1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
(* This file is still experimental. See its tracking issue
https://gitlab.mpi-sws.org/iris/stdpp/-/issues/141 for details on remaining
issues before stabilization. This file is maintained by Michael Sammler. *)
From Coq Require Import ssreflect.
From Coq.btauto Require Export Btauto.
From stdpp.bitvector Require Import definitions.
From stdpp Require Export tactics numbers list.
From stdpp Require Import options.
(** * [bitblast] tactic: Solve integer goals by bitwise reasoning *)
(** This file provides the [bitblast] tactic for bitwise reasoning
about [Z] via [Z.testbit]. Concretely, [bitblast] first turns an
equality [a = b] into [∀ n, Z.testbit a n = Z.testbit b n], then
simplifies the [Z.testbit] expressions using lemmas like
[Z.testbit (Z.land a b) n = Z.testbit a n && Z.testbit b n], or
[Z.testbit (Z.ones z) n = bool_decide (0 ≤ n < z) || bool_decide (z < 0 ∧ 0 ≤ n)]
and finally simplifies the resulting boolean expression by performing case
distinction on all [bool_decide] in the goal and pruning impossible cases.
This library provides the following variants of the [bitblast] tactic:
- [bitblast]: applies the bitblasting technique described above to the goal.
If the goal already contains a [Z.testbit], the first step (which introduces
[Z.testbit] to prove equalities between [Z]) is skipped.
- [bitblast as n] behaves the same as [bitblast], but it allows naming the [n]
introduced in the first step. Fails if the goal is not an equality between [Z].
- [bitblast H] applies the simplification of [Z.testbit] in the hypothesis [H]
(but does not perform case distinction).
- [bitblast H with n as H'] deduces from the equality [H] of the form [z1 = z2]
that the [n]-th bit of [z1] and [z2] are equal, simplifies the resulting
equation, and adds it as the hypothesis [H'].
- [bitblast H with n] is the same as [bitblast H with n as H'], but using a fresh
name for [H'].
See also https://github.com/mit-plv/coqutil/blob/master/src/coqutil/Z/bitblast.v
for another implementation of the same idea.
*)
(** * Settings *)
Local Set SsrOldRewriteGoalsOrder. (* See Coq issue #5706 *)
Local Open Scope Z_scope.
(** * Helper lemmas to upstream *)
Lemma Nat_eqb_eq n1 n2 :
(n1 =? n2)%nat = bool_decide (n1 = n2).
Proof. case_bool_decide; [by apply Nat.eqb_eq | by apply Nat.eqb_neq]. Qed.
Lemma Z_eqb_eq n1 n2 :
(n1 =? n2)%Z = bool_decide (n1 = n2).
Proof. case_bool_decide; [by apply Z.eqb_eq | by apply Z.eqb_neq]. Qed.
Lemma Z_testbit_pos_testbit p n :
(0 ≤ n)%Z →
Z.testbit (Z.pos p) n = Pos.testbit p (Z.to_N n).
Proof. by destruct n, p. Qed.
Lemma negb_forallb {A} (ls : list A) f :
negb (forallb f ls) = existsb (negb ∘ f) ls.
Proof. induction ls; [done|]; simpl. rewrite negb_andb. congruence. Qed.
Lemma Z_bits_inj'' a b :
a = b → (∀ n : Z, 0 ≤ n → Z.testbit a n = Z.testbit b n).
Proof. apply Z.bits_inj_iff'. Qed.
Lemma tac_tactic_in_hyp (P1 P2 : Prop) :
P1 → (P1 → P2) → P2.
Proof. eauto. Qed.
(** TODO: replace this with [do [ tac ] in H] from ssreflect? *)
Tactic Notation "tactic" tactic3(tac) "in" ident(H) :=
let H' := fresh in
unshelve epose proof (tac_tactic_in_hyp _ _ H _) as H'; [shelve|
tac; let H := fresh H in intros H; exact H |];
clear H; rename H' into H.
(** ** bitranges *)
Fixpoint pos_to_bit_ranges_aux (p : positive) : (nat * nat) * list (nat * nat) :=
match p with
| xH => ((0, 1)%nat, [])
| xO p' =>
let x := pos_to_bit_ranges_aux p' in
((S x.1.1, x.1.2), prod_map S id <$> x.2)
| xI p' =>
let x := pos_to_bit_ranges_aux p' in
if (x.1.1 =? 0)%nat then
((0%nat, S x.1.2), prod_map S id <$> x.2)
else
((0%nat, 1%nat), prod_map S id <$> (x.1 :: x.2))
end.
