1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
From stdpp Require Import fin_maps fin_map_dom.
From stdpp Require Import strings pmap gmap.
(** * Tests involving the [FinMap] interfaces, i.e., tests that are not specific
to an implementation of finite maps. *)
Section map_disjoint.
Context `{FinMap K M}.
Lemma solve_map_disjoint_singleton_1 {A} (m1 m2 : M A) i x :
m1 ##ₘ <[i:=x]> m2 → {[ i:= x ]} ∪ m2 ##ₘ m1 ∧ m2 ##ₘ ∅.
Proof. intros. solve_map_disjoint. Qed.
Lemma solve_map_disjoint_singleton_2 {A} (m1 m2 : M A) i x :
m2 !! i = None → m1 ##ₘ {[ i := x ]} ∪ m2 → m2 ##ₘ <[i:=x]> m1 ∧ m1 !! i = None.
Proof. intros. solve_map_disjoint. Qed.
Lemma solve_map_disjoint_compose_l_singleton_1 {A} (n : M K) (m1 m2 : M A) i x :
m1 ##ₘ <[i:=x]> m2 → ({[ i:= x ]} ∪ m2) ∘ₘ n ##ₘ m1 ∘ₘ n ∧ m2 ##ₘ ∅.
Proof. intros. solve_map_disjoint. Qed.
Lemma solve_map_disjoint_compose_l_singleton_2 {A} (n : M K) (m1 m2 : M A) i x :
m2 !! i = None → m1 ##ₘ {[ i := x ]} ∪ m2 → m2 ∘ₘ n ##ₘ <[i:=x]> m1 ∘ₘ n ∧ m1 !! i = None.
Proof. intros. solve_map_disjoint. Qed.
Lemma solve_map_disjoint_compose_r_singleton_1 {A} (m1 m2 : M K) (n : M A) i x :
m1 ##ₘ <[i:=x]> m2 → n ∘ₘ ({[ i:= x ]} ∪ m2) ##ₘ n ∘ₘ m1 ∧ m2 ##ₘ ∅.
Proof. intros. solve_map_disjoint. Qed.
Lemma solve_map_disjoint_compose_r_singleton_2 {A} (m1 m2 : M K) (n : M A) i x :
m2 !! i = None → m1 ##ₘ {[ i := x ]} ∪ m2 → n ∘ₘ m2 ##ₘ n ∘ₘ <[i:=x]> m1 ∧ m1 !! i = None.
Proof. intros. solve_map_disjoint. Qed.
End map_disjoint.
Section map_dom.
Context `{FinMapDom K M D}.
Lemma set_solver_dom_subseteq {A} (i j : K) (x y : A) :
{[i; j]} ⊆ dom (<[i:=x]> (<[j:=y]> (∅ : M A))).
Proof. set_solver. Qed.
Lemma set_solver_dom_disjoint {A} (X : D) : dom (∅ : M A) ## X.
Proof. set_solver. Qed.
End map_dom.
Section map_img.
Context `{FinMap K M, Set_ A SA}.
Lemma set_solver_map_img i x :
map_img (∅ : M A) ⊆@{SA} map_img ({[ i := x ]} : M A).
Proof. set_unfold. set_solver. Qed.
End map_img.
(** * Tests for the [Pmap] and [gmap] instances. *)
(** TODO: Fix [Pset] so that it satisfies the same [cbn]/[simpl] tests as
[gset] below. *)
Goal {[1; 2; 3]} =@{gset nat} ∅.
Proof.
Fail progress simpl.
Fail progress cbn.
Show.
Abort.
Goal elements (C := gset nat) {[1; 2; 3]} = [].
Proof.
Fail progress simpl.
Fail progress cbn.
Show.
Abort.
Goal
{[1; 2; 3]} ∖ {[ 1 ]} ∪ {[ 4 ]} ∩ {[ 10 ]} =@{gset nat} ∅ ∖ {[ 2 ]}.
Proof.
Fail progress simpl.
Fail progress cbn.
Show.
Abort.
Goal 1%positive ∈ dom (M := Pmap nat) (<[ 1%positive := 2 ]> ∅).
Proof.
Fail progress simpl.
Fail progress cbn.
Show.
Abort.
Goal 1 ∈ dom (M := gmap nat nat) (<[ 1 := 2 ]> ∅).
Proof.
