1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
|
(** This file is maintained by Michael Sammler. *)
From stdpp Require Export numbers.
From stdpp Require Import countable finite.
From stdpp Require Import options.
(** * bitvector library *)
(** This file provides the [bv n] type for representing [n]-bit
integers with the standard operations. It also provides the
[bv_saturate] tactic for learning facts about the range of bit vector
variables in context. More extensive automation can be found in
[bitvector_auto.v].
Additionally, this file provides the [bvn] type for representing a
bitvector of arbitrary size. *)
(** * Settings *)
Local Open Scope Z_scope.
(** * Preliminary definitions *)
Definition bv_modulus (n : N) : Z := 2 ^ (Z.of_N n).
Definition bv_half_modulus (n : N) : Z := bv_modulus n `div` 2.
Definition bv_wrap (n : N) (z : Z) : Z := z `mod` bv_modulus n.
Definition bv_swrap (n : N) (z : Z) : Z := bv_wrap n (z + bv_half_modulus n) - bv_half_modulus n.
Lemma bv_modulus_pos n :
0 < bv_modulus n.
Proof. apply Z.pow_pos_nonneg; lia. Qed.
Lemma bv_modulus_gt_1 n :
n ≠ 0%N →
1 < bv_modulus n.
Proof. intros ?. apply Z.pow_gt_1; lia. Qed.
Lemma bv_half_modulus_nonneg n :
0 ≤ bv_half_modulus n.
Proof. apply Z.div_pos; [|done]. pose proof bv_modulus_pos n. lia. Qed.
Lemma bv_modulus_add n1 n2 :
bv_modulus (n1 + n2) = bv_modulus n1 * bv_modulus n2.
Proof. unfold bv_modulus. rewrite N2Z.inj_add. eapply Z.pow_add_r; lia. Qed.
Lemma bv_half_modulus_twice n:
n ≠ 0%N →
bv_half_modulus n + bv_half_modulus n = bv_modulus n.
Proof.
intros. unfold bv_half_modulus, bv_modulus.
rewrite Z.add_diag. symmetry. apply Z_div_exact_2; [lia|].
rewrite <-Z.pow_pred_r by lia. rewrite Z.mul_comm. by apply Z.mod_mul.
Qed.
Lemma bv_half_modulus_lt_modulus n:
bv_half_modulus n < bv_modulus n.
Proof.
pose proof bv_modulus_pos n.
apply Z_div_lt; [done| lia].
Qed.
Lemma bv_modulus_le_mono n m:
(n ≤ m)%N →
bv_modulus n ≤ bv_modulus m.
Proof. intros. apply Z.pow_le_mono; [done|lia]. Qed.
Lemma bv_half_modulus_le_mono n m:
(n ≤ m)%N →
bv_half_modulus n ≤ bv_half_modulus m.
Proof. intros. apply Z.div_le_mono; [done|]. by apply bv_modulus_le_mono. Qed.
Lemma bv_modulus_0:
bv_modulus 0 = 1.
Proof. done. Qed.
Lemma bv_half_modulus_0:
bv_half_modulus 0 = 0.
Proof. done. Qed.
Lemma bv_half_modulus_twice_mult n:
bv_half_modulus n + bv_half_modulus n = (Z.of_N n `min` 1) * bv_modulus n.
Proof. destruct (decide (n = 0%N)); subst; [ rewrite bv_half_modulus_0 | rewrite bv_half_modulus_twice]; lia. Qed.
Lemma bv_wrap_in_range n z:
0 ≤ bv_wrap n z < bv_modulus n.
Proof. apply Z.mod_pos_bound. apply bv_modulus_pos. Qed.
Lemma bv_swrap_in_range n z:
n ≠ 0%N →
- bv_half_modulus n ≤ bv_swrap n z < bv_half_modulus n.
Proof.
intros ?. unfold bv_swrap.
pose proof bv_half_modulus_twice n.
pose proof bv_wrap_in_range n (z + bv_half_modulus n).
lia.
Qed.
Lemma bv_wrap_small n z :
0 ≤ z < bv_modulus n → bv_wrap n z = z.
Proof. intros. by apply Z.mod_small. Qed.
Lemma bv_swrap_small n z :
- bv_half_modulus n ≤ z < bv_half_modulus n →
bv_swrap n z = z.
Proof.
intros Hrange. unfold bv_swrap.
destruct (decide (n = 0%N)); subst.
{ rewrite bv_half_modulus_0 in Hrange. lia. }
pose proof bv_half_modulus_twice n.
rewrite bv_wrap_small by lia. lia.
Qed.
Lemma bv_wrap_0 n :
bv_wrap n 0 = 0.
Proof. done. Qed.
Lemma bv_swrap_0 n :
bv_swrap n 0 = 0.
Proof.
pose proof bv_half_modulus_lt_modulus n.
pose proof bv_half_modulus_nonneg n.
unfold bv_swrap. rewrite bv_wrap_small; lia.
Qed.
Lemma bv_wrap_idemp n b : bv_wrap n (bv_wrap n b) = bv_wrap n b.
Proof. unfold bv_wrap. by rewrite Zmod_mod. Qed.
Definition bv_wrap_factor (n : N) (x z : Z) :=
x = - z `div` bv_modulus n.
Lemma bv_wrap_factor_intro n z :
∃ x, bv_wrap_factor n x z ∧ bv_wrap n z = z + x * bv_modulus n.
Proof.
eexists _. split; [done|].
pose proof (bv_modulus_pos n). unfold bv_wrap. rewrite Z.mod_eq; lia.
Qed.
Lemma bv_wrap_add_modulus c n z:
bv_wrap n (z + c * bv_modulus n) = bv_wrap n z.
Proof. apply Z_mod_plus_full. Qed.
Lemma bv_wrap_add_modulus_1 n z:
bv_wrap n (z + bv_modulus n) = bv_wrap n z.
Proof. rewrite <-(bv_wrap_add_modulus 1 n z). f_equal. lia. Qed.
Lemma bv_wrap_sub_modulus c n z:
bv_wrap n (z - c * bv_modulus n) = bv_wrap n z.
Proof. rewrite <-(bv_wrap_add_modulus (-c) n z). f_equal. lia. Qed.
Lemma bv_wrap_sub_modulus_1 n z:
bv_wrap n (z - bv_modulus n) = bv_wrap n z.
Proof. rewrite <-(bv_wrap_add_modulus (-1) n z). done. Qed.
Lemma bv_wrap_add_idemp n x y :
bv_wrap n (bv_wrap n x + bv_wrap n y) = bv_wrap n (x + y).
Proof. symmetry. apply Zplus_mod. Qed.
Lemma bv_wrap_add_idemp_l n x y :
bv_wrap n (bv_wrap n x + y) = bv_wrap n (x + y).
Proof. apply Zplus_mod_idemp_l. Qed.
Lemma bv_wrap_add_idemp_r n x y :
bv_wrap n (x + bv_wrap n y) = bv_wrap n (x + y).
Proof. apply Zplus_mod_idemp_r. Qed.
Lemma bv_wrap_opp_idemp n x :
bv_wrap n (- bv_wrap n x) = bv_wrap n (- x).
Proof.
unfold bv_wrap. pose proof (bv_modulus_pos n).
destruct (decide (x `mod` bv_modulus n = 0)) as [Hx|Hx].
- rewrite !Z.mod_opp_l_z; [done |lia|done|lia|by rewrite Hx].
- rewrite !Z.mod_opp_l_nz, Z.mod_mod;
[done|lia|lia|done|lia|by rewrite Z.mod_mod by lia].
Qed.
Lemma bv_wrap_mul_idemp n x y :
bv_wrap n (bv_wrap n x * bv_wrap n y) = bv_wrap n (x * y).
Proof. etrans; [| apply Zmult_mod_idemp_r]. apply Zmult_mod_idemp_l. Qed.
Lemma bv_wrap_mul_idemp_l n x y :
bv_wrap n (bv_wrap n x * y) = bv_wrap n (x * y).
Proof. apply Zmult_mod_idemp_l. Qed.
Lemma bv_wrap_mul_idemp_r n x y :
bv_wrap n (x * bv_wrap n y) = bv_wrap n (x * y).
Proof. apply Zmult_mod_idemp_r. Qed.
Lemma bv_wrap_sub_idemp n x y :
bv_wrap n (bv_wrap n x - bv_wrap n y) = bv_wrap n (x - y).
Proof.
by rewrite <-!Z.add_opp_r, <-bv_wrap_add_idemp_r,
bv_wrap_opp_idemp, bv_wrap_add_idemp.
Qed.
Lemma bv_wrap_sub_idemp_l n x y :
bv_wrap n (bv_wrap n x - y) = bv_wrap n (x - y).
Proof. by rewrite <-!Z.add_opp_r, bv_wrap_add_idemp_l. Qed.
Lemma bv_wrap_sub_idemp_r n x y :
bv_wrap n (x - bv_wrap n y) = bv_wrap n (x - y).