(** [pos_to_bit_ranges p] computes the list of (start, length) pairs
describing which bits of [p] are [1]. The following examples show the
behavior of [pos_to_bit_ranges]: *)
(* Compute (pos_to_bit_ranges 1%positive). (** 0b 1 [(0, 1)] *) *)
(* Compute (pos_to_bit_ranges 2%positive). (** 0b 10 [(1, 1)] *) *)
(* Compute (pos_to_bit_ranges 3%positive). (** 0b 11 [(0, 2)] *) *)
(* Compute (pos_to_bit_ranges 4%positive). (** 0b100 [(2, 1)] *) *)
(* Compute (pos_to_bit_ranges 5%positive). (** 0b101 [(0, 1); (2, 1)] *) *)
(* Compute (pos_to_bit_ranges 6%positive). (** 0b110 [(1, 2)] *) *)
(* Compute (pos_to_bit_ranges 7%positive). (** 0b111 [(0, 3)] *) *)
(* Compute (pos_to_bit_ranges 21%positive). (** 0b10101 [(0, 1); (2, 1); (4, 1)] *) *)
Definition pos_to_bit_ranges (p : positive) : list (nat * nat) :=
let x := pos_to_bit_ranges_aux p in x.1::x.2.
Lemma pos_to_bit_ranges_spec p rs :
pos_to_bit_ranges p = rs →
(∀ n, Pos.testbit p n ↔ ∃ r, r ∈ rs ∧ (N.of_nat r.1 ≤ n ∧ n < N.of_nat r.1 + N.of_nat r.2)%N).
Proof.
unfold pos_to_bit_ranges => <-.
elim: p => //; csimpl.
- move => p IH n. rewrite Nat_eqb_eq. case_match; subst.
+ split; [|done] => _. case_match.
all: eexists _; split; [by apply elem_of_list_here|] => /=; lia.
+ rewrite {}IH. split; move => [r[/elem_of_cons[Heq|Hin] ?]]; simplify_eq/=.
* (* r = (pos_to_bit_ranges_aux p).1 *)
case_bool_decide as Heq; simplify_eq/=.
-- eexists _. split; [by apply elem_of_list_here|] => /=. lia.
-- eexists _. split. { apply elem_of_list_further. apply elem_of_list_here. }
simplify_eq/=. lia.
* (* r ∈ (pos_to_bit_ranges_aux p).2 *)
case_bool_decide as Heq; simplify_eq/=.
-- eexists _. split. { apply elem_of_list_further. apply elem_of_list_fmap. by eexists _. }
simplify_eq/=. lia.
-- eexists _. split. { do 2 apply elem_of_list_further. apply elem_of_list_fmap. by eexists _. }
simplify_eq/=. lia.
* eexists _. split; [by apply elem_of_list_here|]. case_bool_decide as Heq; simplify_eq/=; lia.
* case_bool_decide as Heq; simplify_eq/=.
-- move: Hin => /= /elem_of_list_fmap[?[??]]; subst. eexists _. split; [by apply elem_of_list_further |].
simplify_eq/=. lia.
-- rewrite -fmap_cons in Hin. move: Hin => /elem_of_list_fmap[?[??]]; subst. naive_solver lia.
- move => p IH n. case_match; subst.
+ split; [done|] => -[[l h][/elem_of_cons[?|/(elem_of_list_fmap_2 _ _ _)[[??][??]]]?]]; simplify_eq/=; lia.
+ rewrite IH. split; move => [r[/elem_of_cons[Heq|Hin] ?]]; simplify_eq/=.
* eexists _. split; [by apply elem_of_list_here|] => /=; lia.
* eexists _. split. { apply elem_of_list_further. apply elem_of_list_fmap. by eexists _. }
destruct r; simplify_eq/=. lia.
* eexists _. split; [by apply elem_of_list_here|] => /=; lia.
* move: Hin => /elem_of_list_fmap[r'[??]]; subst. eexists _. split; [by apply elem_of_list_further|].
destruct r'; simplify_eq/=. lia.