Fail progress simpl.
Fail progress cbn.
Show.
Abort.
Goal bool_decide (∅ =@{gset nat} {[ 1; 2; 3 ]}) = false.
Proof.
Fail progress simpl.
Fail progress cbn.
Show.
reflexivity.
Qed.
Goal bool_decide (∅ ≡@{gset nat} {[ 1; 2; 3 ]}) = false.
Proof.
Fail progress simpl.
Fail progress cbn.
Show.
reflexivity.
Qed.
Goal bool_decide (1 ∈@{gset nat} {[ 1; 2; 3 ]}) = true.
Proof.
Fail progress simpl.
Fail progress cbn.
Show.
reflexivity.
Qed.
Goal bool_decide (∅ ##@{gset nat} {[ 1; 2; 3 ]}) = true.
Proof.
Fail progress simpl.
Fail progress cbn.
Show.
reflexivity.
Qed.
Goal bool_decide (∅ ⊆@{gset nat} {[ 1; 2; 3 ]}) = true.
Proof.
Fail progress simpl.
Fail progress cbn.
Show.
reflexivity.
Qed.
Lemma should_not_unfold (m1 m2 : gmap nat nat) k x :
dom m1 = dom m2 →
<[k:=x]> m1 = <[k:=x]> m2 →
True.
Proof.
(** Make sure that [injection]/[simplify_eq] does not unfold constructs on
[gmap] and [gset]. *)
intros Hdom Hinsert.
Fail injection Hdom.
Fail injection Hinsert.
Fail progress simplify_eq.
done.
Qed.
(** Test case for issue #139 *)
Lemma test_issue_139 (m : gmap nat nat) : ∃ x, x ∉ dom m.
Proof.
destruct (exist_fresh (dom m)); eauto.
Qed.
(** Make sure that unification does not eagerly unfold [map_fold] *)
Definition only_evens (m : gmap nat nat) : gmap nat nat :=
filter (λ '(_,x), (x | 2)) m.
Lemma only_evens_Some m i n : only_evens m !! i = Some n → (n | 2).
Proof.
intros Hev.
apply map_lookup_filter_Some in Hev as [??]. done.
Qed.
(** Make sure that [pmap] and [gmap] compute *)
Definition pmap_insert_positives (start step num : positive) : Pmap unit :=
Pos.iter (λ rec p m,
rec (p + step)%positive (<[p:=tt]> m)) (λ _ m, m) num start ∅.
Definition pmap_insert_positives_rev (start step num : positive) : Pmap unit :=
Pos.iter (λ rec p m,
rec (p - step)%positive (<[p:=tt]> m)) (λ _ m, m) num start ∅.
Definition pmap_insert_positives_test (num : positive) : bool :=
bool_decide (pmap_insert_positives 1 1 num = pmap_insert_positives_rev num 1 num).
Definition pmap_insert_positives_union_test (num : positive) : bool :=
bool_decide (pmap_insert_positives 1 1 num =
pmap_insert_positives 2 2 (Pos.div2_up num) ∪
pmap_insert_positives 1 2 (Pos.div2_up num)).
Definition pmap_insert_positives_filter_test (num : positive) : bool :=
bool_decide (pmap_insert_positives 1 2 (Pos.div2_up num) =
filter (λ '(p,_), Z.odd (Z.pos p)) (pmap_insert_positives 1 1 num)).
(* Test that the time is approximately n-log-n. We cannot test this on CI since
you get different timings all the time. Instead we just test for [128000], which
likely takes forever if the complexity is not n-log-n. *)
(*
Time Eval vm_compute in pmap_insert_positives_test 1000.
Time Eval vm_compute in pmap_insert_positives_test 2000.
Time Eval vm_compute in pmap_insert_positives_test 4000.
Time Eval vm_compute in pmap_insert_positives_test 8000.
Time Eval vm_compute in pmap_insert_positives_test 16000.
Time Eval vm_compute in pmap_insert_positives_test 32000.
Time Eval vm_compute in pmap_insert_positives_test 64000.
Time Eval vm_compute in pmap_insert_positives_test 128000.
Time Eval vm_compute in pmap_insert_positives_test 256000.
Time Eval vm_compute in pmap_insert_positives_test 512000.
Time Eval vm_compute in pmap_insert_positives_test 1000000.
*)
Check "pmap_insert_positives_test".