Proof.
by rewrite <-!Z.add_opp_r, <-bv_wrap_add_idemp_r,
bv_wrap_opp_idemp, bv_wrap_add_idemp_r.
Qed.
Lemma bv_wrap_succ_idemp n x :
bv_wrap n (Z.succ (bv_wrap n x)) = bv_wrap n (Z.succ x).
Proof. by rewrite <-!Z.add_1_r, bv_wrap_add_idemp_l. Qed.
Lemma bv_wrap_pred_idemp n x :
bv_wrap n (Z.pred (bv_wrap n x)) = bv_wrap n (Z.pred x).
Proof. by rewrite <-!Z.sub_1_r, bv_wrap_sub_idemp_l. Qed.
Lemma bv_wrap_add_inj n x1 x2 y :
bv_wrap n x1 = bv_wrap n x2 ↔ bv_wrap n (x1 + y) = bv_wrap n (x2 + y).
Proof.
split; intros Heq.
- by rewrite <-bv_wrap_add_idemp_l, Heq, bv_wrap_add_idemp_l.
- pose proof (bv_wrap_factor_intro n (x1 + y)) as [f1[? Hx1]].
pose proof (bv_wrap_factor_intro n (x2 + y)) as [f2[? Hx2]].
assert (x1 = x2 + f2 * bv_modulus n - f1 * bv_modulus n) as -> by lia.
by rewrite bv_wrap_sub_modulus, bv_wrap_add_modulus.
Qed.
Lemma bv_swrap_wrap n z:
bv_swrap n (bv_wrap n z) = bv_swrap n z.
Proof. unfold bv_swrap, bv_wrap. by rewrite Zplus_mod_idemp_l. Qed.
Lemma bv_wrap_bv_wrap n1 n2 bv :
(n1 ≤ n2)%N →
bv_wrap n1 (bv_wrap n2 bv) = bv_wrap n1 bv.
Proof.
intros ?. unfold bv_wrap.
rewrite <-Znumtheory.Zmod_div_mod; [done| apply bv_modulus_pos.. |].
unfold bv_modulus. eexists (2 ^ (Z.of_N n2 - Z.of_N n1)).
rewrite <-Z.pow_add_r by lia. f_equal. lia.
Qed.
Lemma bv_wrap_land n z :
bv_wrap n z = Z.land z (Z.ones (Z.of_N n)).
Proof. by rewrite Z.land_ones by lia. Qed.
Lemma bv_wrap_spec n z i:
0 ≤ i →
Z.testbit (bv_wrap n z) i = bool_decide (i < Z.of_N n) && Z.testbit z i.
Proof.
intros ?. rewrite bv_wrap_land, Z.land_spec, Z.ones_spec by lia.
case_bool_decide; simpl; by rewrite ?andb_true_r, ?andb_false_r.
Qed.
Lemma bv_wrap_spec_low n z i:
0 ≤ i < Z.of_N n →
Z.testbit (bv_wrap n z) i = Z.testbit z i.
Proof. intros ?. rewrite bv_wrap_spec; [|lia]. case_bool_decide; [done|]. lia. Qed.
Lemma bv_wrap_spec_high n z i:
Z.of_N n ≤ i →
Z.testbit (bv_wrap n z) i = false.
Proof. intros ?. rewrite bv_wrap_spec; [|lia]. case_bool_decide; [|done]. lia. Qed.
(** * [BvWf] *)
(** The [BvWf] typeclass checks that the integer [z] can be
interpreted as a [n]-bit integer. [BvWf] is a typeclass such that it
can be automatically inferred for bitvector constants. *)
Class BvWf (n : N) (z : Z) : Prop :=
bv_wf : (0 <=? z) && (z <? bv_modulus n)
.
Global Hint Mode BvWf + + : typeclass_instances.
Global Instance bv_wf_pi n z : ProofIrrel (BvWf n z).
Proof. unfold BvWf. apply _. Qed.
Global Instance bv_wf_dec n z : Decision (BvWf n z).
Proof. unfold BvWf. apply _. Defined.
Global Typeclasses Opaque BvWf.
Ltac solve_BvWf :=
lazymatch goal with
|- BvWf ?n ?v =>
is_closed_term n;
is_closed_term v;
try (vm_compute; exact I);
fail "Bitvector constant" v "does not fit into" n "bits"
end.
Global Hint Extern 10 (BvWf _ _) => solve_BvWf : typeclass_instances.
Lemma bv_wf_in_range n z:
BvWf n z ↔ 0 ≤ z < bv_modulus n.
Proof. unfold BvWf. by rewrite andb_True, !Is_true_true, Z.leb_le, Z.ltb_lt. Qed.
Lemma bv_wrap_wf n z :
BvWf n (bv_wrap n z).
Proof. apply bv_wf_in_range. apply bv_wrap_in_range. Qed.
Lemma bv_wf_bitwise_op {n} op bop n1 n2 :
(∀ k, Z.testbit (op n1 n2) k = bop (Z.testbit n1 k) (Z.testbit n2 k)) →
(0 ≤ n1 → 0 ≤ n2 → 0 ≤ op n1 n2) →
bop false false = false →
BvWf n n1 →
BvWf n n2 →
BvWf n (op n1 n2).
Proof.
intros Hbits Hnonneg Hop [? Hok1]%bv_wf_in_range [? Hok2]%bv_wf_in_range. apply bv_wf_in_range.
split; [lia|].
apply Z.bounded_iff_bits_nonneg; [lia..|]. intros l ?.
eapply Z.bounded_iff_bits_nonneg in Hok1;[|try done; lia..].
eapply Z.bounded_iff_bits_nonneg in Hok2;[|try done; lia..].
by rewrite Hbits, Hok1, Hok2.
Qed.
(** * Definition of [bv n] *)
Record bv (n : N) := BV {
bv_unsigned : Z;
bv_is_wf : BvWf n bv_unsigned;
}.
Global Arguments bv_unsigned {_}.
Global Arguments bv_is_wf {_}.
Global Arguments BV _ _ {_}.
Add Printing Constructor bv.
Global Arguments bv_unsigned : simpl never.
Definition bv_signed {n} (b : bv n) := bv_swrap n (bv_unsigned b).
Lemma bv_eq n (b1 b2 : bv n) :
b1 = b2 ↔ b1.(bv_unsigned) = b2.(bv_unsigned).
Proof.
destruct b1, b2. unfold bv_unsigned. split; [ naive_solver|].
intros. subst. f_equal. apply proof_irrel.
Qed.
Lemma bv_neq n (b1 b2 : bv n) :
b1 ≠ b2 ↔ b1.(bv_unsigned) ≠ b2.(bv_unsigned).
Proof. unfold not. by rewrite bv_eq. Qed.
Global Instance bv_unsigned_inj n : Inj (=) (=) (@bv_unsigned n).
Proof. intros ???. by apply bv_eq. Qed.
Definition Z_to_bv_checked (n : N) (z : Z) : option (bv n) :=
H ← guard (BvWf n z); Some (@BV n z H).
Program Definition Z_to_bv (n : N) (z : Z) : bv n :=
@BV n (bv_wrap n z) _.
Next Obligation. apply bv_wrap_wf. Qed.
Lemma Z_to_bv_unsigned n z:
bv_unsigned (Z_to_bv n z) = bv_wrap n z.
Proof. done. Qed.
Lemma Z_to_bv_signed n z:
bv_signed (Z_to_bv n z) = bv_swrap n z.
Proof. apply bv_swrap_wrap. Qed.
Lemma Z_to_bv_small n z:
0 ≤ z < bv_modulus n →
bv_unsigned (Z_to_bv n z) = z.
Proof. rewrite Z_to_bv_unsigned. apply bv_wrap_small. Qed.
Lemma bv_unsigned_BV n z Hwf:
bv_unsigned (@BV n z Hwf) = z.
Proof. done. Qed.
Lemma bv_signed_BV n z Hwf:
bv_signed (@BV n z Hwf) = bv_swrap n z.
Proof. done. Qed.
Lemma bv_unsigned_in_range n (b : bv n):
0 ≤ bv_unsigned b < bv_modulus n.
Proof. apply bv_wf_in_range. apply bv_is_wf. Qed.
Lemma bv_wrap_bv_unsigned n (b : bv n):
bv_wrap n (bv_unsigned b) = bv_unsigned b.
Proof. rewrite bv_wrap_small; [done|apply bv_unsigned_in_range]. Qed.
Lemma Z_to_bv_bv_unsigned n (b : bv n):
Z_to_bv n (bv_unsigned b) = b.
Proof. apply bv_eq. by rewrite Z_to_bv_unsigned, bv_wrap_bv_unsigned. Qed.
Lemma bv_eq_wrap n (b1 b2 : bv n) :
b1 = b2 ↔ bv_wrap n b1.(bv_unsigned) = bv_wrap n b2.(bv_unsigned).
