)
Notation Zset := (mapset Zmap).
Global Instance Zmap_dom {A} : Dom (Zmap A) Zset := mapset_dom.
Global Instance: FinMapDom Z Zmap Zset := mapset_dom_spec.
|