Eval vm_compute in pmap_insert_positives_test 128000.
Eval vm_compute in pmap_insert_positives_union_test 128000.
Eval vm_compute in pmap_insert_positives_filter_test 128000.
Definition gmap_insert_positives (start step num : positive) : gmap positive unit :=
Pos.iter (λ rec p m,
rec (p + step)%positive (<[p:=tt]> m)) (λ _ m, m) num start ∅.
Definition gmap_insert_positives_rev (start step num : positive) : gmap positive unit :=
Pos.iter (λ rec p m,
rec (p - step)%positive (<[p:=tt]> m)) (λ _ m, m) num start ∅.
(* Test that the time increases linearly *)
Definition gmap_insert_positives_test (num : positive) : bool :=
bool_decide (gmap_insert_positives 1 1 num = gmap_insert_positives_rev num 1 num).
Definition gmap_insert_positives_union_test (num : positive) : bool :=
bool_decide (gmap_insert_positives 1 1 num =
gmap_insert_positives 2 2 (Pos.div2_up num) ∪
gmap_insert_positives 1 2 (Pos.div2_up num)).
Definition gmap_insert_positives_filter_test (num : positive) : bool :=
bool_decide (gmap_insert_positives 1 2 (Pos.div2_up num) =
filter (λ '(p,_), Z.odd (Z.pos p)) (gmap_insert_positives 1 1 num)).
(* Test that the time is approximately n-log-n. We cannot test this on CI since
you get different timings all the time. Instead we just test for [128000], which
likely takes forever if the complexity is not n-log-n. *)
(*
Time Eval vm_compute in gmap_insert_positives_test 1000.
Time Eval vm_compute in gmap_insert_positives_test 2000.
Time Eval vm_compute in gmap_insert_positives_test 4000.
Time Eval vm_compute in gmap_insert_positives_test 8000.
Time Eval vm_compute in gmap_insert_positives_test 16000.
Time Eval vm_compute in gmap_insert_positives_test 32000.
Time Eval vm_compute in gmap_insert_positives_test 64000.
Time Eval vm_compute in gmap_insert_positives_test 128000.
Time Eval vm_compute in gmap_insert_positives_test 256000.
Time Eval vm_compute in gmap_insert_positives_test 512000.
Time Eval vm_compute in gmap_insert_positives_test 1000000.
*)
Check "gmap_insert_positives_test".
Eval vm_compute in gmap_insert_positives_test 128000.
Eval vm_compute in gmap_insert_positives_union_test 128000.
Eval vm_compute in gmap_insert_positives_filter_test 128000.
(** Make sure that [pmap] and [gmap] have canonical representations, and compute
reasonably efficiently even with [reflexivity]. *)
Check "pmap_insert_comm".
Theorem pmap_insert_comm :
{[ 3:=false; 2:=true]}%positive =@{Pmap bool} {[ 2:=true; 3:=false ]}%positive.
Proof. simpl. Show. reflexivity. Qed.
Check "pmap_lookup_concrete".
Theorem pmap_lookup_concrete :
lookup (M:=Pmap bool) 2%positive {[ 3:=false; 2:=true ]}%positive = Some true.
Proof. simpl. Show. reflexivity. Qed.
Theorem pmap_insert_positives_reflexivity_500 :
pmap_insert_positives 1 1 500 = pmap_insert_positives_rev 500 1 500.
Proof. reflexivity. Qed.
Theorem pmap_insert_positives_reflexivity_1000 :
pmap_insert_positives 1 1 1000 = pmap_insert_positives_rev 1000 1 1000.
Proof. (* this should take less than a second *) reflexivity. Qed.
Theorem pmap_insert_positives_union_reflexivity_500 :
(pmap_insert_positives_rev 1 1 400) ∪
(pmap_insert_positives 1 1 500 ∖ pmap_insert_positives_rev 1 1 400)
= pmap_insert_positives 1 1 500.
Proof. reflexivity. Qed.
Theorem pmap_insert_positives_union_reflexivity_1000 :
(pmap_insert_positives_rev 1 1 800) ∪
(pmap_insert_positives 1 1 1000 ∖ pmap_insert_positives_rev 1 1 800)
= pmap_insert_positives 1 1 1000.
Proof. (* this should less than a second *) reflexivity. Qed.
Check "gmap_insert_comm".