- move => n. setoid_rewrite elem_of_list_singleton. case_match; split => //; subst; naive_solver lia.
Qed.
Definition Z_to_bit_ranges (z : Z) : list (nat * nat) :=
match z with
| Z0 => []
| Z.pos p => pos_to_bit_ranges p
| Z.neg p => []
end.
Lemma Z_to_bit_ranges_spec z n rs :
(0 ≤ n)%Z →
(0 ≤ z)%Z →
Z_to_bit_ranges z = rs →
Z.testbit z n ↔ Exists (λ r, Z.of_nat r.1 ≤ n ∧ n < Z.of_nat r.1 + Z.of_nat r.2) rs.
Proof.
move => /= ??.
destruct z => //=.
+ move => <-. rewrite Z.bits_0 Exists_nil. done.
+ move => /pos_to_bit_ranges_spec Hbit. rewrite Z_testbit_pos_testbit // Hbit Exists_exists. naive_solver lia.
Qed.
(** * [simpl_bool] *)
Ltac simpl_bool_cbn := cbn [andb orb negb].
Ltac simpl_bool :=
repeat match goal with
| |- context C [true && ?b] => simpl_bool_cbn
| |- context C [false && ?b] => simpl_bool_cbn
| |- context C [true || ?b] => simpl_bool_cbn
| |- context C [false || ?b] => simpl_bool_cbn
| |- context C [negb true] => simpl_bool_cbn
| |- context C [negb false] => simpl_bool_cbn
| |- context C [?b && true] => rewrite (Bool.andb_true_r b)
| |- context C [?b && false] => rewrite (Bool.andb_false_r b)
| |- context C [?b || true] => rewrite (Bool.orb_true_r b)
| |- context C [?b || false] => rewrite (Bool.orb_false_r b)
| |- context C [xorb ?b true] => rewrite (Bool.xorb_true_r b)
| |- context C [xorb ?b false] => rewrite (Bool.xorb_false_r b)
| |- context C [xorb true ?b] => rewrite (Bool.orb_true_l b)
| |- context C [xorb false ?b] => rewrite (Bool.orb_false_l b)
end.
(** * [simplify_bitblast_index] *)
Create HintDb simplify_bitblast_index_db discriminated.
Global Hint Rewrite
Z.sub_add
Z.add_simpl_r
: simplify_bitblast_index_db.
Local Ltac simplify_bitblast_index := autorewrite with simplify_bitblast_index_db.
(** * Main typeclasses for bitblast *)
Create HintDb bitblast discriminated.
Global Hint Constants Opaque : bitblast.
Global Hint Variables Opaque : bitblast.
(** ** [IsPowerOfTwo] *)
Class IsPowerOfTwo (z n : Z) := {
is_power_of_two_proof : z = 2 ^ n;
}.
Global Arguments is_power_of_two_proof _ _ {_}.
Global Hint Mode IsPowerOfTwo + - : bitblast.
Lemma is_power_of_two_pow2 n :
IsPowerOfTwo (2 ^ n) n.
Proof. constructor. done. Qed.
Global Hint Resolve is_power_of_two_pow2 | 10 : bitblast.
Lemma is_power_of_two_const n p :
(∀ x, [(n, 1%nat)] = x → prod_map Z.of_nat id <$> Z_to_bit_ranges (Z.pos p) = x) →
IsPowerOfTwo (Z.pos p) n.
Proof.
move => Hn. constructor. have {}Hn := Hn _ ltac:(done).
apply Z.bits_inj_iff' => i ?.
apply eq_bool_prop_intro. rewrite Z_to_bit_ranges_spec; [|done|lia|done].
move: Hn => /(fmap_cons_inv _ _ _)[[n' ?][?/=[[??][/(@eq_sym _ _ _)/fmap_nil_inv->->]]]]. subst.
rewrite Exists_cons Exists_nil /=.
rewrite Z.pow2_bits_eqb ?Z_eqb_eq ?bool_decide_spec; lia.
Qed.
Global Hint Extern 10 (IsPowerOfTwo (Z.pos ?p) _) =>
lazymatch isPcst p with | true => idtac end;
simple notypeclasses refine (is_power_of_two_const _ _ _);
let H := fresh in intros ? H; vm_compute; apply H
: bitblast.