Proof.
rewrite !bv_wrap_small; [apply bv_eq | apply bv_unsigned_in_range..].
Qed.
Lemma bv_neq_wrap n (b1 b2 : bv n) :
b1 ≠ b2 ↔ bv_wrap n b1.(bv_unsigned) ≠ bv_wrap n b2.(bv_unsigned).
Proof. unfold not. by rewrite bv_eq_wrap. Qed.
Lemma bv_eq_signed n (b1 b2 : bv n) :
b1 = b2 ↔ bv_signed b1 = bv_signed b2.
Proof.
split; [naive_solver |].
unfold bv_signed, bv_swrap. intros ?.
assert (bv_wrap n (bv_unsigned b1 + bv_half_modulus n)
= bv_wrap n (bv_unsigned b2 + bv_half_modulus n)) as ?%bv_wrap_add_inj by lia.
by apply bv_eq_wrap.
Qed.
Lemma bv_signed_in_range n (b : bv n):
n ≠ 0%N →
- bv_half_modulus n ≤ bv_signed b < bv_half_modulus n.
Proof. apply bv_swrap_in_range. Qed.
Lemma bv_unsigned_spec_high i n (b : bv n) :
Z.of_N n ≤ i →
Z.testbit (bv_unsigned b) i = false.
Proof.
intros ?. pose proof (bv_unsigned_in_range _ b). unfold bv_modulus in *.
eapply Z.bounded_iff_bits_nonneg; [..|done]; lia.
Qed.
Lemma bv_unsigned_N_0 (b : bv 0):
bv_unsigned b = 0.
Proof.
pose proof bv_unsigned_in_range 0 b as H.
rewrite bv_modulus_0 in H. lia.
Qed.
Lemma bv_signed_N_0 (b : bv 0):
bv_signed b = 0.
Proof. unfold bv_signed. by rewrite bv_unsigned_N_0, bv_swrap_0. Qed.
Lemma bv_swrap_bv_signed n (b : bv n):
bv_swrap n (bv_signed b) = bv_signed b.
Proof.
destruct (decide (n = 0%N)); subst.
{ by rewrite bv_signed_N_0, bv_swrap_0. }
apply bv_swrap_small. by apply bv_signed_in_range.
Qed.
Lemma Z_to_bv_checked_bv_unsigned n (b : bv n):
Z_to_bv_checked n (bv_unsigned b) = Some b.
Proof.
unfold Z_to_bv_checked. case_guard; simplify_option_eq.
- f_equal. by apply bv_eq.
- by pose proof bv_is_wf b.
Qed.
Lemma Z_to_bv_checked_Some n a (b : bv n):
Z_to_bv_checked n a = Some b ↔ a = bv_unsigned b.
Proof.
split.
- unfold Z_to_bv_checked. case_guard; [|done]. intros ?. by simplify_option_eq.
- intros ->. apply Z_to_bv_checked_bv_unsigned.
Qed.
(** * Typeclass instances for [bv n] *)
Global Program Instance bv_eq_dec n : EqDecision (bv n) := λ '(@BV _ v1 p1) '(@BV _ v2 p2),
match decide (v1 = v2) with
| left eqv => left _
| right eqv => right _
end.
Next Obligation.
(* TODO: Can we get a better proof term here? *)
intros n b1 v1 p1 ? b2 v2 p2 ????. subst.
rewrite (proof_irrel p1 p2). exact eq_refl.
Defined.
Next Obligation. intros. by injection. Qed.
Global Instance bv_countable n : Countable (bv n) :=
inj_countable bv_unsigned (Z_to_bv_checked n) (Z_to_bv_checked_bv_unsigned n).
Global Program Instance bv_finite n : Finite (bv n) :=
{| enum := Z_to_bv n <$> (seqZ 0 (bv_modulus n)) |}.
Next Obligation.
intros n. apply NoDup_alt. intros i j x.
rewrite !list_lookup_fmap.
intros [? [[??]%lookup_seqZ ?]]%fmap_Some.
intros [? [[??]%lookup_seqZ Hz]]%fmap_Some. subst.
apply bv_eq in Hz. rewrite !Z_to_bv_small in Hz; lia.
Qed.
Next Obligation.
intros n x. apply elem_of_list_lookup. eexists (Z.to_nat (bv_unsigned x)).
rewrite list_lookup_fmap. apply fmap_Some. eexists _.
pose proof (bv_unsigned_in_range _ x). split.
- apply lookup_seqZ. split; [done|]. rewrite Z2Nat.id; lia.
- apply bv_eq. rewrite Z_to_bv_small; rewrite Z2Nat.id; lia.
Qed.
Lemma bv_1_ind (P : bv 1 → Prop) :
P (@BV 1 1 I) → P (@BV 1 0 I) → ∀ b : bv 1, P b.
Proof.
intros ??. apply Forall_finite. repeat constructor.
- by assert ((@BV 1 0 I) = (Z_to_bv 1 (Z.of_nat 0 + 0))) as <- by by apply bv_eq.
- by assert ((@BV 1 1 I) = (Z_to_bv 1 (Z.of_nat 1 + 0))) as <- by by apply bv_eq.
Qed.
(** * [bv_saturate]: Add range facts about bit vectors to the context *)
Lemma bv_unsigned_in_range_alt n (b : bv n):
-1 < bv_unsigned b < bv_modulus n.
Proof. pose proof (bv_unsigned_in_range _ b). lia. Qed.
Ltac bv_saturate :=
repeat match goal with b : bv _ |- _ => first [
clear b | (* Clear if unused *)
(* We use [bv_unsigned_in_range_alt] instead of
[bv_unsigned_in_range] since hypothesis of the form [0 ≤ ... < ...]
can cause significant slowdowns in
[Z.euclidean_division_equations_cleanup] due to
https://github.com/coq/coq/pull/17984 . *)
learn_hyp (bv_unsigned_in_range_alt _ b) |
learn_hyp (bv_signed_in_range _ b)
] end.
Ltac bv_saturate_unsigned :=
repeat match goal with b : bv _ |- _ => first [
clear b | (* Clear if unused *)
(* See comment in [bv_saturate]. *)
learn_hyp (bv_unsigned_in_range_alt _ b)
] end.
(** * Operations on [bv n] *)
Program Definition bv_0 (n : N) :=
@BV n 0 _.
Next Obligation.
intros n. apply bv_wf_in_range. split; [done| apply bv_modulus_pos].
Qed.
Global Instance bv_inhabited n : Inhabited (bv n) := populate (bv_0 n).
Definition bv_succ {n} (x : bv n) : bv n :=
Z_to_bv n (Z.succ (bv_unsigned x)).
Definition bv_pred {n} (x : bv n) : bv n :=
Z_to_bv n (Z.pred (bv_unsigned x)).
Definition bv_add {n} (x y : bv n) : bv n := (* SMT: bvadd *)
Z_to_bv n (Z.add (bv_unsigned x) (bv_unsigned y)).
Definition bv_sub {n} (x y : bv n) : bv n := (* SMT: bvsub *)
Z_to_bv n (Z.sub (bv_unsigned x) (bv_unsigned y)).
Definition bv_opp {n} (x : bv n) : bv n := (* SMT: bvneg *)
Z_to_bv n (Z.opp (bv_unsigned x)).
Definition bv_mul {n} (x y : bv n) : bv n := (* SMT: bvmul *)
Z_to_bv n (Z.mul (bv_unsigned x) (bv_unsigned y)).
Program Definition bv_divu {n} (x y : bv n) : bv n := (* SMT: bvudiv *)
@BV n (Z.div (bv_unsigned x) (bv_unsigned y)) _.
Next Obligation.
intros n x y. apply bv_wf_in_range. bv_saturate.
destruct (decide (bv_unsigned y = 0)) as [->|?].
{ rewrite Zdiv_0_r. lia. }
split; [ apply Z.div_pos; lia |].
apply (Z.le_lt_trans _ (bv_unsigned x)); [|lia].
apply Z.div_le_upper_bound; [ lia|]. nia.
Qed.
Program Definition bv_modu {n} (x y : bv n) : bv n := (* SMT: bvurem *)
@BV n (Z.modulo (bv_unsigned x) (bv_unsigned y)) _.
Next Obligation.
intros n x y. apply bv_wf_in_range. bv_saturate.
destruct (decide (bv_unsigned y = 0)) as [->|?].
{ rewrite Zmod_0_r. lia. }
split; [ apply Z.mod_pos; lia |].
apply (Z.le_lt_trans _ (bv_unsigned x)); [|lia].
apply Z.mod_le; lia.
Qed.
Definition bv_divs {n} (x y : bv n) : bv n :=
Z_to_bv n (Z.div (bv_signed x) (bv_signed y)).
Definition bv_quots {n} (x y : bv n) : bv n := (* SMT: bvsdiv *)
Z_to_bv n (Z.quot (bv_signed x) (bv_signed y)).