Theorem gmap_insert_comm :
{[ 3:=false; 2:=true]} =@{gmap nat bool} {[ 2:=true; 3:=false ]}.
Proof. simpl. Show. reflexivity. Qed.
Check "gmap_lookup_concrete".
Theorem gmap_lookup_concrete :
lookup (M:=gmap nat bool) 2 {[ 3:=false; 2:=true ]} = Some true.
Proof. simpl. Show. reflexivity. Qed.
Theorem gmap_insert_positives_reflexivity_500 :
gmap_insert_positives 1 1 500 = gmap_insert_positives_rev 500 1 500.
Proof. reflexivity. Qed.
Theorem gmap_insert_positives_reflexivity_1000 :
gmap_insert_positives 1 1 1000 = gmap_insert_positives_rev 1000 1 1000.
Proof. (* this should less than a second *) reflexivity. Qed.
Theorem gmap_insert_positives_union_reflexivity_500 :
(gmap_insert_positives_rev 1 1 400) ∪
(gmap_insert_positives 1 1 500 ∖ gmap_insert_positives_rev 1 1 400)
= gmap_insert_positives 1 1 500.
Proof. reflexivity. Qed.
Theorem gmap_insert_positives_union_reflexivity_1000 :
(gmap_insert_positives_rev 1 1 800) ∪
(gmap_insert_positives 1 1 1000 ∖ gmap_insert_positives_rev 1 1 800)
= gmap_insert_positives 1 1 1000.
Proof. (* this should less than a second *) reflexivity. Qed.
(** This should be immediate, see std++ issue #183 *)
Goal dom ((<[10%positive:=1]> ∅) : Pmap _) = dom ((<[10%positive:=2]> ∅) : Pmap _).
Proof. reflexivity. Qed.
Goal dom ((<["f":=1]> ∅) : gmap _ _) = dom ((<["f":=2]> ∅) : gmap _ _).
Proof. reflexivity. Qed.
(** Make sure that [pmap] and [gmap] can be used in nested inductive
definitions *)
Inductive test := Test : Pmap test → test.
Fixpoint test_size (t : test) : nat :=
let 'Test ts := t in S (map_fold (λ _ t', plus (test_size t')) 0 ts).
Fixpoint test_merge (t1 t2 : test) : test :=
match t1, t2 with
| Test ts1, Test ts2 =>
Test $ union_with (λ t1 t2, Some (test_merge t1 t2)) ts1 ts2
end.
Lemma test_size_merge :
test_size (test_merge
(Test {[ 10%positive := Test ∅; 50%positive := Test ∅ ]})
(Test {[ 10%positive := Test ∅; 32%positive := Test ∅ ]})) = 4.
Proof. reflexivity. Qed.
Global Instance test_eq_dec : EqDecision test.
Proof.
refine (fix go t1 t2 :=
let _ : EqDecision test := @go in
match t1, t2 with
| Test ts1, Test ts2 => cast_if (decide (ts1 = ts2))
end); abstract congruence.
Defined.
Inductive gtest K `{Countable K} := GTest : gmap K (gtest K) → gtest K.
Arguments GTest {_ _ _} _.
Fixpoint gtest_size `{Countable K} (t : gtest K) : nat :=
let 'GTest ts := t in S (map_fold (λ _ t', plus (gtest_size t')) 0 ts).
Fixpoint gtest_merge `{Countable K} (t1 t2 : gtest K) : gtest K :=
match t1, t2 with
| GTest ts1, GTest ts2 =>
GTest $ union_with (λ t1 t2, Some (gtest_merge t1 t2)) ts1 ts2
end.
Lemma gtest_size_merge :
gtest_size (gtest_merge
(GTest {[ 10 := GTest ∅; 50 := GTest ∅ ]})
(GTest {[ 10 := GTest ∅; 32 := GTest ∅ ]})) = 4.
Proof. reflexivity. Qed.
Lemma gtest_size_merge_string :
gtest_size (gtest_merge
(GTest {[ "foo" := GTest ∅; "bar" := GTest ∅ ]})
(GTest {[ "foo" := GTest ∅; "baz" := GTest ∅ ]})) = 4.
Proof. reflexivity. Qed.
Global Instance gtest_eq_dec `{Countable K} : EqDecision (gtest K).