(** ** [BitblastBounded] *)
Class BitblastBounded (z n : Z) := {
bitblast_bounded_proof : 0 ≤ z < 2 ^ n;
}.
Global Arguments bitblast_bounded_proof _ _ {_}.
Global Hint Mode BitblastBounded + - : bitblast.
Global Hint Extern 10 (BitblastBounded _ _) =>
constructor; first [ split; [lia|done] | done]
: bitblast.
(** ** [Bitblast] *)
Class Bitblast (z n : Z) (b : bool) := {
bitblast_proof : Z.testbit z n = b;
}.
Global Arguments bitblast_proof _ _ _ {_}.
Global Hint Mode Bitblast + + - : bitblast.
Definition BITBLAST_TESTBIT := Z.testbit.
Lemma bitblast_id z n :
Bitblast z n (bool_decide (0 ≤ n) && BITBLAST_TESTBIT z n).
Proof. constructor. case_bool_decide => //=. rewrite Z.testbit_neg_r //; lia. Qed.
Global Hint Resolve bitblast_id | 1000 : bitblast.
Lemma bitblast_id_bounded z z' n :
BitblastBounded z z' →
Bitblast z n (bool_decide (0 ≤ n < z') && BITBLAST_TESTBIT z n).
Proof.
move => [Hb]. constructor.
move: (Hb) => /Z.bounded_iff_bits_nonneg' Hn.
case_bool_decide => //=.
destruct (decide (0 ≤ n)); [|rewrite Z.testbit_neg_r //; lia].
apply Hn; try lia.
destruct (decide (0 ≤ z')) => //.
rewrite Z.pow_neg_r in Hb; lia.
Qed.
Global Hint Resolve bitblast_id_bounded | 990 : bitblast.
Lemma bitblast_0 n :
Bitblast 0 n false.
Proof. constructor. by rewrite Z.bits_0. Qed.
Global Hint Resolve bitblast_0 | 10 : bitblast.
Lemma bitblast_pos p n rs b :
(∀ x, rs = x → (λ p, (Z.of_nat p.1, Z.of_nat p.1 + Z.of_nat p.2)) <$> Z_to_bit_ranges (Z.pos p) = x) →
existsb (λ '(r1, r2), bool_decide (r1 ≤ n ∧ n < r2)) rs = b →
Bitblast (Z.pos p) n b.
Proof.
move => Hr <-. constructor. rewrite -(Hr rs) //.
destruct (decide (0 ≤ n)). 2: {
rewrite Z.testbit_neg_r; [|lia]. elim: (Z_to_bit_ranges (Z.pos p)) => // [??]; csimpl => <-.
case_bool_decide => //; lia.
}
apply eq_bool_prop_intro. rewrite Z_to_bit_ranges_spec; [|done..]. rewrite existb_True Exists_fmap.
f_equiv => -[??] /=. by rewrite bool_decide_spec.
Qed.
Global Hint Extern 10 (Bitblast (Z.pos ?p) _ _) =>
lazymatch isPcst p with | true => idtac end;
simple notypeclasses refine (bitblast_pos _ _ _ _ _ _);[shelve|
let H := fresh in intros ? H; vm_compute; apply H |
cbv [existsb]; exact eq_refl]
: bitblast.
Lemma bitblast_neg p n rs b :
(∀ x, rs = x → (λ p, (Z.of_nat p.1, Z.of_nat p.1 + Z.of_nat p.2)) <$> Z_to_bit_ranges (Z.pred (Z.pos p)) = x) →
forallb (λ '(r1, r2), bool_decide (n < r1 ∨ r2 ≤ n)) rs = b →
Bitblast (Z.neg p) n (bool_decide (0 ≤ n) && b).
Proof.
move => Hr <-. constructor. rewrite -(Hr rs) //.
case_bool_decide => /=; [|rewrite Z.testbit_neg_r; [done|lia]].
have -> : Z.neg p = Z.lnot (Z.pred (Z.pos p)).
{ rewrite -Pos2Z.opp_pos. have := Z.add_lnot_diag (Z.pred (Z.pos p)). lia. }
rewrite Z.lnot_spec //. symmetry. apply negb_sym.
apply eq_bool_prop_intro. rewrite Z_to_bit_ranges_spec; [|done|lia|done].
rewrite negb_forallb existb_True Exists_fmap.
f_equiv => -[??] /=. rewrite negb_True bool_decide_spec. lia.