Definition bv_mods {n} (x y : bv n) : bv n := (* SMT: bvsmod *)
Z_to_bv n (Z.modulo (bv_signed x) (bv_signed y)).
Definition bv_rems {n} (x y : bv n) : bv n := (* SMT: bvsrem *)
Z_to_bv n (Z.rem (bv_signed x) (bv_signed y)).
Definition bv_shiftl {n} (x y : bv n) : bv n := (* SMT: bvshl *)
Z_to_bv n (Z.shiftl (bv_unsigned x) (bv_unsigned y)).
Program Definition bv_shiftr {n} (x y : bv n) : bv n := (* SMT: bvlshr *)
@BV n (Z.shiftr (bv_unsigned x) (bv_unsigned y)) _.
Next Obligation.
intros n x y. apply bv_wf_in_range. bv_saturate.
split; [ apply Z.shiftr_nonneg; lia|].
rewrite Z.shiftr_div_pow2; [|lia].
apply (Z.le_lt_trans _ (bv_unsigned x)); [|lia].
pose proof (Z.pow_pos_nonneg 2 (bv_unsigned y)).
apply Z.div_le_upper_bound; [ lia|]. nia.
Qed.
Definition bv_ashiftr {n} (x y : bv n) : bv n := (* SMT: bvashr *)
Z_to_bv n (Z.shiftr (bv_signed x) (bv_unsigned y)).
Program Definition bv_or {n} (x y : bv n) : bv n := (* SMT: bvor *)
@BV n (Z.lor (bv_unsigned x) (bv_unsigned y)) _.
Next Obligation.
intros. eapply bv_wf_bitwise_op; [ apply Z.lor_spec |
by intros; eapply Z.lor_nonneg | done | apply bv_is_wf..].
Qed.
Program Definition bv_and {n} (x y : bv n) : bv n := (* SMT: bvand *)
@BV n (Z.land (bv_unsigned x) (bv_unsigned y)) _.
Next Obligation.
intros. eapply bv_wf_bitwise_op; [ apply Z.land_spec |
intros; eapply Z.land_nonneg; by left | done | apply bv_is_wf..].
Qed.
Program Definition bv_xor {n} (x y : bv n) : bv n := (* SMT: bvxor *)
@BV n (Z.lxor (bv_unsigned x) (bv_unsigned y)) _.
Next Obligation.
intros. eapply bv_wf_bitwise_op; [ apply Z.lxor_spec |
intros; eapply Z.lxor_nonneg; naive_solver | done | apply bv_is_wf..].
Qed.
Program Definition bv_not {n} (x : bv n) : bv n := (* SMT: bvnot *)
Z_to_bv n (Z.lnot (bv_unsigned x)).
(* [bv_zero_extends z b] extends [b] to [z] bits with 0. If [z] is
smaller than [n], [b] is truncated. Note that [z] gives the resulting
size instead of the number of bits to add (as SMTLIB does) to avoid a
type-level [_ + _] *)
Program Definition bv_zero_extend {n} (z : N) (b : bv n) : bv z := (* SMT: zero_extend *)
Z_to_bv z (bv_unsigned b).
Program Definition bv_sign_extend {n} (z : N) (b : bv n) : bv z := (* SMT: sign_extend *)
Z_to_bv z (bv_signed b).
(* s is start index and l is length. Note that this is different from
extract in SMTLIB which uses [extract (inclusive upper bound)
(inclusive lower bound)]. The version here is phrased in a way that
makes it impossible to use an upper bound that is lower than the lower
bound. *)
Definition bv_extract {n} (s l : N) (b : bv n) : bv l :=
Z_to_bv l (bv_unsigned b ≫ Z.of_N s).
(* Note that we should always have n1 + n2 = n, but we use a parameter to avoid a type-level (_ + _) *)
Program Definition bv_concat n {n1 n2} (b1 : bv n1) (b2 : bv n2) : bv n := (* SMT: concat *)
Z_to_bv n (Z.lor (bv_unsigned b1 ≪ Z.of_N n2) (bv_unsigned b2)).
Definition bv_to_little_endian m n (z : Z) : list (bv n) :=
(λ b, Z_to_bv n b) <$> Z_to_little_endian m (Z.of_N n) z.
Definition little_endian_to_bv n (bs : list (bv n)) : Z :=
little_endian_to_Z (Z.of_N n) (bv_unsigned <$> bs).
(** * Operations on [bv n] and Z *)
Definition bv_add_Z {n} (x : bv n) (y : Z) : bv n :=
Z_to_bv n (Z.add (bv_unsigned x) y).
Definition bv_sub_Z {n} (x : bv n) (y : Z) : bv n :=
Z_to_bv n (Z.sub (bv_unsigned x) y).
Definition bv_mul_Z {n} (x : bv n) (y : Z) : bv n :=
Z_to_bv n (Z.mul (bv_unsigned x) y).
Definition bv_seq {n} (x : bv n) (len : Z) : list (bv n) :=
(bv_add_Z x) <$> seqZ 0 len.
(** * Operations on [bv n] and bool *)
Definition bool_to_bv (n : N) (b : bool) : bv n :=
Z_to_bv n (bool_to_Z b).
Definition bv_to_bits {n} (b : bv n) : list bool :=
(λ i, Z.testbit (bv_unsigned b) i) <$> seqZ 0 (Z.of_N n).
(** * Notation for [bv] operations *)
Declare Scope bv_scope.
Delimit Scope bv_scope with bv.
Bind Scope bv_scope with bv.
Infix "+" := bv_add : bv_scope.
Infix "-" := bv_sub : bv_scope.
Notation "- x" := (bv_opp x) : bv_scope.
Infix "*" := bv_mul : bv_scope.
Infix "`divu`" := bv_divu (at level 35) : bv_scope.
Infix "`modu`" := bv_modu (at level 35) : bv_scope.
Infix "`divs`" := bv_divs (at level 35) : bv_scope.
Infix "`quots`" := bv_quots (at level 35) : bv_scope.
Infix "`mods`" := bv_mods (at level 35) : bv_scope.
Infix "`rems`" := bv_rems (at level 35) : bv_scope.
Infix "≪" := bv_shiftl : bv_scope.
Infix "≫" := bv_shiftr : bv_scope.
Infix "`ashiftr`" := bv_ashiftr (at level 35) : bv_scope.
Infix "`+Z`" := bv_add_Z (at level 50) : bv_scope.
Infix "`-Z`" := bv_sub_Z (at level 50) : bv_scope.
Infix "`*Z`" := bv_mul_Z (at level 40) : bv_scope.
(** This adds number notations into [bv_scope].
If the number literal is positive or 0, it gets expanded to [BV _ {num} _].
If the number literal is negative, it gets expanded as [Z_to_bv _ {num}].
In the negative case, the notation is parsing only and the [Z_to_bv] call will be
printed explicitly. *)
Inductive bv_number_notation := BVNumNonNeg (z : Z) | BVNumNeg (z : Z).
Definition bv_number_notation_to_Z (n : bv_number_notation) : option Z :=
match n with
| BVNumNonNeg z => Some z
(** Don't use the notation for negative numbers for printing. *)
| BVNumNeg z => None
end.
Definition Z_to_bv_number_notation (z : Z) :=
match z with
| Zneg _ => BVNumNeg z
| _ => BVNumNonNeg z
end.
(** We need to temporarily change the implicit arguments of BV and
Z_to_bv such that we can pass them to [Number Notation]. *)
Local Arguments Z_to_bv {_} _.
Local Arguments BV {_} _ {_}.
Number Notation bv Z_to_bv_number_notation bv_number_notation_to_Z
(via bv_number_notation mapping [[BV] => BVNumNonNeg, [Z_to_bv] => BVNumNeg]) : bv_scope.
Local Arguments BV _ _ {_}.
Local Arguments Z_to_bv : clear implicits.
(** * [bv_wrap_simplify]: typeclass-based automation for simplifying [bv_wrap] *)
(** The [bv_wrap_simplify] tactic removes [bv_wrap] where possible by
using the fact that [bv_wrap n (bv_warp n z) = bv_wrap n z]. The main
use case for this tactic is for proving the lemmas about the
operations of [bv n] below. Users should use the more extensive
automation provided by [bitvector_auto.v]. *)
Create HintDb bv_wrap_simplify_db discriminated.
Global Hint Constants Opaque : bv_wrap_simplify_db.
Global Hint Variables Opaque : bv_wrap_simplify_db.
Class BvWrapSimplify (n : N) (z z' : Z) := {
bv_wrap_simplify_proof : bv_wrap n z = bv_wrap n z';
}.
Global Arguments bv_wrap_simplify_proof _ _ _ {_}.
Global Hint Mode BvWrapSimplify + + - : bv_wrap_simplify_db.
(** Default instance to end search. *)
Lemma bv_wrap_simplify_id n z :
BvWrapSimplify n z z.
Proof. by constructor. Qed.