Proof.
refine (fix go t1 t2 :=
let _ : EqDecision (gtest K) := @go in
match t1, t2 with
| GTest ts1, GTest ts2 => cast_if (decide (ts1 = ts2))
end); abstract congruence.
Defined.
Lemma gtest_ind' `{Countable K} (P : gtest K → Prop) :
(∀ ts, map_Forall (λ _, P) ts → P (GTest ts)) →
∀ t, P t.
Proof.
intros Hnode t.
remember (gtest_size t) as n eqn:Hn. revert t Hn.
induction (lt_wf n) as [n _ IH]; intros [ts] ->; simpl in *.
apply Hnode. induction ts as [|k t m ? Hfold IHm] using map_first_key_ind.
- apply map_Forall_empty.
- apply map_Forall_insert; [done|]. split.
+ eapply IH; [|done]. rewrite map_fold_insert_first_key by done. lia.
+ eapply IHm. intros; eapply IH; [|done].
rewrite map_fold_insert_first_key by done. lia.
Qed.
(** We show that [gtest K] is countable itself. This means that we can use
[gtest K] (which involves nested uses of [gmap]) as keys in [gmap]/[gset], i.e.,
[gmap (gtest K) V] and [gset (gtest K)]. And even [gtest (gtest K)].
Showing that [gtest K] is countable is not trivial due to its nested-inductive
nature. We need to write [encode] and [decode] functions, and prove that they
are inverses. We do this by converting to/from [gen_tree]. This shows that Coq's
guardedness checker accepts non-trivial recursive definitions involving [gtest],
and we can do non-trivial induction proofs about [gtest]. *)
Global Program Instance gtest_countable `{Countable K} : Countable (gtest K) :=
let enc :=
fix go t :=
let 'GTest ts := t return _ in
GenNode 0 (map_fold (λ (k : K) t rec, GenLeaf k :: go t :: rec) [] ts) in
let dec_list := λ dec : gen_tree K → gtest K,
fix go ts :=
match ts return gmap K (gtest K) with
| GenLeaf k :: t :: ts => <[k:=dec t]> (go ts)
| _ => ∅
end in
let dec :=
fix go t :=
match t return _ with
| GenNode 0 ts => GTest (dec_list go ts)
| _ => GTest ∅ (* dummy *)
end in
inj_countable' enc dec _.
Next Obligation.
intros K ?? enc dec_list dec t.
induction (Nat.lt_wf_0_projected gtest_size t) as [[ts] _ IH]. f_equal/=.
induction ts as [|i t ts ? Hfold IHts] using map_first_key_ind; [done|].
rewrite map_fold_insert_first_key by done. f_equal/=.
- eapply IH. rewrite map_fold_insert_L by auto with lia. lia.
- apply IHts; intros t' ?. eapply IH.
rewrite map_fold_insert_L by auto with lia. lia.
Qed.
Goal
({[ GTest {[ 1 := GTest ∅ ]} := "foo" ]} : gmap (gtest nat) string)
!! GTest {[ 1 := GTest ∅ ]} = Some "foo".
Proof. reflexivity. Qed.
Goal {[ GTest {[ 1 := GTest ∅ ]} ]} ≠@{gset (gtest nat)} {[ GTest ∅ ]}.
Proof. discriminate. Qed.
Goal GTest {[ GTest {[ 1 := GTest ∅ ]} := GTest ∅ ]} ≠@{gtest (gtest nat)} GTest ∅.
Proof. discriminate. Qed.
(** Test that a fixpoint can be recursively invoked in the closure argument
of [map_imap]. *)
Fixpoint gtest_imap `{Countable K} (j : K) (t : gtest K) : gtest K :=
let '(GTest ts) := t in
GTest (map_imap (λ i t, guard (i = j);; Some (gtest_imap j t)) ts).
(** Test that [map_Forall P] and [map_Forall2 P] can be used in an inductive
definition with a recursive occurence in the predicate/relation [P] without
bothering the positivity checker. *)
Inductive gtest_pred `{Countable K} : gtest K → Prop :=
| GTest_pred ts :
map_Forall (λ _, gtest_pred) ts → gtest_pred (GTest ts).
Inductive gtest_rel `{Countable K} : relation (gtest K) :=
| GTest_rel ts1 ts2 :
map_Forall2 (λ _, gtest_rel) ts1 ts2 → gtest_rel (GTest ts1) (GTest ts2).
|