Qed.
Global Hint Extern 10 (Bitblast (Z.neg ?p) _ _) =>
lazymatch isPcst p with | true => idtac end;
simple notypeclasses refine (bitblast_neg _ _ _ _ _ _);[shelve|shelve|
let H := fresh in intros ? H; vm_compute; apply H |
cbv [forallb]; exact eq_refl]
: bitblast.
Lemma bitblast_land z1 z2 n b1 b2 :
Bitblast z1 n b1 →
Bitblast z2 n b2 →
Bitblast (Z.land z1 z2) n (b1 && b2).
Proof. move => [<-] [<-]. constructor. by rewrite Z.land_spec. Qed.
Global Hint Resolve bitblast_land | 10 : bitblast.
Lemma bitblast_lor z1 z2 n b1 b2 :
Bitblast z1 n b1 →
Bitblast z2 n b2 →
Bitblast (Z.lor z1 z2) n (b1 || b2).
Proof. move => [<-] [<-]. constructor. by rewrite Z.lor_spec. Qed.
Global Hint Resolve bitblast_lor | 10 : bitblast.
Lemma bitblast_lxor z1 z2 n b1 b2 :
Bitblast z1 n b1 →
Bitblast z2 n b2 →
Bitblast (Z.lxor z1 z2) n (xorb b1 b2).
Proof. move => [<-] [<-]. constructor. by rewrite Z.lxor_spec. Qed.
Global Hint Resolve bitblast_lxor | 10 : bitblast.
Lemma bitblast_shiftr z1 z2 n b1 :
Bitblast z1 (n + z2) b1 →
Bitblast (z1 ≫ z2) n (bool_decide (0 ≤ n) && b1).
Proof.
move => [<-]. constructor.
case_bool_decide => /=; [by rewrite Z.shiftr_spec| rewrite Z.testbit_neg_r //; lia].
Qed.
Global Hint Resolve bitblast_shiftr | 10 : bitblast.
Lemma bitblast_shiftl z1 z2 n b1 :
Bitblast z1 (n - z2) b1 →
Bitblast (z1 ≪ z2) n (bool_decide (0 ≤ n) && b1).
Proof.
move => [<-]. constructor.
case_bool_decide => /=; [by rewrite Z.shiftl_spec| rewrite Z.testbit_neg_r //; lia].
Qed.
Global Hint Resolve bitblast_shiftl | 10 : bitblast.
Lemma bitblast_lnot z1 n b1 :
Bitblast z1 n b1 →
Bitblast (Z.lnot z1) n (bool_decide (0 ≤ n) && negb b1).
Proof.
move => [<-]. constructor.
case_bool_decide => /=; [by rewrite Z.lnot_spec| rewrite Z.testbit_neg_r //; lia].
Qed.
Global Hint Resolve bitblast_lnot | 10 : bitblast.
Lemma bitblast_ldiff z1 z2 n b1 b2 :
Bitblast z1 n b1 →
Bitblast z2 n b2 →
Bitblast (Z.ldiff z1 z2) n (b1 && negb b2).
Proof. move => [<-] [<-]. constructor. by rewrite Z.ldiff_spec. Qed.
Global Hint Resolve bitblast_ldiff | 10 : bitblast.
Lemma bitblast_ones z1 n :
Bitblast (Z.ones z1) n (bool_decide (0 ≤ n < z1) || bool_decide (z1 < 0 ∧ 0 ≤ n)).
Proof.
constructor. case_bool_decide; [by apply Z.ones_spec_low|] => /=.
case_bool_decide.
- rewrite Z.ones_equiv Z.pow_neg_r; [|lia]. apply Z.bits_m1. lia.
- destruct (decide (0 ≤ n)); [|rewrite Z.testbit_neg_r //; lia].
apply Z.ones_spec_high; lia.
Qed.
Global Hint Resolve bitblast_ones | 10 : bitblast.
Lemma bitblast_pow2 n n' :
Bitblast (2 ^ n') n (bool_decide (n = n' ∧ 0 ≤ n)).
Proof.
constructor. case_bool_decide; destruct_and?; subst; [by apply Z.pow2_bits_true|].
destruct (decide (0 ≤ n)); [|rewrite Z.testbit_neg_r //; lia].
apply Z.pow2_bits_false. lia.