Global Hint Resolve bv_wrap_simplify_id | 1000 : bv_wrap_simplify_db.
(** [bv_wrap_simplify_bv_wrap] performs the actual simplification. *)
Lemma bv_wrap_simplify_bv_wrap n z z' :
BvWrapSimplify n z z' →
BvWrapSimplify n (bv_wrap n z) z'.
Proof. intros [->]. constructor. by rewrite bv_wrap_bv_wrap. Qed.
Global Hint Resolve bv_wrap_simplify_bv_wrap | 10 : bv_wrap_simplify_db.
(** The rest of the instances propagate [BvWrapSimplify]. *)
Lemma bv_wrap_simplify_succ n z z' :
BvWrapSimplify n z z' →
BvWrapSimplify n (Z.succ z) (Z.succ z').
Proof.
intros [Hz]. constructor. by rewrite <-bv_wrap_succ_idemp, Hz, bv_wrap_succ_idemp.
Qed.
Global Hint Resolve bv_wrap_simplify_succ | 10 : bv_wrap_simplify_db.
Lemma bv_wrap_simplify_pred n z z' :
BvWrapSimplify n z z' →
BvWrapSimplify n (Z.pred z) (Z.pred z').
Proof.
intros [Hz]. constructor. by rewrite <-bv_wrap_pred_idemp, Hz, bv_wrap_pred_idemp.
Qed.
Global Hint Resolve bv_wrap_simplify_pred | 10 : bv_wrap_simplify_db.
Lemma bv_wrap_simplify_opp n z z' :
BvWrapSimplify n z z' →
BvWrapSimplify n (- z) (- z').
Proof.
intros [Hz]. constructor. by rewrite <-bv_wrap_opp_idemp, Hz, bv_wrap_opp_idemp.
Qed.
Global Hint Resolve bv_wrap_simplify_opp | 10 : bv_wrap_simplify_db.
Lemma bv_wrap_simplify_add n z1 z1' z2 z2' :
BvWrapSimplify n z1 z1' →
BvWrapSimplify n z2 z2' →
BvWrapSimplify n (z1 + z2) (z1' + z2').
Proof.
intros [Hz1] [Hz2]. constructor.
by rewrite <-bv_wrap_add_idemp, Hz1, Hz2, bv_wrap_add_idemp.
Qed.
Global Hint Resolve bv_wrap_simplify_add | 10 : bv_wrap_simplify_db.
Lemma bv_wrap_simplify_sub n z1 z1' z2 z2' :
BvWrapSimplify n z1 z1' →
BvWrapSimplify n z2 z2' →
BvWrapSimplify n (z1 - z2) (z1' - z2').
Proof.
intros [Hz1] [Hz2]. constructor.
by rewrite <-bv_wrap_sub_idemp, Hz1, Hz2, bv_wrap_sub_idemp.
Qed.
Global Hint Resolve bv_wrap_simplify_sub | 10 : bv_wrap_simplify_db.
Lemma bv_wrap_simplify_mul n z1 z1' z2 z2' :
BvWrapSimplify n z1 z1' →
BvWrapSimplify n z2 z2' →
BvWrapSimplify n (z1 * z2) (z1' * z2').
Proof.
intros [Hz1] [Hz2]. constructor.
by rewrite <-bv_wrap_mul_idemp, Hz1, Hz2, bv_wrap_mul_idemp.
Qed.
Global Hint Resolve bv_wrap_simplify_mul | 10 : bv_wrap_simplify_db.
(** [bv_wrap_simplify_left] applies for goals of the form [bv_wrap n z1 = _] and
tries to simplify them by removing any [bv_wrap] inside z1. *)
Ltac bv_wrap_simplify_left :=
lazymatch goal with |- bv_wrap _ _ = _ => idtac end;
etrans; [ notypeclasses refine (bv_wrap_simplify_proof _ _ _);
typeclasses eauto with bv_wrap_simplify_db | ]
.
(** [bv_wrap_simplify] applies for goals of the form [bv_wrap n z1 = bv_wrap n z2] and
[bv_swrap n z1 = bv_swrap n z2] and tries to simplify them by removing any [bv_wrap]
and [bv_swrap] inside z1 and z2. *)
Ltac bv_wrap_simplify :=
unfold bv_signed, bv_swrap;
try match goal with | |- _ - _ = _ - _ => f_equal end;
bv_wrap_simplify_left;
symmetry;
bv_wrap_simplify_left;
symmetry.
Ltac bv_wrap_simplify_solve :=
bv_wrap_simplify; f_equal; lia.
(** * Lemmas about [bv n] operations *)
(** ** Unfolding lemmas for the operations. *)
Section unfolding.
Context {n : N}.
Implicit Types (b : bv n).
Lemma bv_0_unsigned :
bv_unsigned (bv_0 n) = 0.
Proof. done. Qed.
Lemma bv_0_signed :
bv_signed (bv_0 n) = 0.
Proof. unfold bv_0. by rewrite bv_signed_BV, bv_swrap_0. Qed.
Lemma bv_succ_unsigned b :
bv_unsigned (bv_succ b) = bv_wrap n (Z.succ (bv_unsigned b)).
Proof. done. Qed.
Lemma bv_succ_signed b :
bv_signed (bv_succ b) = bv_swrap n (Z.succ (bv_signed b)).
Proof. unfold bv_succ. rewrite Z_to_bv_signed. bv_wrap_simplify_solve. Qed.
Lemma bv_pred_unsigned b :
bv_unsigned (bv_pred b) = bv_wrap n (Z.pred (bv_unsigned b)).
Proof. done. Qed.
Lemma bv_pred_signed b :
bv_signed (bv_pred b) = bv_swrap n (Z.pred (bv_signed b)).
Proof. unfold bv_pred. rewrite Z_to_bv_signed. bv_wrap_simplify_solve. Qed.
Lemma bv_add_unsigned b1 b2 :
bv_unsigned (b1 + b2) = bv_wrap n (bv_unsigned b1 + bv_unsigned b2).
Proof. done. Qed.
Lemma bv_add_signed b1 b2 :
bv_signed (b1 + b2) = bv_swrap n (bv_signed b1 + bv_signed b2).
Proof. unfold bv_add. rewrite Z_to_bv_signed. bv_wrap_simplify_solve. Qed.
Lemma bv_sub_unsigned b1 b2 :
bv_unsigned (b1 - b2) = bv_wrap n (bv_unsigned b1 - bv_unsigned b2).
Proof. done. Qed.
Lemma bv_sub_signed b1 b2 :
bv_signed (b1 - b2) = bv_swrap n (bv_signed b1 - bv_signed b2).
Proof. unfold bv_sub. rewrite Z_to_bv_signed. bv_wrap_simplify_solve. Qed.
Lemma bv_opp_unsigned b :
bv_unsigned (- b) = bv_wrap n (- bv_unsigned b).
Proof. done. Qed.
Lemma bv_opp_signed b :
bv_signed (- b) = bv_swrap n (- bv_signed b).
Proof. unfold bv_opp. rewrite Z_to_bv_signed. bv_wrap_simplify_solve. Qed.
Lemma bv_mul_unsigned b1 b2 :
bv_unsigned (b1 * b2) = bv_wrap n (bv_unsigned b1 * bv_unsigned b2).
Proof. done. Qed.
Lemma bv_mul_signed b1 b2 :
bv_signed (b1 * b2) = bv_swrap n (bv_signed b1 * bv_signed b2).
Proof. unfold bv_mul. rewrite Z_to_bv_signed. bv_wrap_simplify_solve. Qed.
Lemma bv_divu_unsigned b1 b2 :
bv_unsigned (b1 `divu` b2) = bv_unsigned b1 `div` bv_unsigned b2.
Proof. done. Qed.
Lemma bv_divu_signed b1 b2 :
bv_signed (b1 `divu` b2) = bv_swrap n (bv_unsigned b1 `div` bv_unsigned b2).
Proof. done. Qed.
Lemma bv_modu_unsigned b1 b2 :
bv_unsigned (b1 `modu` b2) = bv_unsigned b1 `mod` bv_unsigned b2.
Proof. done. Qed.
Lemma bv_modu_signed b1 b2 :
bv_signed (b1 `modu` b2) = bv_swrap n (bv_unsigned b1 `mod` bv_unsigned b2).
Proof. done. Qed.
Lemma bv_divs_unsigned b1 b2 :
bv_unsigned (b1 `divs` b2) = bv_wrap n (bv_signed b1 `div` bv_signed b2).
Proof. done. Qed.
Lemma bv_divs_signed b1 b2 :
bv_signed (b1 `divs` b2) = bv_swrap n (bv_signed b1 `div` bv_signed b2).
Proof. unfold bv_divs. rewrite Z_to_bv_signed. done. Qed.
Lemma bv_quots_unsigned b1 b2 :
bv_unsigned (b1 `quots` b2) = bv_wrap n (bv_signed b1 `quot` bv_signed b2).
Proof. done. Qed.
Lemma bv_quots_signed b1 b2 :
bv_signed (b1 `quots` b2) = bv_swrap n (bv_signed b1 `quot` bv_signed b2).
Proof. unfold bv_quots. rewrite Z_to_bv_signed. done. Qed.
Lemma bv_mods_unsigned b1 b2 :
bv_unsigned (b1 `mods` b2) = bv_wrap n (bv_signed b1 `mod` bv_signed b2).
Proof. done. Qed.
Lemma bv_mods_signed b1 b2 :
bv_signed (b1 `mods` b2) = bv_swrap n (bv_signed b1 `mod` bv_signed b2).
Proof. unfold bv_mods. rewrite Z_to_bv_signed. done. Qed.
Lemma bv_rems_unsigned b1 b2 :
bv_unsigned (b1 `rems` b2) = bv_wrap n (bv_signed b1 `rem` bv_signed b2).
Proof. done. Qed.
Lemma bv_rems_signed b1 b2 :
bv_signed (b1 `rems` b2) = bv_swrap n (bv_signed b1 `rem` bv_signed b2).
Proof. unfold bv_rems. rewrite Z_to_bv_signed. done. Qed.
Lemma bv_shiftl_unsigned b1 b2 :
bv_unsigned (b1 ≪ b2) = bv_wrap n (bv_unsigned b1 ≪ bv_unsigned b2).
Proof. done. Qed.
Lemma bv_shiftl_signed b1 b2 :
bv_signed (b1 ≪ b2) = bv_swrap n (bv_unsigned b1 ≪ bv_unsigned b2).
Proof. unfold bv_shiftl. rewrite Z_to_bv_signed. done. Qed.
Lemma bv_shiftr_unsigned b1 b2 :
bv_unsigned (b1 ≫ b2) = bv_unsigned b1 ≫ bv_unsigned b2.
Proof. done. Qed.
Lemma bv_shiftr_signed b1 b2 :
bv_signed (b1 ≫ b2) = bv_swrap n (bv_unsigned b1 ≫ bv_unsigned b2).
Proof. done. Qed.
Lemma bv_ashiftr_unsigned b1 b2 :
bv_unsigned (b1 `ashiftr` b2) = bv_wrap n (bv_signed b1 ≫ bv_unsigned b2).
Proof. done. Qed.
Lemma bv_ashiftr_signed b1 b2 :
bv_signed (b1 `ashiftr` b2) = bv_swrap n (bv_signed b1 ≫ bv_unsigned b2).
Proof. unfold bv_ashiftr. rewrite Z_to_bv_signed. done. Qed.
Lemma bv_or_unsigned b1 b2 :
bv_unsigned (bv_or b1 b2) = Z.lor (bv_unsigned b1) (bv_unsigned b2).
Proof. done. Qed.
Lemma bv_or_signed b1 b2 :
bv_signed (bv_or b1 b2) = bv_swrap n (Z.lor (bv_unsigned b1) (bv_unsigned b2)).
Proof. done. Qed.
Lemma bv_and_unsigned b1 b2 :
bv_unsigned (bv_and b1 b2) = Z.land (bv_unsigned b1) (bv_unsigned b2).
Proof. done. Qed.
Lemma bv_and_signed b1 b2 :
bv_signed (bv_and b1 b2) = bv_swrap n (Z.land (bv_unsigned b1) (bv_unsigned b2)).
Proof. done. Qed.
Lemma bv_xor_unsigned b1 b2 :
bv_unsigned (bv_xor b1 b2) = Z.lxor (bv_unsigned b1) (bv_unsigned b2).
Proof. done. Qed.
Lemma bv_xor_signed b1 b2 :
bv_signed (bv_xor b1 b2) = bv_swrap n (Z.lxor (bv_unsigned b1) (bv_unsigned b2)).
Proof. done. Qed.
Lemma bv_not_unsigned b :
bv_unsigned (bv_not b) = bv_wrap n (Z.lnot (bv_unsigned b)).
Proof. done. Qed.
Lemma bv_not_signed b :
bv_signed (bv_not b) = bv_swrap n (Z.lnot (bv_unsigned b)).
Proof. unfold bv_not. rewrite Z_to_bv_signed. done. Qed.
Lemma bv_zero_extend_unsigned' z b :
bv_unsigned (bv_zero_extend z b) = bv_wrap z (bv_unsigned b).
Proof. done. Qed.
(* [bv_zero_extend_unsigned] is the version that we want, but it
only holds with a precondition. *)
Lemma bv_zero_extend_unsigned z b :
(n ≤ z)%N →
bv_unsigned (bv_zero_extend z b) = bv_unsigned b.
Proof.
intros ?. rewrite bv_zero_extend_unsigned', bv_wrap_small; [done|].
bv_saturate. pose proof (bv_modulus_le_mono n z). lia.
Qed.
Lemma bv_zero_extend_signed z b :
bv_signed (bv_zero_extend z b) = bv_swrap z (bv_unsigned b).
Proof. unfold bv_zero_extend. rewrite Z_to_bv_signed. done. Qed.
Lemma bv_sign_extend_unsigned z b :
bv_unsigned (bv_sign_extend z b) = bv_wrap z (bv_signed b).
Proof. done. Qed.
Lemma bv_sign_extend_signed' z b :
bv_signed (bv_sign_extend z b) = bv_swrap z (bv_signed b).
Proof. unfold bv_sign_extend. rewrite Z_to_bv_signed. done. Qed.
(* [bv_sign_extend_signed] is the version that we want, but it
only holds with a precondition. *)
Lemma bv_sign_extend_signed z b :
(n ≤ z)%N →
bv_signed (bv_sign_extend z b) = bv_signed b.
Proof.
intros ?. rewrite bv_sign_extend_signed'.
destruct (decide (n = 0%N)); subst.
{ by rewrite bv_signed_N_0, bv_swrap_0. }
apply bv_swrap_small. bv_saturate.
pose proof bv_half_modulus_le_mono n z. lia.
Qed.
Lemma bv_extract_unsigned s l b :
bv_unsigned (bv_extract s l b) = bv_wrap l (bv_unsigned b ≫ Z.of_N s).
Proof. done. Qed.
Lemma bv_extract_signed s l b :
bv_signed (bv_extract s l b) = bv_swrap l (bv_unsigned b ≫ Z.of_N s).
Proof. unfold bv_extract. rewrite Z_to_bv_signed. done. Qed.
Lemma bv_concat_unsigned' m n2 b1 (b2 : bv n2) :
bv_unsigned (bv_concat m b1 b2) = bv_wrap m (Z.lor (bv_unsigned b1 ≪ Z.of_N n2) (bv_unsigned b2)).
Proof. done. Qed.
(* [bv_concat_unsigned] is the version that we want, but it
only holds with a precondition. *)
Lemma bv_concat_unsigned m n2 b1 (b2 : bv n2) :
(m = n + n2)%N →
bv_unsigned (bv_concat m b1 b2) = Z.lor (bv_unsigned b1 ≪ Z.of_N n2) (bv_unsigned b2).
Proof.
intros ->. rewrite bv_concat_unsigned', bv_wrap_small; [done|].
apply Z.bounded_iff_bits_nonneg'; [lia | |].
{ apply Z.lor_nonneg. bv_saturate. split; [|lia]. apply Z.shiftl_nonneg. lia. }
intros k ?. rewrite Z.lor_spec, Z.shiftl_spec; [|lia].
apply orb_false_intro; (eapply Z.bounded_iff_bits_nonneg; [..|done]); bv_saturate; try lia.
- apply (Z.lt_le_trans _ (bv_modulus n)); [lia|]. apply Z.pow_le_mono_r; lia.
- apply (Z.lt_le_trans _ (bv_modulus n2)); [lia|]. apply Z.pow_le_mono_r; lia.
Qed.
Lemma bv_concat_signed m n2 b1 (b2 : bv n2) :
bv_signed (bv_concat m b1 b2) = bv_swrap m (Z.lor (bv_unsigned b1 ≪ Z.of_N n2) (bv_unsigned b2)).
Proof. unfold bv_concat. rewrite Z_to_bv_signed. done. Qed.
Lemma bv_add_Z_unsigned b z :
bv_unsigned (b `+Z` z) = bv_wrap n (bv_unsigned b + z).
Proof. done. Qed.
Lemma bv_add_Z_signed b z :
bv_signed (b `+Z` z) = bv_swrap n (bv_signed b + z).
Proof. unfold bv_add_Z. rewrite Z_to_bv_signed. bv_wrap_simplify_solve. Qed.
Lemma bv_sub_Z_unsigned b z :
bv_unsigned (b `-Z` z) = bv_wrap n (bv_unsigned b - z).
Proof. done. Qed.
Lemma bv_sub_Z_signed b z :
bv_signed (b `-Z` z) = bv_swrap n (bv_signed b - z).