Qed.
Global Hint Resolve bitblast_pow2 | 10 : bitblast.
Lemma bitblast_setbit z1 n b1 n' :
Bitblast (Z.lor z1 (2 ^ n')) n b1 →
Bitblast (Z.setbit z1 n') n b1.
Proof. by rewrite Z.setbit_spec'. Qed.
Global Hint Resolve bitblast_setbit | 10 : bitblast.
Lemma bitblast_mod z1 z2 z2' n b1 :
IsPowerOfTwo z2 z2' →
Bitblast z1 n b1 →
Bitblast (z1 `mod` z2) n ((bool_decide (z2' < 0 ∧ 0 ≤ n) || bool_decide (n < z2')) && b1).
Proof.
move => [->] [<-]. constructor.
case_bool_decide => /=. { rewrite Z.pow_neg_r ?Zmod_0_r; [done|lia]. }
destruct (decide (0 ≤ n)). 2: { rewrite !Z.testbit_neg_r ?andb_false_r //; lia. }
rewrite -Z.land_ones; [|lia]. rewrite Z.land_spec Z.ones_spec; [|lia..].
by rewrite andb_comm.
Qed.
Global Hint Resolve bitblast_mod | 10 : bitblast.
(* TODO: What are good instances for +? Maybe something based on Z_add_nocarry_lor? *)
Lemma bitblast_add_0 z1 z2 b1 b2 :
Bitblast z1 0 b1 →
Bitblast z2 0 b2 →
Bitblast (z1 + z2) 0 (xorb b1 b2).
Proof. move => [<-] [<-]. constructor. apply Z.add_bit0. Qed.
Global Hint Resolve bitblast_add_0 | 5 : bitblast.
Lemma bitblast_add_1 z1 z2 b10 b11 b20 b21 :
Bitblast z1 0 b10 →
Bitblast z2 0 b20 →
Bitblast z1 1 b11 →
Bitblast z2 1 b21 →
Bitblast (z1 + z2) 1 (xorb (xorb b11 b21) (b10 && b20)).
Proof. move => [<-] [<-] [<-] [<-]. constructor. apply Z.add_bit1. Qed.
Global Hint Resolve bitblast_add_1 | 5 : bitblast.
Lemma bitblast_clearbit z n b m :
Bitblast z n b →
Bitblast (Z.clearbit z m) n (bool_decide (n ≠ m) && b).
Proof.
move => [<-]. constructor.
case_bool_decide; subst => /=.
- by apply Z.clearbit_neq.
- by apply Z.clearbit_eq.
Qed.
Global Hint Resolve bitblast_clearbit | 10 : bitblast.
Lemma bitblast_bool_to_Z b n:
Bitblast (bool_to_Z b) n (bool_decide (n = 0) && b).
Proof.
constructor. destruct b; simpl_bool; repeat case_bool_decide;
subst; try done; rewrite ?Z.bits_0; by destruct n.
Qed.
Global Hint Resolve bitblast_bool_to_Z | 10 : bitblast.
(** Instances for [bv] *)
Lemma bitblast_bv_wrap z1 n n1 b1:
Bitblast z1 n b1 →
Bitblast (bv_wrap n1 z1) n (bool_decide (n < Z.of_N n1) && b1).
Proof.
intros [<-]. constructor.
destruct (decide (0 ≤ n)); [by rewrite bv_wrap_spec| rewrite !Z.testbit_neg_r; [|lia..]; btauto].
Qed.
Global Hint Resolve bitblast_bv_wrap | 10 : bitblast.
Lemma bitblast_bounded_bv_unsigned n (b : bv n):
BitblastBounded (bv_unsigned b) (Z.of_N n).
Proof. constructor. apply bv_unsigned_in_range. Qed.
Global Hint Resolve bitblast_bounded_bv_unsigned | 15 : bitblast.
(** * Tactics *)
(** ** Helper definitions and lemmas for the tactics *)
Definition BITBLAST_BOOL_DECIDE := @bool_decide.
Global Arguments BITBLAST_BOOL_DECIDE _ {_}.
Lemma tac_bitblast_bool_decide_true G (P : Prop) `{!Decision P} :
P →
G true →
G (bool_decide P).
Proof. move => ??. by rewrite bool_decide_eq_true_2. Qed.