Proof. unfold bv_sub_Z. rewrite Z_to_bv_signed. bv_wrap_simplify_solve. Qed.
Lemma bv_mul_Z_unsigned b z:
bv_unsigned (b `*Z` z) = bv_wrap n (bv_unsigned b * z).
Proof. done. Qed.
Lemma bv_mul_Z_signed b z :
bv_signed (b `*Z` z) = bv_swrap n (bv_signed b * z).
Proof. unfold bv_mul_Z. rewrite Z_to_bv_signed. bv_wrap_simplify_solve. Qed.
End unfolding.
(** ** Properties of bv operations *)
Section properties.
Context {n : N}.
Implicit Types (b : bv n).
Local Open Scope bv_scope.
Lemma bv_sub_add_opp b1 b2:
b1 - b2 = b1 + - b2.
Proof.
apply bv_eq. unfold bv_sub, bv_add, bv_opp. rewrite !Z_to_bv_unsigned.
bv_wrap_simplify_solve.
Qed.
Global Instance bv_add_assoc : Assoc (=) (@bv_add n).
Proof.
intros ???. unfold bv_add. apply bv_eq. rewrite !Z_to_bv_unsigned.
bv_wrap_simplify_solve.
Qed.
Global Instance bv_mul_assoc : Assoc (=) (@bv_mul n).
Proof.
intros ???. unfold bv_mul. apply bv_eq. rewrite !Z_to_bv_unsigned.
bv_wrap_simplify_solve.
Qed.
Lemma bv_add_0_l b1 b2 :
bv_unsigned b1 = 0%Z →
b1 + b2 = b2.
Proof.
intros Hb. apply bv_eq.
rewrite bv_add_unsigned, Hb, Z.add_0_l, bv_wrap_small; [done|apply bv_unsigned_in_range].
Qed.
Lemma bv_add_0_r b1 b2 :
bv_unsigned b2 = 0%Z →
b1 + b2 = b1.
Proof.
intros Hb. apply bv_eq.
rewrite bv_add_unsigned, Hb, Z.add_0_r, bv_wrap_small; [done|apply bv_unsigned_in_range].
Qed.
Lemma bv_add_Z_0 b : b `+Z` 0 = b.
Proof.
unfold bv_add_Z. rewrite Z.add_0_r.
apply bv_eq. apply Z_to_bv_small. apply bv_unsigned_in_range.
Qed.
Lemma bv_add_Z_add_r b m o:
b `+Z` (m + o) = (b `+Z` o) `+Z` m.
Proof.
apply bv_eq. unfold bv_add_Z. rewrite !Z_to_bv_unsigned.
bv_wrap_simplify_solve.
Qed.
Lemma bv_add_Z_add_l b m o:
b `+Z` (m + o) = (b `+Z` m) `+Z` o.
Proof.
apply bv_eq. unfold bv_add_Z. rewrite !Z_to_bv_unsigned.
bv_wrap_simplify_solve.
Qed.
Lemma bv_add_Z_succ b m:
b `+Z` Z.succ m = (b `+Z` 1) `+Z` m.
Proof.
apply bv_eq. unfold bv_add_Z. rewrite !Z_to_bv_unsigned.
bv_wrap_simplify_solve.
Qed.
Lemma bv_add_Z_inj_l b i j:
0 ≤ i < bv_modulus n →
0 ≤ j < bv_modulus n →
b `+Z` i = b `+Z` j ↔ i = j.
Proof.
intros ??. split; [|naive_solver].
intros Heq%bv_eq. rewrite !bv_add_Z_unsigned, !(Z.add_comm (bv_unsigned _)) in Heq.
by rewrite <-bv_wrap_add_inj, !bv_wrap_small in Heq.
Qed.
Lemma bv_opp_not b:
- b `-Z` 1 = bv_not b.
Proof.
apply bv_eq.
rewrite bv_not_unsigned, bv_sub_Z_unsigned, bv_opp_unsigned, <-Z.opp_lnot.
bv_wrap_simplify_solve.
Qed.
Lemma bv_and_comm b1 b2:
bv_and b1 b2 = bv_and b2 b1.
Proof. apply bv_eq. by rewrite !bv_and_unsigned, Z.land_comm. Qed.
Lemma bv_or_comm b1 b2:
bv_or b1 b2 = bv_or b2 b1.
Proof. apply bv_eq. by rewrite !bv_or_unsigned, Z.lor_comm. Qed.
Lemma bv_or_0_l b1 b2 :
bv_unsigned b1 = 0%Z →
bv_or b1 b2 = b2.
Proof. intros Hb. apply bv_eq. by rewrite bv_or_unsigned, Hb, Z.lor_0_l. Qed.
Lemma bv_or_0_r b1 b2 :
bv_unsigned b2 = 0%Z →
bv_or b1 b2 = b1.
Proof. intros Hb. apply bv_eq. by rewrite bv_or_unsigned, Hb, Z.lor_0_r. Qed.
Lemma bv_extract_0_unsigned l b:
bv_unsigned (bv_extract 0 l b) = bv_wrap l (bv_unsigned b).
Proof. rewrite bv_extract_unsigned, Z.shiftr_0_r. done. Qed.
Lemma bv_extract_0_bv_add_distr l b1 b2:
(l ≤ n)%N →
bv_extract 0 l (bv_add b1 b2) = bv_add (bv_extract 0 l b1) (bv_extract 0 l b2).
Proof.
intros ?.
apply bv_eq. rewrite !bv_extract_0_unsigned, !bv_add_unsigned, !bv_extract_0_unsigned.
rewrite bv_wrap_bv_wrap by done.
bv_wrap_simplify_solve.
Qed.
Lemma bv_concat_0 m n2 b1 (b2 : bv n2) :
bv_unsigned b1 = 0%Z →
bv_concat m b1 b2 = bv_zero_extend m b2.
Proof.
intros Hb1. apply bv_eq.
by rewrite bv_zero_extend_unsigned', bv_concat_unsigned', Hb1, Z.shiftl_0_l, Z.lor_0_l.
Qed.
Lemma bv_zero_extend_idemp b:
bv_zero_extend n b = b.
Proof. apply bv_eq. by rewrite bv_zero_extend_unsigned. Qed.
Lemma bv_sign_extend_idemp b:
bv_sign_extend n b = b.
Proof. apply bv_eq_signed. by rewrite bv_sign_extend_signed. Qed.
End properties.
(** ** Lemmas about [bv_to_little] and [bv_of_little] *)
Section little.
Lemma bv_to_litte_endian_unsigned m n z:
0 ≤ m →
bv_unsigned <$> bv_to_little_endian m n z = Z_to_little_endian m (Z.of_N n) z.
Proof.
intros ?. apply list_eq. intros i. unfold bv_to_little_endian.
rewrite list_lookup_fmap, list_lookup_fmap.
destruct (Z_to_little_endian m (Z.of_N n) z !! i) eqn: Heq; [simpl |done].
rewrite Z_to_bv_small; [done|].
eapply (Forall_forall (λ z, _ ≤ z < _)); [ |by eapply elem_of_list_lookup_2].
eapply Z_to_little_endian_bound; lia.
Qed.
Lemma bv_to_little_endian_to_bv m n bs:
m = Z.of_nat (length bs) →
bv_to_little_endian m n (little_endian_to_bv n bs) = bs.
Proof.
intros ->. apply (inj (fmap bv_unsigned)).
rewrite bv_to_litte_endian_unsigned; [|lia].
apply Z_to_little_endian_to_Z; [by rewrite length_fmap | lia |].
apply Forall_forall. intros ? [?[->?]]%elem_of_list_fmap_2. apply bv_unsigned_in_range.
Qed.
Lemma little_endian_to_bv_to_little_endian m n z:
0 ≤ m →
little_endian_to_bv n (bv_to_little_endian m n z) = z `mod` 2 ^ (m * Z.of_N n).
Proof.
intros ?. unfold little_endian_to_bv.
rewrite bv_to_litte_endian_unsigned; [|lia].
apply little_endian_to_Z_to_little_endian; lia.
Qed.
Lemma length_bv_to_little_endian m n z :
0 ≤ m →
length (bv_to_little_endian m n z) = Z.to_nat m.
Proof.
intros ?. unfold bv_to_little_endian. rewrite length_fmap.
apply Nat2Z.inj. rewrite length_Z_to_little_endian, ?Z2Nat.id; try lia.
Qed.
Lemma little_endian_to_bv_bound n bs :
0 ≤ little_endian_to_bv n bs < 2 ^ (Z.of_nat (length bs) * Z.of_N n).
Proof.
unfold little_endian_to_bv. rewrite <-(length_fmap bv_unsigned bs).
apply little_endian_to_Z_bound; [lia|].
apply Forall_forall. intros ? [? [-> ?]]%elem_of_list_fmap.
apply bv_unsigned_in_range.
Qed.
Lemma Z_to_bv_little_endian_to_bv_to_little_endian x m n (b : bv x):
0 ≤ m →
x = (Z.to_N m * n)%N →
Z_to_bv x (little_endian_to_bv n (bv_to_little_endian m n (bv_unsigned b))) = b.
Proof.
intros ? ->. rewrite little_endian_to_bv_to_little_endian, Z.mod_small; [| |lia].
- apply bv_eq. rewrite Z_to_bv_small; [done|]. apply bv_unsigned_in_range.
- pose proof bv_unsigned_in_range _ b as Hr. unfold bv_modulus in Hr.
by rewrite N2Z.inj_mul, Z2N.id in Hr.
Qed.
Lemma bv_to_little_endian_lookup_Some m n z (i : nat) x:
0 ≤ m → bv_to_little_endian m n z !! i = Some x ↔
Z.of_nat i < m ∧ x = Z_to_bv n (z ≫ (Z.of_nat i * Z.of_N n)).
Proof.
unfold bv_to_little_endian. intros Hm. rewrite list_lookup_fmap, fmap_Some.
split.
- intros [?[[??]%Z_to_little_endian_lookup_Some ?]]; [|lia..]; subst. split; [done|].
rewrite <-bv_wrap_land. apply bv_eq. by rewrite !Z_to_bv_unsigned, bv_wrap_bv_wrap.
- intros [?->]. eexists _. split; [apply Z_to_little_endian_lookup_Some; try done; lia| ].
rewrite <-bv_wrap_land. apply bv_eq. by rewrite !Z_to_bv_unsigned, bv_wrap_bv_wrap.
Qed.
Lemma little_endian_to_bv_spec n bs i b:
0 ≤ i → n ≠ 0%N →
bs !! Z.to_nat (i `div` Z.of_N n) = Some b →
Z.testbit (little_endian_to_bv n bs) i = Z.testbit (bv_unsigned b) (i `mod` Z.of_N n).
Proof.
intros ???. unfold little_endian_to_bv. apply little_endian_to_Z_spec; [lia|lia| |].
{ apply Forall_fmap. apply Forall_true. intros ?; simpl. apply bv_unsigned_in_range. }
rewrite list_lookup_fmap. apply fmap_Some. naive_solver.
Qed.
End little.
(** ** Lemmas about [bv_seq] *)
Section bv_seq.
Context {n : N}.
Implicit Types (b : bv n).
Lemma length_bv_seq b len:
length (bv_seq b len) = Z.to_nat len.
Proof. unfold bv_seq. by rewrite length_fmap, length_seqZ. Qed.
Lemma bv_seq_succ b m:
0 ≤ m →
bv_seq b (Z.succ m) = b :: bv_seq (b `+Z` 1) m.
Proof.
intros. unfold bv_seq. rewrite seqZ_cons by lia. csimpl.
rewrite bv_add_Z_0. f_equal.
assert (Z.succ 0 = 1 + 0) as -> by lia.
rewrite <-fmap_add_seqZ, <-list_fmap_compose, Z.pred_succ. apply list_fmap_ext.
intros i x. simpl. by rewrite bv_add_Z_add_l.
Qed.
Lemma NoDup_bv_seq b z:
0 ≤ z ≤ bv_modulus n →
NoDup (bv_seq b z).
Proof.
intros ?. apply NoDup_alt. intros i j b'. unfold bv_seq. rewrite !list_lookup_fmap.
intros [?[[??]%lookup_seqZ ?]]%fmap_Some ; simplify_eq.
intros [?[[->?]%lookup_seqZ ?%bv_add_Z_inj_l]]%fmap_Some; lia.
Qed.
End bv_seq.
(** ** Lemmas about [bv] and [bool] *)
Section bv_bool.
Implicit Types (b : bool).
Lemma bool_to_bv_unsigned n b:
n ≠ 0%N →
bv_unsigned (bool_to_bv n b) = bool_to_Z b.
Proof.
intros ?. pose proof (bv_modulus_gt_1 n).
apply Z_to_bv_small. destruct b; simpl; lia.
Qed.
Lemma bv_extract_bool_to_bv n n2 b:
n ≠ 0%N → n2 ≠ 0%N →
bv_extract 0 n (bool_to_bv n2 b) = bool_to_bv n b.
Proof.
intros ??. apply bv_eq. pose proof (bv_modulus_gt_1 n).
rewrite bv_extract_unsigned, !bool_to_bv_unsigned, Z.shiftr_0_r by done.
rewrite bv_wrap_small; [done|]. destruct b; simpl; lia.
Qed.
Lemma bv_not_bool_to_bv b:
bv_not (bool_to_bv 1 b) = bool_to_bv 1 (negb b).
Proof. apply bv_eq. by destruct b. Qed.
Lemma bool_decide_bool_to_bv_0 b:
bool_decide (bv_unsigned (bool_to_bv 1 b) = 0) = negb b.
Proof. by destruct b. Qed.
Lemma bool_decide_bool_to_bv_1 b:
bool_decide (bv_unsigned (bool_to_bv 1 b) = 1) = b.
Proof. by destruct b. Qed.
End bv_bool.
Section bv_bits.
Context {n : N}.
Implicit Types (b : bv n).
Lemma length_bv_to_bits b : length (bv_to_bits b) = N.to_nat n.
Proof. unfold bv_to_bits. rewrite length_fmap, length_seqZ, <-Z_N_nat, N2Z.id. done. Qed.
Lemma bv_to_bits_lookup_Some b i x:
bv_to_bits b !! i = Some x ↔ (i < N.to_nat n)%nat ∧ x = Z.testbit (bv_unsigned b) (Z.of_nat i).
Proof.
unfold bv_to_bits. rewrite list_lookup_fmap, fmap_Some.
split.
- intros [?[?%lookup_seqZ?]]. naive_solver lia.
- intros [??]. eexists _. split; [|done]. apply lookup_seqZ. lia.
Qed.
Global Instance bv_to_bits_inj : Inj eq eq (@bv_to_bits n).
Proof.
unfold bv_to_bits. intros x y Hf.
apply bv_eq_wrap. apply Z.bits_inj_iff'. intros i Hi.
rewrite !bv_wrap_spec; [|lia..]. case_bool_decide; simpl; [|done].
eapply list_fmap_inj_1 in Hf; [done|]. apply elem_of_seqZ. lia.
Qed.
End bv_bits.
(** * [bvn] *)
Record bvn := bv_to_bvn {
bvn_n : N;
bvn_val : bv bvn_n;
}.
Global Arguments bv_to_bvn {_} _.
Add Printing Constructor bvn.
Definition bvn_unsigned (b : bvn) := bv_unsigned (b.(bvn_val)).
Lemma bvn_eq (b1 b2 : bvn) :
b1 = b2 ↔ b1.(bvn_n) = b2.(bvn_n) ∧ bvn_unsigned b1 = bvn_unsigned b2.
Proof. split; [ naive_solver|]. destruct b1, b2; simpl; intros [??]. subst. f_equal. by apply bv_eq. Qed.
Global Program Instance bvn_eq_dec : EqDecision bvn := λ '(@bv_to_bvn n1 b1) '(@bv_to_bvn n2 b2),
cast_if_and (decide (n1 = n2)) (decide (bv_unsigned b1 = bv_unsigned b2)).
(* TODO: The following does not compute to eq_refl*)
Next Obligation. intros. apply bvn_eq. naive_solver. Qed.
Next Obligation. intros. intros ?%bvn_eq. naive_solver. Qed.
Next Obligation. intros. intros ?%bvn_eq. naive_solver. Qed.
Definition bvn_to_bv (n : N) (b : bvn) : option (bv n) :=
match decide (b.(bvn_n) = n) with
| left eq => Some (eq_rect (bvn_n b) (λ n0 : N, bv n0) (bvn_val b) n eq)
| right _ => None
end.
Global Arguments bvn_to_bv !_ !_ /.
Global Coercion bv_to_bvn : bv >-> bvn.
(** * Opaqueness *)
(** We mark all functions on bitvectors as opaque. *)
Global Hint Opaque Z_to_bv
bv_0 bv_succ bv_pred
bv_add bv_sub bv_opp
bv_mul bv_divu bv_modu
bv_divs bv_quots bv_mods bv_rems
bv_shiftl bv_shiftr bv_ashiftr bv_or
bv_and bv_xor bv_not bv_zero_extend
bv_sign_extend bv_extract bv_concat
bv_add_Z bv_sub_Z bv_mul_Z
bool_to_bv bv_to_bits : typeclass_instances.
Global Opaque Z_to_bv
bv_0 bv_succ bv_pred
bv_add bv_sub bv_opp
bv_mul bv_divu bv_modu
bv_divs bv_quots bv_mods bv_rems
bv_shiftl bv_shiftr bv_ashiftr bv_or
bv_and bv_xor bv_not bv_zero_extend
bv_sign_extend bv_extract bv_concat
bv_add_Z bv_sub_Z bv_mul_Z
bool_to_bv bv_to_bits.
|