Lemma tac_bitblast_bool_decide_false G (P : Prop) `{!Decision P} :
¬ P →
G false →
G (bool_decide P).
Proof. move => ??. by rewrite bool_decide_eq_false_2. Qed.
Lemma tac_bitblast_bool_decide_split G (P : Prop) `{!Decision P} :
(P → G true) →
(¬ P → G false) →
G (bool_decide P).
Proof. move => ??. case_bool_decide; eauto. Qed.
(** ** Core tactics *)
Ltac bitblast_done :=
solve [ first [ done | lia | btauto ] ].
(** [bitblast_blast_eq] applies to goals of the form [Z.testbit _ _ = ?x] and bitblasts the
Z.testbit using the [Bitblast] typeclass. *)
Ltac bitblast_blast_eq :=
lazymatch goal with |- Z.testbit _ _ = _ => idtac end;
etrans; [ notypeclasses refine (bitblast_proof _ _ _); typeclasses eauto with bitblast | ];
simplify_bitblast_index;
exact eq_refl.
(** [bitblast_bool_decide_simplify] get rids of unnecessary bool_decide in the goal. *)
Ltac bitblast_bool_decide_simplify :=
repeat lazymatch goal with
| |- context [@bool_decide ?P ?Dec] =>
pattern (@bool_decide P Dec);
lazymatch goal with
| |- ?G _ =>
first [
refine (@tac_bitblast_bool_decide_true G P Dec _ _); [lia|];
simpl_bool_cbn
|
refine (@tac_bitblast_bool_decide_false G P Dec _ _); [lia|];
simpl_bool_cbn
|
change_no_check (G (@BITBLAST_BOOL_DECIDE P Dec))
]
end;
cbv beta
end;
(** simpl_bool contains rewriting so it can be quite slow and thus we only do it at the end. *)
simpl_bool;
lazymatch goal with
| |- ?G => let x := eval unfold BITBLAST_BOOL_DECIDE in G in change_no_check x
end.
(** [bitblast_bool_decide_split] performs a case distinction on a bool_decide in the goal. *)
Ltac bitblast_bool_decide_split :=
lazymatch goal with
| |- context [@bool_decide ?P ?Dec] =>
pattern (@bool_decide P Dec);
lazymatch goal with
| |- ?G _ =>
refine (@tac_bitblast_bool_decide_split G P Dec _ _) => ?; cbv beta; simpl_bool
end
end.
(** [bitblast_unfold] bitblasts all [Z.testbit] in the goal. *)
Ltac bitblast_unfold :=
repeat lazymatch goal with
| |- context [Z.testbit ?z ?n] =>
pattern (Z.testbit z n);
simple refine (eq_rec_r _ _ _); [shelve| |bitblast_blast_eq]; cbv beta
end;
lazymatch goal with
| |- ?G => let x := eval unfold BITBLAST_TESTBIT in G in change_no_check x
end.
(** [bitblast_raw] bitblasts all [Z.testbit] in the goal and simplifies the result. *)
Ltac bitblast_raw :=
bitblast_unfold;
bitblast_bool_decide_simplify;
try bitblast_done;
repeat (bitblast_bool_decide_split; bitblast_bool_decide_simplify; try bitblast_done).
(** ** Tactic notations *)
Tactic Notation "bitblast" "as" ident(i) :=
apply Z.bits_inj_iff'; intros i => ?; bitblast_raw.
Tactic Notation "bitblast" :=
lazymatch goal with
| |- context [Z.testbit _ _] => idtac
| _ => apply Z.bits_inj_iff' => ??
end;
bitblast_raw.
Tactic Notation "bitblast" ident(H) :=
tactic bitblast_unfold in H;
tactic bitblast_bool_decide_simplify in H.
Tactic Notation "bitblast" ident(H) "with" constr(i) "as" ident(H') :=
lazymatch type of H with
(* We cannot use [efeed pose proof] since this causes weird failures
in combination with [Set Mangle Names]. *)
| @eq Z _ _ => opose proof* (Z_bits_inj'' _ _ H i) as H'; [try bitblast_done..|]
| ∀ x, _ => opose proof* (H i) as H'; [try bitblast_done..|]
end; bitblast H'.
Tactic Notation "bitblast" ident(H) "with" constr(i) :=
let H' := fresh "H" in bitblast H with i as H'.
|